Skip to main content

Ectopic Fat and the Metabolic Syndrome

  • Chapter
Overweight and the Metabolic Syndrome

Part of the book series: Endocrine Updates ((ENDO,volume 26))

  • 824 Accesses

7. Concluding Remarks

The ectopic fat theory has gained a significant body of supporting experimental data in the last few years. Yet, much investigational work remains to be done to precisely elucidate the mechanisms by which ectopic fat produce the downstream abnormalities of insulin resistance, hyperglycemia, atherogenic dyslipidemia, and hypertension observed in the metabolic syndrome. Such knowledge is needed not just to further validate the ectopic fat theory, but also to facilitate the design of pharmacological agents that specifically target the pathophysiology of the metabolic syndrome. This is particularly critical because currently there is no commercially available pharmacological treatment that completely reverses the metabolic syndrome, and physicians must rely on multiple drugs to individually treat the multiple abnormalities seen in the metabolic syndrome, i.e., dyslipidemia, hypertension, and insulin resistance. As a result, a significant proportion of the adult population with metabolic syndrome must currently rely on polypharmacy for treatment. In principle, it could be proposed that nonpharmacological treatment by means of weight loss and physical activity is all that is needed to contain the epidemics of obesity and the metabolic syndrome. However, on pragmatic terms, given the formidable challenges of attaining and then sustaining weight loss, there is a need for effective adjunctive pharmacological treatments for obesity and obesity-related insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37(12):1595–1607.

    PubMed  CAS  Google Scholar 

  2. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287(3):356–359.

    Article  PubMed  Google Scholar 

  3. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285(19):2486–2497.

    Google Scholar 

  4. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15(7):539–553.

    Article  PubMed  CAS  Google Scholar 

  5. Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. 1956. Nutrition 1999; 15(1):89–90; discussion 91.

    Article  PubMed  CAS  Google Scholar 

  6. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord 2004;28(Suppl 4):S12–S21.

    Article  PubMed  CAS  Google Scholar 

  7. Toledo FGS, Kelley DE. Mitochondrial dysfunction in the pathogenesis of insulin resistance associated with obesity, diabetes and aging. Current Opinion in Endocrinology and Diabetes 2005;12(12):157–162.

    Article  CAS  Google Scholar 

  8. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32(Suppl 3):14–23.

    Article  PubMed  CAS  Google Scholar 

  9. Randle PJ. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998;14(4):263–283.

    Article  PubMed  CAS  Google Scholar 

  10. Boden G. Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003;111(3):121–124.

    Article  PubMed  CAS  Google Scholar 

  11. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785–789.

    Article  PubMed  CAS  Google Scholar 

  12. Shulman GI. Unraveling the cellular mechanism of insulin resistance in humans: New insights from magnetic resonance spectroscopy. Physiology (Bethesda) 2004;19:183–190.

    Article  PubMed  CAS  Google Scholar 

  13. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: Potential links with inflammation. Int J Obes Relat Metab Disord 2003;27(Suppl 3):S6–S11.

    Article  PubMed  CAS  Google Scholar 

  14. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994;93(6):2438–2446.

    PubMed  CAS  Google Scholar 

  15. Boden G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front Biosci 1998;3:d169–d175.

    PubMed  CAS  Google Scholar 

  16. Lam TK, Carpentier A, Lewis GF, van de Werve G, Fantus IG, Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003;284(5):E863–E873.

    PubMed  CAS  Google Scholar 

  17. Engfeldt P, Arner P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm Metab Res Suppl 1988;19:26–29.

    PubMed  CAS  Google Scholar 

  18. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest 2004;113(11):1582–1588.

    Article  PubMed  CAS  Google Scholar 

  19. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 2003;27(8):875–888.

    Article  PubMed  CAS  Google Scholar 

  20. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997;46(10):1579–1585.

    PubMed  CAS  Google Scholar 

  21. Pan DA, Lillioja S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997;46(6):983–988.

    PubMed  CAS  Google Scholar 

  22. Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes 2004;5(4):219–226.

    Article  PubMed  Google Scholar 

  23. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care 2001;24(5):933–941.

    PubMed  CAS  Google Scholar 

  24. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annual Review of Nutrition 2002;22(1):325–346.

    Article  PubMed  CAS  Google Scholar 

  25. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 1999;48(4):839–847.

    PubMed  CAS  Google Scholar 

  26. Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo. Am J Physiol 1999;276(5 Pt 1):E977–E989.

    PubMed  CAS  Google Scholar 

  27. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999;48(8):1600–1606.

