Skip to main content

Noise in Gene Regulatory Networks

  • Chapter

Abstract

Gene expression is based on biochemical processes that are inherently stochastic. The resulting fluctuations in mRNA and protein levels can sometimes be exploited but generally need to be controlled for reliable function of regulatory networks. From models of these biochemical processes it is possible to obtain analytical expressions for the stochastic properties of the resulting distributions of expression levels. We present a review of the two main analytical techniques for modeling stochastic gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Ptashne M. 1992. A genetic switch: phage lambda and higher organisms. Cell Press, Cambridge.

    Google Scholar 

  2. Arkin A, Ross J, McAdams HH. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:1633–1648.

    PubMed  CAS  Google Scholar 

  3. van de Putte P, Goosen N. 1992. DNA inversions in phages and bacteria. Trends Genet 8:457–462.

    PubMed  Google Scholar 

  4. von Dassow G, Meir E, Munro EM, Odell GM. 2000. The segment polarity network is a robust developmental module. Nature 406:188–192.

    Article  Google Scholar 

  5. Becskei A, Serrano L. 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–593.

    Article  PubMed  CAS  Google Scholar 

  6. Ko MS, Nakauchi H, Takahashi N. 1990. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J 9:2835–2842.

    PubMed  CAS  Google Scholar 

  7. Berg OG. 1978. A model for statistical fluctuations of protein number in a microbial population. J Theor Biol 71:587–603.

    Article  PubMed  CAS  Google Scholar 

  8. McAdams HH, Arkin A. 19 1977. Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819.

    Article  Google Scholar 

  9. Thattai M, van Oudenaarden A. 2001. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98:8614–8619.

    Article  PubMed  CAS  Google Scholar 

  10. Kierzek AM, Zaim J, Zielenkiewicz P. 2001. The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J Biol Chem 276:8165–8172.

    Article  PubMed  CAS  Google Scholar 

  11. Kepler TB, Elston TC. 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136.

    PubMed  CAS  Google Scholar 

  12. Swain PS, Elowitz MB, Siggia ED. 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99:12795–12800.

    Article  PubMed  CAS  Google Scholar 

  13. Paulsson J. 2004. Summing up the noise in gene networks. Nature 427:415–418.

    Article  PubMed  CAS  Google Scholar 

  14. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002. Regulation of noise in the expression of a single gene. Nature Genet 31:69–73.

    Article  PubMed  CAS  Google Scholar 

  15. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  16. Blake WJ, Kærn M, Cantor CR, Collins JJ. 2003. Noise in eukaryotic gene expression. Nature 422:633–637.

    Article  PubMed  CAS  Google Scholar 

  17. Raser J, O’Shea, EK. 2004. Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814.

    Article  PubMed  CAS  Google Scholar 

  18. Rao CV, Wolf DM, Arkin AP. 2002. Control, exploitation and tolerance of intracellular noise. Nature 420:231–237.

    Article  PubMed  CAS  Google Scholar 

  19. van Kampen NG. 1992. Stochastic processes in physics and chemistry. North-Holland, Amsterdam.

    Google Scholar 

  20. Thattai M, van Oudenaarden A. 2002. Attenuation of noise in ultrasensitive signaling cascades. Biophys J 82:2943–2950.

    Article  PubMed  CAS  Google Scholar 

  21. Hasty J, Pradines J, Dolnik M, Collins JJ. 2000. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97:2075–2080.

    Article  PubMed  CAS  Google Scholar 

  22. Øksendal BK. 1998. Stochastic differential equations: an introduction with applications. Springer, New York.

    Google Scholar 

  23. Rowe HE. 1965. Signals and noise in communication systems. van Nostrand, Princeton.

    Google Scholar 

  24. Gillespie DT. 2001. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733.

    Article  CAS  Google Scholar 

  25. Gibson MA, Bruck J. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889.

    Article  CAS  Google Scholar 

  26. Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361.

    Article  CAS  Google Scholar 

  27. Magee JA, Abdulkadir SA, Milbrandt J. 2003. Haploinsufficiency at the Nkx3.1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3:273–283.

    Article  PubMed  CAS  Google Scholar 

  28. McAdams HH, Arkin A. 2000. Towards a circuit engineering discipline. Curr Biol 10:R318–R320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Pedraza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Pedraza, J.M., van Oudenaarden, A. (2006). Noise in Gene Regulatory Networks. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_7

Download citation

Publish with us

Policies and ethics