Skip to main content

Current Views of the Fat Cell as an Endocrine Cell: Lipotoxicity

  • Chapter
Overweight and the Metabolic Syndrome

Part of the book series: Endocrine Updates ((ENDO,volume 26))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger RH. Longevity, lipotoxicity and leptin: The adipocyte defense against feasting and famine. Biochimie 2005;87:57–64.

    Article  PubMed  CAS  Google Scholar 

  2. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 2005;1734:112–126.

    PubMed  CAS  Google Scholar 

  3. Listenberger LL, Han H, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 2003;100:3077–3082.

    Article  PubMed  CAS  Google Scholar 

  4. DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract 2004;(Suppl):9–21.

    Article  Google Scholar 

  5. Unger RH. Lipotoxic diseases. Annu Rev Med 2002;53:319–336.

    Article  PubMed  CAS  Google Scholar 

  6. Charriere G, Cousin B, Arnaud E, et al. Preadipocyte conversion to macrophage. J Biol Chem 2003;278:9850–9855.

    Article  PubMed  CAS  Google Scholar 

  7. Civelek VN, Hamilton JA, Tornheim K, et al. Intracellular pH in adipocytes: Effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci USA 1996;93:10139–10144.

    Article  PubMed  CAS  Google Scholar 

  8. Petschow BW, Batema RP, Ford LL. Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother 1996;40:302–306.

    PubMed  CAS  Google Scholar 

  9. Coonrod JD. Role of surfactant free fatty acids in antimicrobial defenses. Eur J Resp Dis 1987;153(Suppl):209–214.

    CAS  Google Scholar 

  10. Akaki T, Sato K, Shimizu T, et al. Effector molecules in expression of the antimicrobial activity of macrophages against Mycobacterium avium complex: Roles of reactive nitrogen intermediates, reactive oxygen intermediates, and free fatty acids. J Leukoc Biol 1997;62:795–804.

    PubMed  CAS  Google Scholar 

  11. Akaki T, Tomioka H, Shimizu T, et al. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the antimicrobial activity of macrophages against Mycobacterium tuberculosis. Clin Exp Immunol 2000;121:302–310.

    Article  PubMed  CAS  Google Scholar 

  12. Maurin AC, Chavassieux PM, Vericel E, et al. Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 2002;31:260–266.

    Article  PubMed  CAS  Google Scholar 

  13. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 2004;18:1692–1700.

    Article  PubMed  CAS  Google Scholar 

  14. Goodpaster BH, Theriault R, Watkins SC, et al. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 2000;49:467–472.

    Article  PubMed  CAS  Google Scholar 

  15. Szczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: In vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003;49:417–423.

    Article  PubMed  CAS  Google Scholar 

  16. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004;109:2191–2196.

    Article  PubMed  Google Scholar 

  17. Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo. Am J Physiol 1999;276:E977–989.

    PubMed  CAS  Google Scholar 

  18. Bajaj M, Suraamornkul S, Kashyap S, et al. Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes. J Clin Endocrinol Metab 2004;89:4649–4655.

    Article  PubMed  CAS  Google Scholar 

  19. Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord 2004;28(Suppl 4):S22–S28.

    Article  PubMed  CAS  Google Scholar 

  20. Kirkland JL, Tchkonia T, Pirtskhalava T, et al. Adipogenesis and aging: Does aging make fat go MAD? Exp Gerontol 2002;37:757–767.

    Article  PubMed  CAS  Google Scholar 

  21. Unger RH. Lipid overload and overflow: Metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003;14:398–403.

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez A, Muller DC, Engelhardt M, et al. Contribution of impaired glucose tolerance in subjects with the metabolic syndrome: Baltimore Longitudinal Study of Aging. Metabolism 2005;54:542–547.

    Article  PubMed  CAS  Google Scholar 

  23. Agarwal AK, Barnes RI, Garg A. Genetic basis of congenital generalized lipodystrophy. Int J Obes Relat Metab Disord 2004;28:336–339.

    PubMed  CAS  Google Scholar 

  24. Ogawa A, Johnson JH, Ohneda M, et al. Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes. J Clin Invest 1992;90:497–504.

    PubMed  CAS  Google Scholar 

  25. Dowell P, Flexner C, Kwiterovich PO, et al. Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem 2000;275:41325–41332.

    Article  PubMed  CAS  Google Scholar 

  26. Grinspoon SK. Metabolic syndrome and cardiovascular disease in patients with human immunodeficiency virus. Am J Med 2005;118(Suppl 2):23S–28S.

    PubMed  Google Scholar 

  27. Chiu HC, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001;107:813–822.

    PubMed  CAS  Google Scholar 

  28. Felber JP, Ferrannini E, Golay A, et al. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 1987;36:1341–1350.

    PubMed  CAS  Google Scholar 

  29. Kelley DE, Goodpaster B, Wing RR, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999;277:E1130–E1141.

    PubMed  CAS  Google Scholar 

  30. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diab Care 2001;24:933–941.

    CAS  Google Scholar 

  31. Jagasia D, McNulty PH. Diabetes mellitus and heart failure. Congest Heart Fail 2003;9:133–139.

    PubMed  CAS  Google Scholar 

  32. Lee Y, Wang MY, Kakuma T, et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 2001;276:5629–5635.

    Article  PubMed  CAS  Google Scholar 

  33. Shimomura I, Hammer RE, Ikemoto S, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999;401:73–76.

    Article  PubMed  CAS  Google Scholar 

  34. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. New Engl J Med 2002;346:570–578.

    Article  PubMed  CAS  Google Scholar 

  35. Gavrilova B, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000;105:271–278.

    Article  PubMed  CAS  Google Scholar 

  36. Schrauwen P, Hesselink MK. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 2004;53:1412–1417.

    PubMed  CAS  Google Scholar 

  37. McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999;42:128–138.

    Article  PubMed  CAS  Google Scholar 

  38. Mazumder PK, O’Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004;53:2366–2374.

    PubMed  CAS  Google Scholar 

  39. Carley AN, Semeniuk LM, Shimoni Y, et al. Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol 2004;286:E449–E455.

    CAS  Google Scholar 

  40. Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109:121–130.

    Article  PubMed  CAS  Google Scholar 

  41. Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 2001;276:14890–14895.

    Article  PubMed  CAS  Google Scholar 

  42. Unger RH. The physiology of cellular liporegulation. Annu Rev Physiol 2003;65:333–347.

    Article  PubMed  CAS  Google Scholar 

  43. Russell AP, Gastaldi G, Bobbioni-Harsch E, et al. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: A case of good vs. bad lipids? FEBS Lett 2003;551:104–106.

    Article  PubMed  CAS  Google Scholar 

  44. MacDonald GA, Bridle KR, Ward PJ, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 2001;16:599–606.

    Article  PubMed  CAS  Google Scholar 

  45. Wrede CE, Dickson LM, Lingohr MK, et al. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem 2002;277:49676–49684.

    Article  PubMed  CAS  Google Scholar 

  46. Yaney GC, Korchak HM, Corkey BE. Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology 2000;141:1989–1998.

    Article  PubMed  CAS  Google Scholar 

  47. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999;48:1270–1274.

    PubMed  CAS  Google Scholar 

  48. Kim YB, Shulman GI, Kahn BB. Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda/zeta but not on glycogen synthase kinase-3. J Biol Chem 2002;277:32915–32922.

    Article  PubMed  CAS  Google Scholar 

  49. Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc Natl Acad Sci USA 1998;95:2498–2502.

    Article  PubMed  CAS  Google Scholar 

  50. Cnop M, Hannaert JC, Hoorens A, et al. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 2001;50:1771–1777.

    PubMed  CAS  Google Scholar 

  51. Aronis A, Madar Z, Tirosh O. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radical Biol Med 2005;38:1221–1230.

    Article  CAS  Google Scholar 

  52. de Vries JE, Vork MM, Roemen TH, et al. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 1997;38:1384–1394.