    PubMed  CAS  Google Scholar 

  28. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia 1999;42(1):113–116.

    Article  PubMed  CAS  Google Scholar 

  29. Kautzky-Willer A, Krssak M, Winzer C, et al. Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes 2003;52(2):244–251.

    PubMed  CAS  Google Scholar 

  30. Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001;98(13):7522–7527.

    Article  PubMed  CAS  Google Scholar 

  31. Pulawa LK, Eckel RH. Overexpression of muscle lipoprotein lipase and insulin sensitivity. Curr Opin Clin Nutr Metab Care 2002;5(5):569–574.

    Article  PubMed  CAS  Google Scholar 

  32. Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R. Lipoprotein lipase: The regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002;13(5):471–481.

    Article  PubMed  CAS  Google Scholar 

  33. McGarry JD. Banting Lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002;51(1):7–18.

    PubMed  CAS  Google Scholar 

  34. Angelico F, Del Ben M, Conti R, et al. Non-alcoholic fatty liver syndrome: A hepatic consequence of common metabolic diseases. J Gastroenterol Hepatol 2003;18(5):588–594.

    Article  PubMed  Google Scholar 

  35. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346(16):1221–1231.

    Article  PubMed  CAS  Google Scholar 

  36. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002;87(7):3023–3028.

    Article  PubMed  CAS  Google Scholar 

  37. Goto T, Onuma T, Takebe K, Kral JG. The influence of fatty liver on insulin clearance and insulin resistance in non-diabetic Japanese subjects. Int J Obes Relat Metab Disord 1995;19(12):841–845.

    PubMed  CAS  Google Scholar 

  38. Marceau P, Biron S, Hould FS, et al. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 1999;84(5):1513–1517.

    Article  PubMed  CAS  Google Scholar 

  39. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes 2001;50(8):1844–1850.

    PubMed  CAS  Google Scholar 

  40. Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ 2005;172(7): 899–905.

    PubMed  Google Scholar 

  41. Kumar KS, Malet PF. Nonalcoholic steatohepatitis. Mayo Clin Proc 2000;75(7):733–739.

    Article  PubMed  CAS  Google Scholar 

  42. Gupte P, Amarapurkar D, Agal S, et al. Non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol 2004;19(8):854–858.

    Article  PubMed  Google Scholar 

  43. Del Gaudio A, Boschi L, Del Gaudio GA, Mastrangelo L, Munari D. Liver damage in obese patients. Obes Surg 2002;12(6):802–804.

    Article  PubMed  Google Scholar 

  44. Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: An autopsy study with analysis of risk factors. Hepatology 1990;12(5):1106–1110.

    PubMed  CAS  Google Scholar 

  45. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003;37(4):917–923.

    Article  PubMed  Google Scholar 

  46. Kim HJ, Kim HJ, Lee KE, et al. Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults. Arch Intern Med 2004;164(19):2169–2175.

    Article  PubMed  Google Scholar 

  47. Lewis GF. Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol 1997;8(3):146–153.

    Article  PubMed  CAS  Google Scholar 

  48. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999;83(9B):25F–29F.

    Article  PubMed  CAS  Google Scholar 

  49. Ginsberg HN. New perspectives on atherogenesis: Role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002;106(16):2137–2142.

    Article  PubMed  Google Scholar 

  50. Goldberg IJ. Clinical review 124: Diabetic dyslipidemia: Causes and consequences. J Clin Endocrinol Metab 2001;86(3):965–971.

    Article  PubMed  CAS  Google Scholar 

  51. Taghibiglou C, Carpentier A, Van Iderstine SC, et al. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 2000;275(12):8416–8425.

    Article  PubMed  CAS  Google Scholar 

  52. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000;6(1):77–86.

    Article  PubMed  CAS  Google Scholar 

  53. Tobe K, Suzuki R, Aoyama M, et al. Increased expression of the sterol regulatory elementbinding protein-1 gene in insulin receptor substrate-2(-/-) mouse liver. J Biol Chem 2001;276(42):38337–38340.

    Article  PubMed  CAS  Google Scholar 

  54. Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000;49(5):749–758.

    PubMed  CAS  Google Scholar 

  55. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: Relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 2003;285(4):E906–E916.

    PubMed  CAS  Google Scholar 

  56. Bajaj M, Suraamornkul S, Pratipanawatr T, et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 2003;52(6):1364–1370.

    PubMed  CAS  Google Scholar 

  57. Mayerson AB, Hundal RS, Dufour S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002;51(3):797–802.

    PubMed  CAS  Google Scholar 

  58. Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 2000;130(12):3116S–3121S.

    PubMed  CAS  Google Scholar 

  59. Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS. PPARgamma knockdown by engineered transcription factors: Exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev 2002;16(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  60. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79(7):1147–1156.

    Article  PubMed  CAS  Google Scholar 

  61. Fajas L, Fruchart JC, Auwerx J. Transcriptional control of adipogenesis. Curr Opin Cell Biol 1998;10(2):165–173.

    Article  PubMed  CAS  Google Scholar 

  62. Loftus TM, Lane MD. Modulating the transcriptional control of adipogenesis. Curr Opin Genet Dev 1997;7(5):603–608.

    Article  PubMed  CAS  Google Scholar 

  63. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002;87(6):2784–2791.

    Article  PubMed  CAS  Google Scholar 

  64. Miyazaki Y, Mahankali A, Matsuda M, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 2001;24(4):710–719.

    PubMed  CAS  Google Scholar 

  65. Miyazaki Y, Glass L, Triplitt C, et al. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type II diabetic patients. Diabetologia 2001;44(12):2210–2219.

    Article  PubMed  CAS  Google Scholar 

  66. Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999;22(6):908–912.

    PubMed  CAS  Google Scholar 

  67. Garg A. Acquired and inherited lipodystrophies. N Engl J Med 2004;350(12):1220–1234.

    Article  PubMed  CAS  Google Scholar 

  68. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346(8):570–578.

    Article  PubMed  CAS  Google Scholar 

  69. Robbins DC, Horton ES, Tulp O, Sims EA. Familial partial lipodystrophy: Complications of obesity in the non-obese? Metabolism 1982;31(5):445–452.

    Article  PubMed  CAS  Google Scholar 

  70. Reitman ML, Mason MM, Moitra J, et al. Transgenic mice lacking white fat: Models for understanding human lipoatrophic diabetes. Ann NY Acad Sci 1999;892:289–296.

    Article  PubMed  CAS  Google Scholar 

  71. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999;401(6748):73–76.

    Article  PubMed  CAS  Google Scholar 

  72. Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002;109(10):1345–1350.

    Article  PubMed  CAS  Google Scholar 

  73. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000;105(3):271–278.

    PubMed  CAS  Google Scholar 

  74. Reynisdottir S, Dauzats M, Thorne A, Langin D. Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J Clin Endocrinol Metab 1997;82(12):4162–4166.

    Article  PubMed  CAS  Google Scholar 

  75. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000;43(12):1498–1506.

    Article  PubMed  CAS  Google Scholar 

  76. Abbott WG, Thuillez P, Howard BV, et al. Body composition, adipocyte size, free fatty acid concentration, and glucose tolerance in children of diabetic pregnancies. Diabetes 1986;35(10):1077–1080.

    PubMed  CAS  Google Scholar 

  77. Bjorntorp P, Bengtsson C, Blohme G, et al. Adipose tissue fat cell size and number in relation to metabolism in randomly selected middle-aged men and women. Metabolism 1971;20(10):927–935.

    Article  PubMed  CAS  Google Scholar 

  78. Bjorntorp P, Berchtold P, Tibblin G. Insulin secretion in relation to adipose tissue in men. Diabetes 1971;20(2):65–70.

    PubMed  CAS  Google Scholar 

  79. Olefsky JM. Insensitivity of large rat adipocytes to the antilipolytic effects of insulin. J Lipid Res 1977;18(4):459–464.

    PubMed  CAS  Google Scholar 

  80. Czech MP. Cellular basis of insulin insensitivity in large rat adipocytes. J Clin Invest 1976;57(6):1523–1532.

    Article  PubMed  CAS  Google Scholar 

  81. Olefsky JM. Mechanisms of decreased insulin responsiveness of large adipocytes. Endocrinology 1977;100(4):1169–1177.

    Article  PubMed  CAS  Google Scholar 

  82. Karnieli E, Barzilai A, Rafaeloff R, Armoni M. Distribution of glucose transporters in membrane fractions isolated from human adipose cells. Relation to cell size. J Clin Invest 1986;78(4):1051–1055.

    PubMed  CAS  Google Scholar 

  83. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000;26(1):13.

    Article  PubMed  CAS  Google Scholar 

  84. Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 1995;38(10):1213–1217.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Toledo, F.G.S., Kelley, D.E. (2006). Ectopic Fat and the Metabolic Syndrome. In: Bray, G.A., Ryan, D.H. (eds) Overweight and the Metabolic Syndrome. Endocrine Updates, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32164-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32164-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32163-9

  • Online ISBN: 978-0-387-32164-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics