Skip to main content

Ventral and Dorsal Contributions to Hematopoiesis in Xenopus

  • Chapter
Hematopoietic Stem Cell Development

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The view that all blood derives from ventral mesoderm has been challenged in recent years. In the Xenopus embryo, it is now clear that the embryonic blood compartment, the ventral blood island (VBI), is derived from regions of the pre-gastrula embryo traditionally referred to as dorsal as well as ventral. Furthermore, recent lineage labelling studies in Xenopus, show that the adult blood lineage in the dorsal lateral plate (DLP) mesoderm arises independendy of the embryonic lineage. Thus, there appear to be three distinct sources of blood in Xenopus embryos, two giving rise to the VBI and one the DLP. Distinct origins coupled with separate migration pathways through the embryo suggest that the three populations may be independendy programmed during development. Perturbation of BMP signalling shows that all three require this signal in order to form the putative bipotential precursor of blood and endothelium, the hemangioblast. Differences between the embryonic populations and the adult lineage however have been detected with respect to retinoid signalling during gastrulation, and also with respect to specific gene responses to BMP signalling. Experimental manipulations of this model system are beginning to inform our understanding of the developmental programming of hematopoietic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dale L, Slack J. Fate map for the 32-cell stage of Xenopus laevis. Development 1987; 99:527–551.

    Google Scholar 

  2. Orkin SH, Zon LI. Genetics of erythropoiesis: Induced mutations in mice and zebrafish. Annual Review of Genetics 1997; 31:33–60.

    Article  CAS  PubMed  Google Scholar 

  3. Moore MAS, Metcalf D. Ontogeny of the haematopoietic system; yolk sac origin of in vivo and in vitro colony forming cell in the developing mouse embryo. J Haematol 1970; 18:279–296.

    Article  CAS  Google Scholar 

  4. Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of haemopoietic cell development in the mammalian embryo. Immunol Today 1998; 19:228–236.

    Article  CAS  PubMed  Google Scholar 

  5. Smith JC. Mesoderm induction and mesoderm-inducing factors in early amphibian development. Development 1989; 105:665–677.

    CAS  PubMed  Google Scholar 

  6. Keller G, Lacaud G, Robertson S. Development of the hematopoietic system in the mouse. Exp Hematol 1999; 27:777–787.

    Article  CAS  PubMed  Google Scholar 

  7. LeDouarin NM, Dieterlen-Lievre F, Oliver PD. Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 1984; 170:261–299.

    Article  CAS  Google Scholar 

  8. Dieterlen-Lievre F, Godin I, Pardanaud L. Ontogeny of hematopoiesis in the avian embryo: a general paradigm. Curr Top Micro Immunol 1996; 212:119–128.

    CAS  Google Scholar 

  9. Mangia F, Procicchiani G, Manelli H. On the development of the blood island in Xenopus laevis embryos. Acta Embryologica Experientia 1970:163-184.

    Google Scholar 

  10. Ohinata H, Tochinai S, Katagiri C. Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis. Development 1989; 107:445–452.

    CAS  PubMed  Google Scholar 

  11. Hollyfield JG. The origin of erythroblasts in Rana pipiens tadpoles. Dev Biol 1966; 14:461–480.

    Article  Google Scholar 

  12. Ohinata H, Enami T. Contribution of ventral blood island (VBI)-derived cells to postembryonic liver erythropoiesis in Xenopus laevis. Develop Growth Differ 1991; 33(4):299–306.

    Article  Google Scholar 

  13. Turpen JB. Induction and early development of the hematopoietic and immune systems in Xenopus. Dev Comp Immunol 1998; 22:265–278.

    Article  CAS  PubMed  Google Scholar 

  14. Turpen JB, Knudson CM. Ontogeny of hematopoietic cells in Rana pipiens: Precursor cell migration during embryogenesis. Dev Biol 1982; 89:138–151.

    Article  CAS  PubMed  Google Scholar 

  15. Kau C, Turpen JB. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J Immunol 1983; 131:2262–2266.

    CAS  PubMed  Google Scholar 

  16. Maeno M, Tochinai S, Katagiri C. Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras. Dev Biol 1985; 110:503–508.

    Article  CAS  PubMed  Google Scholar 

  17. Maeno M, Todate A, Katagiri C. The localisation of precursor cells for larval and adult hemopoietic cells of Xenopus laevis in two regions of the embryos. Dev Growth DifT 1985; 27:137–148.

    Article  Google Scholar 

  18. Marshall CJ, Thrasher AJ. The embryonic origins of human haematopoiesis. Br J Haematol 2001; 112:838–850.

    Article  CAS  PubMed  Google Scholar 

  19. Ciau-Uitz A, Walmsley M, Patient R. Distinct origins of adult and embryonic blood in Xenopus. Cell 2000; 102:787–796.

    Article  CAS  PubMed  Google Scholar 

  20. Moody S. Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev Biol 1987; 122:300–319.

    Article  CAS  PubMed  Google Scholar 

  21. Zon LI. Developmental biology of hematopoiesis. Blood 1995; 86:2876–2891.

    CAS  PubMed  Google Scholar 

  22. Tracey Jr. WD, Pepling ME, Horb ME et al. A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood. Development 1998; 125:1371–1380.

    CAS  PubMed  Google Scholar 

  23. Lane MC, Smith WC. The origins of primitive blood in Xenopus: implications for axial patterning. Development 1999; 126:423–434.

    CAS  PubMed  Google Scholar 

  24. Vodicka MA, Gerhart JC. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis. Development 1995; 121(11):3505–3518.

    CAS  PubMed  Google Scholar 

  25. Turpen JB, Kelley CM, Mead PE et al. Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 1997; 7:325–334.

    Article  CAS  PubMed  Google Scholar 

  26. Bertwistle D, Walmsley ME, Read EM et al. GATA factors and the origins of adult and embryonic blood in Xenopus: responses to retinoic acid. Mech Dev 1996; 57:199–214.

    Article  CAS  PubMed  Google Scholar 

  27. Cleaver O, Krieg PA. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 1998; 125:3905–3914.

    CAS  PubMed  Google Scholar 

  28. Turpen JB, Knudson CM, Hoefen PS. The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. J Dev Biol 1981; 85:99–112.

    Article  CAS  Google Scholar 

  29. Chen X, Turpen J. Intraembryonic origin of hepatic hematopoiesis in Xenopus laevis. J Immunol 1995; 154:2557–2567.

    CAS  PubMed  Google Scholar 

  30. Meyer D, Stiegler P, Hindelang C et al. Whole-mount in-situ hybridisation reveals the expression of the Xl-fli gene in several lineages of migrating cells in Xenopus embryos. Int J Dev Biol 1995; 39(6):909–919.

    CAS  PubMed  Google Scholar 

  31. Newman CS, Chia F, Krieg PA. The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech Dev 1997; 66:83–93.

    Article  CAS  PubMed  Google Scholar 

  32. Mills KR, Kruep D, Saha MS. Elucidating the origins of the vascular system: A fate map of the vascular endothelial and red blood cell lineage in Xenopus laevis. Dev Biol 1999; 209:352–368.

    Article  CAS  PubMed  Google Scholar 

  33. Okuda T, van Deursen J, Hiebert SW et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321–330.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Q, Stacy T, Binder M et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93:3444–3449.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Stacy T, Miller JD et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87:697–708.

    Article  CAS  PubMed  Google Scholar 

  36. Tracey WD, Speck NA. Potential roles for RUNX1 and its orthologs in determining hematopoietic cell fate. Sem Cell Dev Biol 2000; 11:337–342.

    Article  CAS  Google Scholar 

  37. North T, Gu T-L, Stacy T et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563–2575.

    CAS  PubMed  Google Scholar 

  38. Mukouyama Y, Chiba N, Hara T et al. The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta-gonad-mesonephros region. Dev Bio 2000; 220(1):27–36.

    Article  CAS  Google Scholar 

  39. Kimelman D, Griffin K. Vertebrate mesendoderm induction and patterning. Curr Opin Gene Dev 2000; 10:350–356.

    Article  CAS  Google Scholar 

  40. Walmsley ME, Guille MJ, Bertwistle D et al. Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development 1994; 120:2519–2529.

    CAS  PubMed  Google Scholar 

  41. Kumano G, Belluzzi L, Smith WC. Spatial and temporal properties of ventral blood island induction in Xenopus laevis. Development 1999; 126:5327–5337.

    CAS  PubMed  Google Scholar 

  42. Kumano G, Smith WC. FGF signaling restricts the primary blood islands to ventral mesoderm. Dev Biol 2000; 228:304–314.

    Article  CAS  PubMed  Google Scholar 

  43. Amaya E, Musci TJ, Kirschner MW. Expression of a Dominant Negative Mutant of the FGF Receptor Disrupts Mesoderm Formation in Xenopus Embryos. Cell 1991; 66:257–270.

    Article  CAS  PubMed  Google Scholar 

  44. Dale L, Howes G, Price BMJ et al. Bone morphogenic protein-4: a ventralising factor in early Xenopus development. Development 1992; 115:573–585.

    CAS  PubMed  Google Scholar 

  45. Jones CM, Lyons KM, Lapan PM et al. DVR-4 (bone morphogenetic protein) as a posterior-ventralizing factor in Xenopus mesoderm Induction. Development 1992; 115:639–647.

    CAS  PubMed  Google Scholar 

  46. Maeno M, Ong RC, Xue Y et al Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue. Dev Biol 1994; 161:522–529.

    Google Scholar 

  47. Graff JM, Thies RS, Song JJ et al. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 1994; 79:169–179.

    Article  CAS  PubMed  Google Scholar 

  48. Maeno M, Ong RC, Suzuki A et al. A truncated bone morphogenetic protein-4 receptor alters the fate of ventral mesoderm to dorsal mesoderm—roles of animal pole tissue in the development of ventral mesoderm. Proc Natl Acad Sci USA 1994; 91(22):10260–10264.

    Article  Google Scholar 

  49. Goodman SA, Albano R, Wardle FC et al. BMP1-related metalloproteinases promote the development of ventral mesoderm in early Xenopus embryos. Developmental Biology 1998; 195(2):144–157.

    Article  CAS  PubMed  Google Scholar 

  50. Cleaver O, Tonissen F, Saha MS et al. Neovascularization of the Xenopus embryo. Dev Dyn 1997; 210:66–77.

    Article  CAS  PubMed  Google Scholar 

  51. Eichmann A, Corbel C, Nataf V et al. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94:5141–5146.

    Article  CAS  PubMed  Google Scholar 

  52. Marshall CJ, Kinnon C, Thrasher AJ. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood 2000; 96(4):1591–1593.

    CAS  PubMed  Google Scholar 

  53. Sive HL, Cheng PF. Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 1991; 5:1321–1332.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Ciau-Uitz, A., Walmsley, M., Patient, R. (2006). Ventral and Dorsal Contributions to Hematopoiesis in Xenopus . In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_1

Download citation

Publish with us

Policies and ethics