    PubMed  Google Scholar 

  53. Maedler K, Spinas GA, Dyntar D, et al. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69–76.

    PubMed  CAS  Google Scholar 

  54. Hardy S, Langelier Y, Prentki M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. 2000;60:6353–6358.

    CAS  Google Scholar 

  55. Paumen MB, Ishida Y, Muramatsu M, et al. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem 1997;272:3324–3329.

    Article  PubMed  CAS  Google Scholar 

  56. Shimabukuro M, Higa M, Zhou YT, et al. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 1998;273:32487–32490.

    Article  PubMed  CAS  Google Scholar 

  57. Shimabukuro M, Ohneda M, Lee Y, et al. Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest 1997;100:290–295.

    PubMed  CAS  Google Scholar 

  58. Ostrander DB, Sparagna GC, Amoscato AA, et al. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 2001;276:38061–38067.

    Article  PubMed  CAS  Google Scholar 

  59. Shimabukuro M, Wang MY, Zhou YT, et al. Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci USA 1998;95:9558–9561.

    Article  PubMed  CAS  Google Scholar 

  60. Hufnagel B, Dworak M, Soufi M, et al. Unsaturated fatty acids isolated from human lipoproteins activate protein phosphatase type 2Cbeta and induce apoptosis in endothelial cells. Atherosclerosis 2005;180:245–254.

    Article  PubMed  CAS  Google Scholar 

  61. Zhu Y, Schwarz S, Ahlemeyer B, et al. Oleic acid causes apoptosis and dephosphorylates Bad. Neurochem Int 2005;46:127–135.

    Article  PubMed  CAS  Google Scholar 

  62. Kharroubi I, Ladriere L, Cardozo AK, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: Role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 2004;145:5087–5096.

    Article  PubMed  CAS  Google Scholar 

  63. Artwohl M, Roden M, Waldhausl W, et al. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J 2003;18:146–148.

    PubMed  Google Scholar 

  64. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 2002;51:1437–1442.

    PubMed  CAS  Google Scholar 

  65. Guo W, Pirtskhalava T, Tchkonia T, et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. Obesity Res 2004;12(Suppl):A31.

    Google Scholar 

  66. Chawla A, Lee CH, Barak Y, et al. PPAR delta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 2003;100:1268–1273.

    Article  PubMed  CAS  Google Scholar 

  67. Shimabukuro M, Koyama K, Lee Y, et al. Leptin-or troglitazone-induced lipopeniaprotects islets frominterleukin 1beta toxicity. J Clin Invest 1997;100:1750–1754.

    PubMed  CAS  Google Scholar 

  68. Manco M, Calvani M, Mingrone G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 2004;6:402–413.

    Article  PubMed  CAS  Google Scholar 

  69. Nielsen LB, Bartels ED, Bollano E. Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem 2002;277:27014–27020.

    Article  PubMed  CAS  Google Scholar 

  70. Yokoyama M, Yagyu H, Hu Y, et al. Apolipoprotein B production reduces lipotoxic cardiomyopathy: Studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 2004;279:4204–4211.

    Article  PubMed  CAS  Google Scholar 

  71. Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002;366 (Pt 2):377–391.

    Article  PubMed  CAS  Google Scholar 

  72. Gordon E. Non-esterified fatty acids in the blood of obese and lean subjects. Am J Clin Nutr 1960;8:740–747.

    CAS  Google Scholar 

  73. Reaven GM, Hollenbeck C, Jeng CY, et al. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988;37:1020–1024.

    PubMed  CAS  Google Scholar 

  74. Maslowska M, Vu H, Phelis S, et al. Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur J Clin Invest 1999;29:679–686.

    Article  PubMed  CAS  Google Scholar 

  75. Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord 2000;24(Suppl 4):S28–S32.

    PubMed  CAS  Google Scholar 

  76. Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: Evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001;86:5755–5761.

    Article  PubMed  CAS  Google Scholar 

  77. Combs TP, Wagner JA, Berger J, et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: A potential mechanism of insulin sensitization. Endocrinology 2002;143:998–1007.

    Article  PubMed  CAS  Google Scholar 

  78. Addy CL, Gavrila A, Tsiodras S, et al. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J Clin Endocrinol Metab 2003;88:627–636.

    Article  PubMed  CAS  Google Scholar 

  79. Thamer C, Machann J, Tschritter O, et al. Relationship between serum adiponectin concentration and intramyocellular lipid stores in humans. Horm Metab Res 2002;34:646–649.

    Article  PubMed  CAS  Google Scholar 

  80. Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360:57–58.

    Article  PubMed  CAS  Google Scholar 

  81. Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 2002;99:16309–16313.

    Article  PubMed  CAS  Google Scholar 

  82. Minokoshi Y, Kim Y, Peroni O, et al. Leptin stimulates fatty acid oxidation by activating AMP-activated protein kinase. Nature 2002;415:339–343.

    Article  PubMed  CAS  Google Scholar 

  83. Lee Y, Naseem RH, Duplomb L, et al. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci USA 2004;101(37):13624–13629.

    Article  PubMed  CAS  Google Scholar 

  84. Tomas E, Kelly M, Xiang X, et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc Nutr Soc 2004;63:381–385.

    Article  PubMed  CAS  Google Scholar 

  85. Minokoshi Y, Kahn BB. Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans 2003;31 (Pt 1):196–201.

    Article  PubMed  CAS  Google Scholar 

  86. Saha AK, Avilucea PR, Ye JM, et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 2004;314:580–585.

    Article  PubMed  CAS  Google Scholar 

  87. Fryer LG, Parbu-Patel A, Carling D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 2002;277:25226–25232.

    Article  PubMed  CAS  Google Scholar 

  88. Iglesias MA, Ye JM, Frangioudakis G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002;51:2886–2894.

    PubMed  CAS  Google Scholar 

  89. Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: Prevention of diabetes and ectopic lipid deposition. Diabetologia 2004;47:2012–2021.

    Article  PubMed  CAS  Google Scholar 

  90. Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001;98:7522–7527.

    Article  PubMed  CAS  Google Scholar 

  91. Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 2003;1632:16–30.

    PubMed  CAS  Google Scholar 

  92. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 2004;430:921.

    Article  CAS  Google Scholar 

  93. Lundgren M, Eriksson JW. No in vitro effects of fatty acids on glucose uptake, lipolysis or insulin signaling in rat adipocytes. Horm Metab Res 2004;36:203–209.

    Article  PubMed  CAS  Google Scholar 

  94. Grimaldi PA, Knobel SM, Whitesell RR, et al. Induction of aP2 gene expression by nonmetabolized long-chain fatty acids. Proc Natl Acad Sci USA 1992;15:10930–10934.

    Article  Google Scholar 

  95. Coe NR, Simpson MA, Bernlohr DA. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 1999;40:967–972.

    PubMed  CAS  Google Scholar 

  96. Bertrand HA, Masoro EJ, Yu BP. Increasing adipocyte number as the basis for perirenal depot growth in adult rats. Science 1978;201:1234–1235.

    Article  PubMed  CAS  Google Scholar 

  97. Das K, Lewis RY, Combatsiaris TP, et al. Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochem J 1999;344 (Pt 2):313–320.

    Article  PubMed  CAS  Google Scholar 

  98. Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem 2005;280:4617–4626.

    Article  PubMed  CAS  Google Scholar 

  99. Lu B, Ennis D, Lai R, et al. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 2001;276:35589–35598.

    Article  PubMed  CAS  Google Scholar 

  100. Talior I, Tennenbaum T, Kuroki T, et al. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: Role for NADPH oxidase. Am J Physiol 2005;288:E405–E411.

    CAS  Google Scholar 

  101. Carriere A, Fernandez Y, Rigoulet M, et al. Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 2003;550:163–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tchkonia, T., Corkey, B.E., Kirkland, J.L. (2006). Current Views of the Fat Cell as an Endocrine Cell: Lipotoxicity. In: Bray, G.A., Ryan, D.H. (eds) Overweight and the Metabolic Syndrome. Endocrine Updates, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32164-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32164-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32163-9

  • Online ISBN: 978-0-387-32164-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics