Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

A functional cardiovascular system is essential for survival and growth of the mammalian embryo, so the hematopoietic, vascular, and cardiac organ systems are the first to emerge in early post-implantation development.1 During gastrulation, mesoderm cells create the body plan, forming red blood cells in the yolk sac, the heart and aorta in the embryo proper, and a vascular network to connect the two. In this chapter, the development of the hematopoietic system in the yolk sac of the mouse will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Copp AJ. Death before birth: Clues from gene knockouts and mutations. Trends Genet 1995; 11:87–93.

    Article  CAS  PubMed  Google Scholar 

  2. Gardner RL, Rossant J. Investigation of the fate of 4.5 day post coitum mouse inner cell mass cells by blastocyst injection. J Emb Exp Morph 1979; 52:141–152.

    CAS  Google Scholar 

  3. Downs KM, Gifford S, Blahnik M et al. Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development 1998; 125:4507–4520.

    CAS  PubMed  Google Scholar 

  4. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: Key pieces of the developmental puzzle. Science 1994; 266:1508–1518.

    Article  CAS  PubMed  Google Scholar 

  5. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991; 113:891–911.

    CAS  PubMed  Google Scholar 

  6. Tarn P, Williams A, Chan WY. Gastrulation in the mouse embryo: Ultrastructural and molecular aspects of germ layer morphogenesis. Micro Res Techn 1993; 26:301–328.

    Article  Google Scholar 

  7. Jollie WP. Development, morphology, and function of the yolk-sac placenta of laboratory rodents. Teratol 1990; 41:361–381.

    Article  CAS  Google Scholar 

  8. Wilt FH. Erythropoiesis in the chick embryo: The role of endoderm. Science 1965; 147:1588–1590.

    Article  CAS  PubMed  Google Scholar 

  9. Miura Y, Wilt FH. Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev Biol 1969; 19:201–211.

    Article  CAS  PubMed  Google Scholar 

  10. Palis J, McGrath KE, Kingsley PD. Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants. Blood 1995; 86:156–163.

    CAS  PubMed  Google Scholar 

  11. Bielinska M, Narita N, Heikinheimo M et al. Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood 1996; 88:3720–3730.

    CAS  PubMed  Google Scholar 

  12. Belaousoff M, Farrington SM, Baron MH. Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo. Development 1999; 125:5009–5018.

    Google Scholar 

  13. Dyer MA, Farrington SM, Mohn D et al. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify neurectodermal cell fate in the mouse embryo. Development 2001; 128:1717–1730.

    CAS  PubMed  Google Scholar 

  14. Byrd N, Becker S, Maye P et al. Hedgehog is required for murine yolk sac angiogenesis. Development 2002; 129:361–372.

    CAS  PubMed  Google Scholar 

  15. Winnier G, Blessing M, Labosky PA et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9:2105–2116.

    Article  CAS  PubMed  Google Scholar 

  16. Johansson BM, Wiles MV. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 1995; 15:141–151.

    CAS  PubMed  Google Scholar 

  17. Maximow AA. Untersuchungen uber blut und bindegewebe 1. Die fruhesten entwicklungsstadien der blut und bindegewebszellan bein saugeberembryo, bis zum anfang der blutbilding unden leber. Arch Mikroskop Anat 1909; 73:444–561.

    Article  Google Scholar 

  18. Sabin FR. Studies on the origin of blood vessels and red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 1920; 9:213–262.

    Google Scholar 

  19. Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 1971; 170:199–224.

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki K, Matsamura G. Haemopoietic cells of yolk sac and liver in the mouse embryo: A light and electron microscopical study. J Anat 1986; 148:87–97.

    CAS  PubMed  Google Scholar 

  21. Sorenson GD. An electron microscopic study of hematopoiesis in the yolk sac. Lab Invest 1961; 10:178–193.

    Google Scholar 

  22. Smith RA, Glomski CA. Embryonic and fetal hemopoiesis in the Mongolian gerbil (Meriones unguiculatus). Anat Rec 1977; 189:499–517.

    Article  CAS  PubMed  Google Scholar 

  23. Tiedemann K. On the yolk sac of the cat. Cell Tiss Res 1977; 183:171–189.

    Article  Google Scholar 

  24. Takashina T. Haemopoiesis in the human yolk sac. J Anat 1987; 151:125–135.

    CAS  PubMed  Google Scholar 

  25. Risau W, Lemmon V. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 1988; 125:441–450.

    Article  CAS  PubMed  Google Scholar 

  26. Drake CJ, Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 2000; 95:1671–1679.

    CAS  PubMed  Google Scholar 

  27. Murray PDF. The development in vitro of the blood of the early chick embryo. Proc Royal Soc London 1932; 111:497–521.

    Article  CAS  Google Scholar 

  28. Kallianpur AR, Jordan JE, Brandt SJ. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 1994; 83:1200–1208.

    CAS  PubMed  Google Scholar 

  29. Anagnostou A, Liu Z, Steiner M et al. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci USA 1994; 91:3974–3978.

    Article  CAS  PubMed  Google Scholar 

  30. Hashiyama M, Iwama A, Ohshiro K et al. Predominant expression of a receptor tyrosine kinase, tie, in hematopoietic stem cells and B cells. Blood 1996; 87:93–101.

    CAS  PubMed  Google Scholar 

  31. Watt SM, Gschmeissner SE, Bates PA. PECAM-1: Its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk Lymphoma 1995; 17:229–244.

    Article  CAS  PubMed  Google Scholar 

  32. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376(6535):62–6.

    Article  CAS  PubMed  Google Scholar 

  33. Schuh AC, Faloon P, Hu Q-L et al. In vitro hematopoietic and endothelial potential of flk-/-embryonic stem cells and embryos. Proc Natl Acad Sci USA 1999; 96:2159–2164.

    Article  CAS  PubMed  Google Scholar 

  34. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking T-cell leukemia oncoprotein tal-1/SCL. Nature 1995; 373:432–434.

    Article  CAS  PubMed  Google Scholar 

  35. Robb L, Lyons I, Li R et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the sci gene. Proc Natl Acad Sci USA 1995; 92:7075–7079.

    Article  CAS  PubMed  Google Scholar 

  36. Warren AJ, Colledge WH, Carlton MBL et al. The oncogenic cysteine-rich LIM domain protein is essential for erythroid development. Cell 1994; 78:45–57.

    Article  CAS  PubMed  Google Scholar 

  37. Visvader JE, Fujiwara Y, Orkin SH. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 1998; 12(4):473–479.

    Article  CAS  PubMed  Google Scholar 

  38. Yamada Y, Pannell R, Forster A et al. The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice. Proc Natl Acad Sci USA 2000; 97:320–324.

    Article  CAS  PubMed  Google Scholar 

  39. Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125:725–732.

    CAS  PubMed  Google Scholar 

  40. Falloon PE, Arentson A, Kazarov A et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development 2000; 127:1931–1941.

    Google Scholar 

  41. Robertson SM, Kennedy M, Shannon JM et al. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 2000; 127:2447–2459.

    CAS  PubMed  Google Scholar 

  42. Nishikawa S-I, Nishikawa S, Kawamoto H et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8:761–769.

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita J, Itoh H, Hirashima M et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408:92–96.

    Article  CAS  PubMed  Google Scholar 

  44. Huber TL, Kouskoff V, Fehling HJ et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 2004; 432:625–630.

    Article  CAS  PubMed  Google Scholar 

  45. Smith RA, Glomski CA. “Hemogenic endothelium” of the embryonic aorta: Does it exist? Dev Comp Immunol 1982; 6:359–368.

    Article  CAS  PubMed  Google Scholar 

  46. Muller AM, Medvinsky A, Strouboulis J et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994; 1:291–301.

    Article  CAS  PubMed  Google Scholar 

  47. de Bruijn MFTR, Speck NA, Peeters MCE et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19:2465–2474.

    Article  PubMed  Google Scholar 

  48. Okuda T, van Deursen J, Hiebert SW et al. AML-1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321–330.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Stacy T, Binder M et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93:3444–3449.

    Article  CAS  PubMed  Google Scholar 

  50. North T, Gu T-L, Stacey T et al. Cbfa is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563–2575.

    CAS  PubMed  Google Scholar 

  51. Leder A, Kuo A, Shen M et al. In situ hybridization reveals coexpression of embryonic and adult α globin genes in the earliest murine erythrocyte progenitors. Development 1992; 116:1041–1049.

    CAS  PubMed  Google Scholar 

  52. Silver L, Palis J. Initiation of murine embryonic erythropoiesis: A spatial analysis. Blood 1997; 89:1154–1164.

    CAS  PubMed  Google Scholar 

  53. McGrath KE, Koniski AD, Malik J et al. Circulation is established in a step-wise pattern in the mammalian embryo. Blood 2003; 101:1669–1676.

    Article  CAS  PubMed  Google Scholar 

  54. Ji RP, Phoon CKL, Aristizábal O et al. Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper. Circ Res 2003; 92:133–135.

    Article  CAS  PubMed  Google Scholar 

  55. Fantoni A, de la Chapelle A, Rifkind RA et al. Erythroid cell development in fetal mice: Synthetic capacity for different proteins. J Mol Biol 1968; 33:79–91.

    Article  CAS  PubMed  Google Scholar 

  56. Steiner R, Vogel H. On the kinetics of erythroid cell differentiation in fetal mice: I. Microspectrophotometric determination of the hemoglobin content in erythroid cells during gestation. J Cell Physiol 1973; 81:323–338.

    Article  CAS  PubMed  Google Scholar 

  57. Sangiorgi F, Woods CM, Lazarides E. Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage. Development 1990; 110:85–96.

    CAS  PubMed  Google Scholar 

  58. Kingsley PD, Malik J, Fantauzzo KA et al. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 2004; 104:19–25.

    Article  CAS  PubMed  Google Scholar 

  59. Iscove NN, Sieber F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol 1975; 3:32–43.

    CAS  PubMed  Google Scholar 

  60. Stephenson JR, Axelrad A, McLeod D et al. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 1971; 68:1542–1546.

    Article  CAS  PubMed  Google Scholar 

  61. Wong PMC, Chung SW, Chui DHK et al. Properties of the earliest clonogenic hematopoietic precursors to appear in the developing murine yolk sac. Proc Natl Acad Sci USA 1986; 83:3851–3854.

    Article  CAS  PubMed  Google Scholar 

  62. Keller G, Kennedy M, Papayannopoulou T et al. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993; 13:473–486.

    CAS  PubMed  Google Scholar 

  63. Kennedy M, Firpo M, Choi K et al. Identification of a common precursor for primitive and definitive hematopoiesis. Nature 1997; 386:488–493.

    Article  CAS  PubMed  Google Scholar 

  64. Nakano T, Kodama H, Honjo T. In vitro development of primitive and definitive erythrocytes from different precursors. Science 1996; 272:722–724.

    Article  CAS  PubMed  Google Scholar 

  65. Palis J, Robertson S, Kennedy M et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126:5073–5084.

    CAS  PubMed  Google Scholar 

  66. Xu M-J, Matsuoka S, Yang F-C et al. Evidence for the presence of primitive megakaryocytopoiesis in the early yolk sac. Blood 2001; 97:2016–2022.

    Article  CAS  Google Scholar 

  67. Xie X, Chan RJ, Johnson SA et al. Thrombopoietin promotes mixed lineage and megakaryocytic colony forming cell growth but inhibits primitive and definitive erythropoiesis in cells isolated from early murine yolk sacs. Blood 2003; 101:1329–1335.

    Article  CAS  PubMed  Google Scholar 

  68. Bradley TR, Hodgson GS. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 1979; 54:1446–1450.

    CAS  PubMed  Google Scholar 

  69. Bertoncello I. Status of high proliferative potential colony-forming cells in the hematopoietic stem cell hierarchy. Curr Top Microbiol Immunol 1992; 177:83–94.

    CAS  PubMed  Google Scholar 

  70. Palis J, Chan RJ, Koniski A et al. Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc Natl Acad Sci USA 2001; 98:4528–453.

    Article  CAS  PubMed  Google Scholar 

  71. Metcalf D, Moore M. Haemopoietic cells. London: North-Holland Publishing Company, 1971.

    Google Scholar 

  72. Harrison DE, Astle CM, DeLaittre JA. Processing by the thymus is not required for cells that cure and populate W/Wv recipients. Blood 1979; 54:1152–1157.

    CAS  PubMed  Google Scholar 

  73. Sonoda T, Hayashi C, Kitamura Y. Presence of mast cell precursors in the yolk sac of mice. Dev Biol 1983; 97:89–94.

    Article  CAS  PubMed  Google Scholar 

  74. Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of the mouse embryo. Blood 2000; 95:2284–2288.

    CAS  PubMed  Google Scholar 

  75. Yoder MC, Hiatt K, Dutt P et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 1997; 7:335–344.

    Article  CAS  PubMed  Google Scholar 

  76. Yoder MC, Hiatt K, Mukherjee P. In vivo repopulating hematopoietic stem cells are present in murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 1997; 94:6776–6780.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Palis, J. (2006). Yolk Sac Development in Mice. In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_5

Download citation

Publish with us

Policies and ethics