Skip to main content

Familial Adenomatous Polyposis and Turcot and Peutz-Jeghers Syndromes

  • Chapter
Book cover Molecular Pathology in Clinical Practice

Abstract

Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder that predisposes affected individuals to colon cancer through the early development of hundreds to thousands of adenomatous polyps (Figure 18-1). Florid polyposis throughout the colon will develop in 50% of affected individuals by age 16, and 95% will have polyposis by age 35.1 If left untreated, colorectal cancer is inevitable in those with FAP, with an average age at diagnosis of 39 years. The incidence of FAP is estimated to be 1 in 8,300 to 1 in 14,025 live births and represents less than 1% of all colon cancers.1 FAP is clinically diagnosed when an individual has greater than 100 colorectal adenomatous polyps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Gastroenterological Association. AGA technical review on hereditary colorectal cancer and genetic testing. Gastroenterology. 2001;121:198–213.

    Article  Google Scholar 

  2. Soravia C, Berk T, Madlensky L, et al. Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet. 1998;62:1290–1301.

    Article  PubMed  CAS  Google Scholar 

  3. Lynch HT, Smyrk TC, Watson P, et al. Hereditary flat adenoma syndrome: a variant of familial adenomatous polyposis? Dis Colon Rectum. 1992;35:411–421.

    Article  PubMed  CAS  Google Scholar 

  4. Spirio L, Olschwang S, Groden J, et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993;75:951–957.

    Article  PubMed  CAS  Google Scholar 

  5. Kinzler KW, Vogelstein B. Colorectal tumors. In: Vogelstein B, Kinzler KW, eds. The Genetic Basis of Human Cancer. New York: McGraw-Hill; 2002:583–612.

    Google Scholar 

  6. Truta B, Allen BA, Conrad PG, et al. A comparison of the phenotype and genotype in adenomatous polyposis patients with and without a family history. Fam Cancer. 2005;4:127–133.

    Article  PubMed  Google Scholar 

  7. Moisio A-L, Jarvinen H, Peltomaki P. Genetic and clinical characterisation of familial adenomatous polyposis: a population based study. Gut. 2002;50:845–850.

    Article  PubMed  CAS  Google Scholar 

  8. Friedl W, Caspari R, Sengteller M, et al. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut. 2001;48:515–521.

    Article  PubMed  CAS  Google Scholar 

  9. Heppner Goss K, Trzepacz C, Tuohy TM, Groden J. Attenuated APC alleles produce functional protein from internal translation initiation. Proc Natl Acad Sci USA. 2002;99:8161–8166.

    Article  PubMed  CAS  Google Scholar 

  10. Sieber OM, Lipton L, Crabtree M, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348:791–799.

    Article  PubMed  Google Scholar 

  11. Hedge MR, Chong B, Blazo ME, et al. A homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res. 2005;11:4689–4693.

    Article  Google Scholar 

  12. Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332:839–847.

    Article  PubMed  CAS  Google Scholar 

  13. Wallis YL, Morton DG, McKeown CM, Macdonald F. Molecular analysis of the APC gene in 205 families: extended genotype-phenotype correlation in FAP and evidence of the role of APC amino acid changes in colorectal cancer predisposition. J Med Genet. 1999;36:14–20.

    PubMed  CAS  Google Scholar 

  14. Leung SY, Yuen ST, Chan TL, et al. Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation. Oncogene. 2000;19:4079–4083.

    Article  PubMed  CAS  Google Scholar 

  15. Miyaki M, Iijima T, Shiba K, et al. Alterations of repeated sequences in 5′ upstream and coding regions in colorectal tumors from patients with hereditary nonpolyposis colorectal cancer and Turcot syndrome. Oncogene. 2001;20:5215–5218.

    Article  PubMed  CAS  Google Scholar 

  16. Boardman LA. Heritable colorectal cancer syndromes: recognition and preventive management. Gastroenterol Clin North Am. 2002;31:1107–1131.

    Article  PubMed  Google Scholar 

  17. Aaltonen L. Peutz-Jeghers syndrome. In: Vogelstein B, Kinzler KW, eds. The Genetic Basis of Human Cancer. New York: McGraw-Hill; 2002:337–341.

    Google Scholar 

  18. Hampel H, Peltomaki P. Hereditary colorectal cancer: risk assessment and management. Clin Genet. 2000;58:89–97.

    Article  PubMed  CAS  Google Scholar 

  19. Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119:1447–1453.

    Article  PubMed  CAS  Google Scholar 

  20. Ylikorkala A, Avizienyte E, Tomlinson IP, et al. Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet. 1999;8:45–51.

    Article  PubMed  CAS  Google Scholar 

  21. Karuman P, Gozani O, Odze RD, et al. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell. 2001;7:1307–1319.

    Article  PubMed  CAS  Google Scholar 

  22. Mehenni H, Lin-Marq N, Buchet-Poyau K, et al. LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet. 2005;14:2209–2219.

    Article  PubMed  CAS  Google Scholar 

  23. Forcet C, Etienne-Manneville S, Gaude H, et al. Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet. 2005;14:1283–1292.

    Article  PubMed  CAS  Google Scholar 

  24. Gruber SB, Entius MM, Petersen GM, et al. Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res. 1998;58:5267–5270.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neibergs, H.L., Massey, A.T. (2007). Familial Adenomatous Polyposis and Turcot and Peutz-Jeghers Syndromes. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics