Skip to main content

Physicochemical and Physical Treatment of Pollutants and Wastes

  • Chapter

Abstract

Interest in the treatment of pollutants and wastes is not new. For example, the summary report of the papers presented at the Division of Water, Sewage and Sanitation Chemistry at the American Chemical Society National Meeting nearly a century ago (in 1925), stated:

“Probably the greatest interest was shown in connection with the papers concerned with the treatment and disposal of industrial wastes. The proper disposal of such wastes is becoming of increasing importance, and there is no doubt but that many developments may be expected along this line in the near future.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

Redox Processes

  1. Baird, N. C. “Free Radical Reactions in Aqueous Solutions: Examples from Advanced Oxidation Processes for Wastewater from the Chemistry in Airborne Water Droplets,” J. Chem. Educ. 1997, 74, 817–819.

    Article  CAS  Google Scholar 

  2. Benjamin, K. M.; Savage, P. E. “Supercritical Water Oxidation of Methylamine,” Ind. Eng. Chem. Res. 2005, 44, 5318–5324.

    Article  CAS  Google Scholar 

  3. Bryant, E. A.; Fulton, G. P.; Budd, G. C.; Hazen and Sawyer. Disinfection Alternatives for Safe Drinking Water, Van Nostrand-Reinhold: New York, 1992.

    Google Scholar 

  4. Denvir, A.; Pletcher, D. “Electrochemical Generation of Ferrate. Part 1. Dissolution of an Iron Wool Bed Cathode,” J. Appl. Electrochem. 1996, 26, 815–822.

    Article  CAS  Google Scholar 

  5. Eddy, H. P. “Industrial Waste Disposal,” J. Ind. Eng. Chem. 1917, 9, 696–700.

    Article  CAS  Google Scholar 

  6. Eilbeck, W. J.; Mattock, G. Chemical Processes in Waste Water Treatment; Ellis Horwood: Chichister, 1987. Chapters 3, 4.

    Google Scholar 

  7. ERCO Worldwide. Production and properties of CIO2; http://clo2.com/index.html

    Google Scholar 

  8. Faust, S. D.; Aly, O. M. Chemistry of Water Treatment; Butterworth: Boston, 1983. Chapter 10.

    Google Scholar 

  9. Foller, P. C; Goodwin, M. L. “Electrochemical Generation of High-Concentration Ozone for Waste Treatment,” Chem. Eng. Progr. 1985, 81(3) 49–51.

    CAS  Google Scholar 

  10. Fujishima, A.; Rao, T. N.; Tryk, D. A. “Titanium Dioxide Photocatalysis,” J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1–21.

    Article  CAS  Google Scholar 

  11. Gan, J. “Detoxification of Halogenated Fumigants by Thiosulfate Salts,” Am. Chem. Soc. Meet., Boston, MA. August 18–22, 2002. Prepr. Extd. Abstr. 2002, 42(2) 387–391.

    Google Scholar 

  12. Gordon, G.; Bubnis, B. “Environmentally Friendly Methods of Water Disinfection: The Chemistry of Alternative Disinfectants,” Progr. Nucl. Energy 2000, 37 (1–4) 31–40.

    Google Scholar 

  13. Greenberg, R. S.; Andrews, T.; Kakarla, P. K. C; Watts, R. J. “In-Situ Fenton-Like Oxidation of Volatile Organics: Laboratory, Pilot, and Full-Scale Demonstrations,” Remediation 1998, 8, 29–42.

    Article  Google Scholar 

  14. Gu, B.; Dong, W.; Brown, G. M.; Cole, D. R. “Complete Degradation of Perchlorate in Ferric Chloride and Hydrochloric Acid under Controlled Temperature and Pressure,” Environ. Sci. Technot. 2003, 37, 2291–2295.

    Article  CAS  Google Scholar 

  15. Haggin, J. “New Processes Target Methanol Production, Off-gas Cleaning,” Chem. Eng. News, Mar. 28, 1994. pp. 29–31.

    Google Scholar 

  16. Heller, A. “Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films,” Acc. Chem. Res. 1995, 25, 503–508.

    Article  Google Scholar 

  17. Chemical.htm

    Google Scholar 

  18. Jackson, J. R.; Pitzer, C. L. “Method for the Removal of Chromium Compounds from Aqueous Solutions,” US Patent 5, 211, 853. May 18, 1993.

