Skip to main content

Extra- and Intraembryonic HSC Commitment in the Avian Model

  • Chapter
Book cover Hematopoietic Stem Cell Development

Abstract

Hematopoietic stem cells (HSC) are at the basis of the hematopoietic system construction. In adult higher Vertebrates, HSC, defined by their multipotentiality and self-renewal capacity, setde in the bone marrow where they can differentiate into progenitors with more restricted lineage potential and generate all blood lineages via a cascade of commitment events. However HSC are generated during the earliest phases of embryonic development into specific sites. Genetic technologies in the mouse have revealed a number of mutations that affect the production of blood cells, some of which early during development. The tiny mouse embryo embedded in the uterus is not however the most appropriate model to study the earliest events of the development for the analysis of cell commitment, cell migration and cell interaction. Work in the avian embryo has led to several breakthroughs in analysing the ontogeny of the hematopoietic system. Here we will review the main steps that have paved a 30 year analysis of the construction of the hematopoietic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkenhead M, Christ B, Eichmann A et al. Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail. Dev Dyn 1998; 212:1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999; 117:145–152.

    Article  CAS  PubMed  Google Scholar 

  3. Ambler CA, Nowicki JL, Burke AC et al. Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol 2001; 234:352–364.

    Article  CAS  PubMed  Google Scholar 

  4. Beaupain D, Martin C, Dieterlen-Lievre F. Are developmental hemoglobin changes related to the origin of stem cells and site of erythropoiesis? Blood 1979; 53:212–225.

    CAS  PubMed  Google Scholar 

  5. Beaupain D, Martin C, Dieterlen-Lievre F. Origin and evolution of hemopoietic stem cells in avian embryo. In: Stammatoyanopoulos G, Nienhuis A, eds. Hemoglobins in development and differentiation. New York: Alan R Liss, Inc, 1979:161–169.

    Google Scholar 

  6. Belaoussoff M, Farrington SM, Baron MH. Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo. Development 1998; 125:5009–5018.

    CAS  PubMed  Google Scholar 

  7. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (fit-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn 1995; 204:228–239.

    CAS  PubMed  Google Scholar 

  8. Caprioli A, Jaffredo T, Gautier R et al. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA 1998; 95:1641–1646.

    Article  CAS  PubMed  Google Scholar 

  9. Caprioli A, Minko K, Drevon C et al. Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev Biol 2001; 238:64–78.

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380:435–439.

    Article  CAS  PubMed  Google Scholar 

  11. Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125:725–732.

    CAS  PubMed  Google Scholar 

  12. Cleaver O, Krieg PA. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 1998; 125:3905–3914.

    CAS  PubMed  Google Scholar 

  13. Cooper MD, Chen CH, Bucy RP et al. Avian T cell ontogeny. Adv Immunol 1991; 30:87.

    Article  Google Scholar 

  14. Cormier F. Avian pluripotent haemopoietic progenitor cells: detection and enrichment from the para-aortic region of the early embryo. J Cell Sci 1993; 105:661–666.

    PubMed  Google Scholar 

  15. Cormier F, de Paz P, Dieterlen-Lievre F. In vitro detection of cells with monocytic potentiality in the wall of the chick embryo aorta. Dev Biol 1986; 118:167–175.

    Article  CAS  PubMed  Google Scholar 

  16. Cormier F, Dieterlen-Lievre F. The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 1988; 102:279–285.

    CAS  PubMed  Google Scholar 

  17. Cuadros MA, Cokey P, Carmen Nieto M et al. Demonstration of a phagocytic cell system belonging to the hemopoietic lineage and originating from the yolk sac in the early avian embryo. Development 1992; 115:157–168.

    CAS  PubMed  Google Scholar 

  18. Cuadros MA, Navascues J. Early origin and colonization of the developing central nervous system by microglial precursors. Prog Brain Res 2001; 132:51–59.

    Article  CAS  PubMed  Google Scholar 

  19. de Bruijn MF, Ma X, Robin C et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 2002; 16:673–683.

    Article  PubMed  Google Scholar 

  20. Dieterlen-Lievre F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 1975; 33:607–619.

    CAS  PubMed  Google Scholar 

  21. Dieterlen-Lievre F, Martin C. Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 1981; 88:180–191.

    Article  CAS  PubMed  Google Scholar 

  22. Dumont DJ, Fong GH, Puri MC et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203:80–92.

    CAS  PubMed  Google Scholar 

  23. Dyer MA, Farrington SM, Mohn D et al. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 2001; 128:1717–1730.

    CAS  PubMed  Google Scholar 

  24. Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380:439–442.

    Article  CAS  PubMed  Google Scholar 

  25. Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 1995; 169:699–712.

    Article  CAS  PubMed  Google Scholar 

  26. Gordon-Thomson C, Fabian BC. Hypoblastic tissue and fibroblast growth factor induce blood tissue (haemoglobin) in the early chick embryo. Development 1994; 120:3571–3579.

    CAS  PubMed  Google Scholar 

  27. Jaffredo T, Gautier R, Brajeul V et al. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 2000; 224:204–214.

    Article  CAS  PubMed  Google Scholar 

  28. Jaffredo T, Gautier R, Eichmann A et al. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998; 125:4575–4583.

    CAS  PubMed  Google Scholar 

  29. Jotereau F, Houssaint E. Experimental studies on the migration and differentiation of primary lymphoid stem cells in the avian embryo. In: Solomon JB, Horton JD, eds. Developmental Immunobiology. Amsterdam: Elsevier North Holland Biomedical Press, 1977.

    Google Scholar 

  30. Jotereau FV, Le Douarin NM. Demonstration of a cyclic renewal of the lymphocyte precursor cells in the quail thymus during embryonic and perinatal life. J Immunol 1982; 129:1869–1877.

    CAS  PubMed  Google Scholar 

  31. Kessel J, Fabian B. Inhibitory and stimulatory influences on mesodermal erythropoiesis in the early chick blastoderm. Development 1987; 101:45–49.

    CAS  PubMed  Google Scholar 

  32. Kessel J, Fabian BC. The pluripotency of the extraembryonic mesodermal cells of the early chick blastoderm: effects of the AP and AOV environments. Dev Biol 1986; 116:319–327.

    Article  CAS  PubMed  Google Scholar 

  33. Kinder SJ, Tsang TE, Quinlan GA et al. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 1999; 126:4691–4701.

    CAS  PubMed  Google Scholar 

  34. Lassila O, Eskola J, Toivanen P. Prebursal stem cells in the intraembryonic mesenchyme of the chick embryo at 7 days of incubation. J Immunol 1979; 123:2091–2094.

    CAS  PubMed  Google Scholar 

  35. Lassila O, Eskola J, Toivanen P et al. The origin of lymphoid stem cells studied in chick yold sac-embryo chimaeras. Nature 1978; 272:353–354.

    Article  CAS  PubMed  Google Scholar 

  36. Lassila O, Martin C, Dieterlen-Lievre F et al. Is the yolk sac the primary origin of lymphoid stem cells? Transplant Proc 1979; 11:1085–1088.

    CAS  Google Scholar 

  37. Lassila O, Martin C, Toivanen P et al. Erythropoiesis and lymphopoiesis in the chick yolk-sac-embryo chimeras: contribution of yolk sac and intraembryonic stem cells. Blood 1982; 59:377–381.

    CAS  PubMed  Google Scholar 

  38. Le Douarin N, Jotereau F, Houssaint E et al. Primary lymphoid organ ontogeny in birds. In: Le Douarin NLM, McLaren A, eds. Chimeras in developmental biology. London: Academic Prss, 1984:179.

    Google Scholar 

  39. Le Douarin NM, Dieterlen-Lievre F, Oliver PD. Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 1984; 170:261–299.

    Article  PubMed  Google Scholar 

  40. Martin C, Beaupain D, Dieterlen-Lievre F. Developmental relationships between vitelline and intra-embryonic haemopoiesis studied in avian ‘yolk sac chimaeras’. Cell Differ 1978; 7:115–130.

    Article  CAS  PubMed  Google Scholar 

  41. Martin C, Lassila O, Nurmi T et al. Intraembryonic origin of lymphoid stem cells in the chicken: studies with sex chromosome and IgG allotype markers in histocompatible yolk sac-embryo chimaeras. Scand J Immunol 1979; 10:333–338.

    Article  CAS  PubMed  Google Scholar 

  42. Miquerol L, Gertsenstein M, Harpal K et al. Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 1999; 212:307–322.

    Article  CAS  PubMed  Google Scholar 

  43. Miura Y, Wilt FH. Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev Biol 1969; 19:201–211.

    Article  CAS  PubMed  Google Scholar 

  44. Moore MAT, Owen JJT. Chromosome marker studies in the development of the hematopoietic system in the chick embryo. Nature 1965; 208:956.

    Article  PubMed  Google Scholar 

  45. Moore MAT, Owen JJT. Experimental studies on the development of the thymus. J Exp Med 1967; 126:715.

    Article  CAS  PubMed  Google Scholar 

  46. Moore MAT, Owen JJT. Stem cell migration in developing myeloid and lyphoid systems. Lancet 1967; 2:658.

    Article  Google Scholar 

  47. Noden DM. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 1989; 140:1097–1103.

    CAS  PubMed  Google Scholar 

  48. North T, Gu TL, Stacy T et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563–2575.

    CAS  PubMed  Google Scholar 

  49. Oberlin E, Tavian M, Blazsek I et al. Blood-forming potential of vascular endothelium in the human embryo. Development 2002; 129:4147–4157.

    CAS  PubMed  Google Scholar 

  50. Pardanaud L, Altmann C, Kitos P et al. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 1987; 100:339–349.

    CAS  PubMed  Google Scholar 

  51. Pardanaud L, Dieterlen-Lievre Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 1999; 126:617–627.

    CAS  PubMed  Google Scholar 

  52. Pardanaud L, Luton D, Prigent M et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996; 122:1363–1371.

    CAS  PubMed  Google Scholar 

  53. Peault BM, Thiery JP, Le Douarin NM. Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 1983; 80:2976–80.

    Article  CAS  PubMed  Google Scholar 

  54. Schoenwolf GC, Garcia-Martinez V, Dias MS. Mesoderm movement and fate during avian gastru-lation and neurulation. Dev Dyn 1992; 193:235–248.

    CAS  PubMed  Google Scholar 

  55. Schramm C, Solursh M. The formation of premuscle masses during chick wing bud development. Anat Embryol (Berl) 1990; 182:235–247.

    CAS  Google Scholar 

  56. Shalaby F, Ho J, Stanford WL et al. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89:981–990.

    Article  CAS  PubMed  Google Scholar 

  57. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-l-deficient mice. Nature 1995; 376:62–66.

    Article  CAS  PubMed  Google Scholar 

  58. Thompson MA, Ransom DG, Pratt SJ et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 1998; 197:248–269.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Q, Stacy T, Binder M et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93:3444–3449.

    Article  CAS  PubMed  Google Scholar 

  60. Wilt FH. Erythropoiesis in the chick embryo: The role of the endoderm. Science 1965; 147:1588–1590.

    Article  CAS  PubMed  Google Scholar 

  61. Wilting J, Brand-Saberi B, Huang R et al. Angiogenic potential of the avian somite. Dev Dyn 1995; 202:165–171.

    CAS  PubMed  Google Scholar 

  62. Zagris N. Hypoblast induction of multiple areas vasculosae, and stabilization of the area opaca vasculosa in young chick blastoderm. J Embryol Exp Morphol 1982; 68:115–126.

    CAS  PubMed  Google Scholar 

  63. Eichmann A, Marcelle C, Bryant C et al. Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 1993; 42:33–48.

    Article  CAS  PubMed  Google Scholar 

  64. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. Morphol 1951; 88:49–92.

    Article  Google Scholar 

  65. Eichmann A, Corbel C, Nataf V et al. Ligand-dependent development of the endothelial and hematopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94:5141–5146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Jaffredo, T., Bollerot, K., Minko, K., Gautier, R., Romero, S., Drevon, C. (2006). Extra- and Intraembryonic HSC Commitment in the Avian Model. In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_3

Download citation

Publish with us

Policies and ethics