    Google Scholar 

  19. Johnson, J. “New Rules Target Waste Burners,” Chem. Eng. News May 15, 2000. pp. 31–33.

    Google Scholar 

  20. Legrini, O.; Oliveros, E.; Braun, A. M. “Photochemical Processes for Water Treatment,” Chem. Rev. 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  21. Kwan, W. P.; Voelker, B. M. “Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems,” Environ. Sci. Technol. 2003, 37, 1150–1158.

    Article  CAS  Google Scholar 

  22. Lin, S. H.; Yeh, K. L. “Looking To Treat Wastewater? Try Ozone,” Chem. Eng. 1993, 100(5), 112.

    CAS  Google Scholar 

  23. Madden, T. H.; Datye, A. K.; Fulton, M.; Prairie, M. R.; Majumdar, S. A.; Stange, B. M. “Oxidation of Metal-EDTA Complexes by TiO2 Photocatalysis,” Environ. Sci. Technol. 1997, 31, 3475–3481.

    Article  CAS  Google Scholar 

  24. Matthews, R. W. “Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts. TiO2 on Sand,” Wat. Res. 1991, 25, 1169–1176.

    Article  CAS  Google Scholar 

  25. Maui Department of Water Supply. http://www.mauiwater.org/chloramines.html

    Google Scholar 

  26. McKetta, J., ed. “Chlorine Dioxide,” in: Inorganic Chemicals Handbook, Vol. 2; Marcel Dekker: New York, 1993. pp. 779–810.

    Google Scholar 

  27. McKinzi, A. M.; DiChristina, T. J. “Microbially Driven Fenton Reaction for Transformation of Pentachlorophenol,” Environ. Sci. Technol. 1999, 33, 1886–1891.

    Article  CAS  Google Scholar 

  28. Metcalf & Eddy, Inc. Wastewater Engineering. Treatment, Disposal and Reuse; McGraw-Hill: New York, 1991. Chapter 7.

    Google Scholar 

  29. My, N. L.; Sahgal, P. N. “Generation of Ozone in Two-Dielectric Ozonizer,” The Chem. Eng. J. 1989, 40, 175.

    Article  Google Scholar 

  30. Norton, C. D.; LeChevallier, M. W. “Chloramination: Its Effect on Distribution System Water Quality,” J. Am. Wat. Work. Assoc. 1997, 89 (7), 66–77.

    CAS  Google Scholar 

  31. Oregon Health and Science University. Department of Environmental and Biomolecular Systems. “Zero-valent iron barriers for teachers and students (a multimedia CD-ROM).” http://cgr.ese.ogi.edu.merl/

    Google Scholar 

  32. Pittman, C. U. Jr.; He, J.; Yang, C.; Tabaiei, M. “Detoxification of PCBs, CFCs, CAHs and Halogenated Biocides in Soils, Sludges and Other Matrices Using Chemical Reductions,” Am. Chem. Soc. Meet., Boston, MA. August 18–22, 2002. Prepr. Extd. Abstr. 2002, 42 (2), 422–426.

    Google Scholar 

  33. Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol. 1993, 27, 1776–1782.

    Article  CAS  Google Scholar 

  34. Prasad, J.; Tardio, J.; Akolekar, D. B.: Bhargava, S. K.; Grocott, S. C. “Catalytic Wet Oxidation of Stripped Sour Water from an Oil-Shale Refining Process,” Ind. Eng. Chem. Res. 2004, 43, 6363–6368.

    Article  CAS  Google Scholar 

  35. Rajeshwar, K.; Ibanez, J. G. Environmental Electrochemistry; Fundamentals and Applications in Pollution Abatement; Academic Press: San Diego, 1997. Chapter 6.

    Google Scholar 

  36. Rajeshwar, K.; Ibanez, J. G. “Electrochemical Aspects of Photocatalysis: Application to Detoxification and Dis-infection Scenarios,” J. Chem. Educ. 1995, 72, 1044–1049.

    Article  Google Scholar 

  37. Rajeshwar, K. “Photoelectrochemistry and the Environment.” J. Appl. Electwchem. 1995, 25, 1067–1082.

    CAS  Google Scholar 

  38. Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Jr. Electrochemistry for Chemists, 2nd ed.; Wiley Interscience: New York, 1995.

    Google Scholar 

  39. Sharma, K. V.; Rivera, W; Smith, J. O.; O’Brien, B. “Ferrate(VI) Oxidation of Aqueous Cyanide,” Environ. Sci. Technol. 1998, 32, 2608–2613.

    Article  CAS  Google Scholar 

  40. Southworth, B. A.; Voelker, B. M. “Hydroxyl Radical Production via the Photo-Fenton Reaction in the Presence of Fulvic Acid,” Environ. Sci. Technol. 2003, 37, 1130–1136.

    Article  CAS  Google Scholar 

  41. Stumm, W.; Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Wiley Interscience: New York, 1996. Chapter 11.

    Google Scholar 

  42. Switzer, J. A.; Rajasekharan, V. V.; Boonsalee, S.; Kulp, E. A.; Bohannan, E. W. “Evidence that Monochloramine Disinfectant Could Lead to Elevated Pb Levels in Drinking Water,” Environ. Sci. Technol. 2006, 40, 3384–3387.

    Article  CAS  Google Scholar 

  43. Sylvester, P.; Rutherford, L. A. Jr.; Gonzalez-Martin, A.; Kim, J.; Rapko, B. M.; Lumetta, G. J. “Ferrate Treatment for Removing Chromium from High-Level Radioactive Tank Waste,” Environ. Sci. Technol. 2001, 35, 216–221.

    Article  CAS  Google Scholar 

  44. Tenney, J.; Crump, B.; Ernst, W.; Gravitt, A.; Isaac, T. “Froth Reactor for Small-Scale Generation of Chlorine Dioxide” AICHE Journal 1997, 43, 2148–2152.

    Article  CAS  Google Scholar 

  45. resources/ fact_sheets/oneway.html

    Google Scholar 

  46. Theodore, L.; Buonicore, A. J.; McKenna, J. D.; Kugelman, I. J.; Jeris, J. S.; Santoleri, J. J.; McGowan, T. F. Waste Management, Section 25 in Perry’s Chemical Engineering Handbook, 7th ed.; Perry, Robert H.; Green, Don: Maloney. James O.. Eds. McGraw Hill: New York, 1997.

    Google Scholar 

  47. U.S. Environmental Protection Agency, “Alternative Oxidants and Disinfectants Guidance Manual,” Chapter 5. Apr. 1999. EPA 815-R-99-014. http://www.epa.gov/ogwdw/mdbp/word/alter/chapt_5.doc

    Google Scholar 

  48. U.S. Environmental Protection Agency. Drinking Water Standards, http://www.epa.gov/safewater/standards.html

    Google Scholar 

  49. U.S. Environmental Protection Agency, Locating and Estimating Air Emissions from Sources of Dioxins and Furans (May 1997). http://www.epa.gov/ttnchie1/le/dioxin.pdf

    Google Scholar 

  50. Walte, T.; Fagan, J. “Biofouling Control with Ferrate,” Environ. Sci. Technol. 1983, 17, 123–125.

    Article  Google Scholar 

  51. Wilczak, A.; Hoover, L. L.; Lai, H. H. “Effects of Treatment Changes on Chloramine Demand and Decay,” J. Am. Wat. Work. Assoc. 2003, 95(7), 94–106.

    Google Scholar 

  52. Wilkins, F. W.; Blake, D. M. “Use Solar Energy to Drive Chemical Processes,” Chem. Eng. Progr. 1994, June, 41–49.

    Google Scholar 

  53. Wilson, E. “Titanium Dioxide Catalysts Break Down Pollutants,” Chem. Eng. News. Jan. 15, 1996, 23–24.

    Google Scholar 

Acid-Base, Precipitation and, Ion-Exchange Processes

  • Badreddine, R.; Humez, A.-N.; Mingelgrin, U.; Benchara, A.; Meducin, F.; Prost, R. “Retention of Trace Metals by Solidified/Stabilized Wastes: Assessment of Long-Term Metal Release,” Environ. Sci. Technol. 2004, 38, 1383–1398.

    Article  CAS  Google Scholar 

  • Behrens, E. A.; Sylvester, P.; Clearfield, A. “Assessment of a Sodium Nonatitanate and Pharmacosiderite-Type Ion Exchangers for Strontium and Cesium Removal from DOE Waste Simulants,” Environ. Sci. Technol. 1998, 32, 101–107.

    Article  CAS  Google Scholar 

  • Blatter, K; Schumacher, E. “The Preparation of Pure Zeolite NaY and its Conversion to High-Silica Faujasite,” J. Chem. Educ. 1990, 67, 519–521.

    Article  CAS  Google Scholar 

  • Davis, M. E.; Lobo, R. F. “Zeolite and Molecular Sieve Synthesis,” Chem. Mater. 1992, 4, 756–768.

    Article  CAS  Google Scholar 

  • Eilbeck, W. J.; Mattock, G. Chemical Processes in Waste Water Treatment; Ellis Horwood: Chichister, 1987. Chapters 3, 4.

    Google Scholar 

  • Kim, C. W.; Day, D. E. “Iron Phosphate Glasses for Vitrifying DOE High Priority Nuclear Wastes,” Am. Chem. Soc. Meet, Anaheim, CA. March 28–Apr. 1, 2004. Div. Environ. Chem. Sym. Pap., pp. 440–445.

    Google Scholar 

  • Priestley, A. J. “Innovative Approaches to Water and Wastewater Treatment Developed at CSIRO, Australia,” 5th World Congr. Chem. Eng. and Chem., Am. Inst. Chem. Eng.: San Diego, CA, Jul. 14–8, 1996. Book of Abstracts, Vol. III, pp. 803–808.

    Google Scholar 

  • Totura, G. “Innovative Uses of Specialty Ion Exchange Resins Provide New Cost-Effective Options for Metals Removal,” Environ. Progr. 1996, 15(3), 208–212.

    Article  CAS  Google Scholar 

  • University of Waterloo (Canada), http://www.science.uwaterloo.ca/cchieh/cact/applychem/watertreatment. html

    Google Scholar 

  • Yoshida, H.; Kataoka, T.; Fujikawa, S. “Kinetics in a Chelate Ion Exchanger. 1. Theoretical Analysis,” Chem. Eng. Sci. 1986, 41, 2517–2524.

    Article  CAS  Google Scholar 

  • Zagorodni, A. A.; Muhammed, M. “Explanation of the Zn/Cu Dual Temperature Separation on Amberlite IRC-718 Ion-Exchange Resin,” Sep. Sci. Technol. 1999, 34, 2013–2021.

    Article  CAS  Google Scholar 

Complexation Processes

  • Barona, A.; Etxebama, B. “Distribution and Extraction of Pb and Zn with Chelating Agents in Soils with Varying Pollution Level,” Am. Inst. Chem. Eng., 5th. World Congr. Chem. Eng., Jul. 14–18, 1996. San Diego, CA., Vol. III, pp. 576–581.

    Google Scholar 

  • Bolton, H. Jr.; Girvin, D. C; Plymale, A. E.; Harvey, S. D.; Workman, D. J. “Degradation of Metal-Nitrilotriacetate Complexes by Chelatobacter Hemtzii,” Environ. Sci. Technol. 1996, 30, 931–938.

    Article  CAS  Google Scholar 

  • Diallo, M. S.; Balogh, L.; Shafagati, A.; Johnson, J. H. Jr.; Goddard, W. A. III; Tomalia, D. A. “Poly (Amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu (II) Ions,” Environ. Sci. Technol. 1999, 33, 820–824.

    Article  CAS  Google Scholar 

  • Dunn, K.; Yen, T. F. “Dissolution of Barium Sulfate Deposits by Chelating Agents,” Environ. Sci. Technol. 1999, 33, 2821–2824.

    Article  CAS  Google Scholar 

  • Martin, S. B.; Allen, H. E. “Recycling EDTA after Heavy Metals Extraction,” Chemtech 1996, 26(4), 23–25.

    CAS  Google Scholar 

  • Mcardell, C. S.; Stone, A. T.; Tian, J. “Reaction of EDTA and Related Aminocarboxylate Chelating Agents with CoIIIOOH (Heterogenite) and MnIIIOOH (Manganite),” Environ. Sci. Technol. 1998, 32, 2923–2930.

    Article  CAS  Google Scholar 

  • Pichtel, J.; Pichtel, T. M. “Comparison of Solvents for Ex Situ Removal of Chromium and Lead from Contaminated Soil,” Environ. Eng. Sci. 1997, 14, 97–104.

    Article  CAS  Google Scholar 

  • Rajeshwar, K.; Ibanez, J. G. Environmental Electrochemistry; Fundamentals and Applications in Pollution Abatement; Academic Press: San Diego, 1997.

    Google Scholar 

  • Rampley, C. G.; Ogden, K. L. “Preliminary Studies for Removal of Lead from Surrogate and Real Soils Using a Water Soluble Chelator: Adsorption and Batch Extraction,” Environ. Sci. Technol. 1998, 32, 987–993.

    Article  CAS  Google Scholar 

  • Theodoratos, P.; Papassiopi, N.; Georgoudis, T.; Kontopoulos, A. “Selective Removal of Lead from Calcareous Polluted Soils using the Ca-EDTA Salt,” Wat. Air Soil Pollut. 2000, 122, 351–368.

    Article  CAS  Google Scholar 

  • Walton, H. F. “Ligand-Exchange Chromatography: A Brief Review,” Ind. Eng. Chem. 1995, 34, 2553–2554.

    Article  CAS  Google Scholar 

  • Wasay, S. A.; Barrington, S. F.; Tokunaga, S. “Remediation of Soils Polluted by Heavy Metals Using Salts of Organic Acids and Chelating Agents,” Environ. Technol. 1998, 19, 369–380.

    Article  CAS  Google Scholar 

  • Zhao, D.; SenGupta, A. K.; Zhu, Y. “Trace Contaminant Sorption through Polymeric Ligand Exchange,” Ind. Eng. Chem. 1995, 34, 2676–2683.

    Article  CAS  Google Scholar 

Electrochemical Processes

  • Bersier, P. M.; Carlsson, L.; Bersier, J. “Electrochemistry for a Better Environment,” in Topics in Current Electrochemistry, Vol. 170; Springer Verlag: Berlin, 1994.

    Google Scholar 

  • Fenton, J. M. “Electrochemistry: Energy, Environment, Efficiency, and Economics,” Interface, Electrochem. Soc. 1994, 3, 38–44.

    Google Scholar 

  • Genders, D.; Weinberg, N., Electrochemistry for a Cleaner Environment; The Electrosynthesis Co.: New York, 1992.

    Google Scholar 

  • Ibanez, J. G. “Environmental Electrochemistry,” in: Electrochemistry Encyclopedia. Nagy, Z. Ed.; Case Western Reserve University: Cleveland, OH, 2004. (http://electrochem.cwru. edu/ed/encycl/)

    Google Scholar 

  • Lageman, R. “Electroreclamation,” Environ. Sci. Technol. 1993, 27, 2648.

    Article  CAS  Google Scholar 

  • Pletcher, D.; Walsh, F. Industrial Electrochemistry, 2nd ed.; Chapman and Hall: London, 1990.

    Google Scholar 

  • Rajeshwar, K.; Ibanez, J. G. Environmental Electrochemistry; Fundamentals and Applications in Pollution Abatement; Academic Press: San Diego, 1997.

    Google Scholar 

  • Rajeshwar, K.; Ibanez, J. G.; Swain, G. M. “Electrochemistry and the Environment,” J. Appl. Electrochem. 1994, 24, 1077–1091.

    Article  CAS  Google Scholar 

  • Schmidt, D. S.; Winnick, J. “Electrochemical Membrane Flue-Gas Desulfurization: K2SO4/V2O5 Electrolyte,” Am. Inst. Chem. Eng. J. 1998, 44, 323–331.

    CAS  Google Scholar 

  • Sequeira, C. A. C. (Ed.), Environmental Oriented Electrochemistry; Elsevier: Amsterdam, 1994.

    Google Scholar 

  • Walsh, F.; Mills, G. “Electrochemical Methods for Pollution Control,” Chem. Technol.—Europe April/May 1994, 13.

    Google Scholar 

Other Chemical Processes

  • Yang, C.; Teo, K.-C.; Xu, Y.-R. “Removal of Organic Contaminants from Water or Wastewater with Liquefied Gases,” J. Environ. Sci. 2002, 14(1), 1–6.

    Google Scholar 

  • Wilson, E. K. “Toxic Metals Extracted with Supercritical Carbon Dioxide,” Chem. Eng. News, Apr. 15, 1996. pp. 27–28.

    Google Scholar 

Physical Processes

  • Abramovitch, R. A.; ChangQing, L.; Hicks, E.; Sinard, J. “In situ Remediation of Soils Contaminated with Toxic Metal Ions using Microwave Energy,” Chemosph. 2003, 53, 1077–1085.

    Article  CAS  Google Scholar 

  • Belhateche, D. H. “Choose Appropriate Wastewater Treatment Strategies,” Chem. Eng. Progr. 1995, 91(8), 32–51.

    CAS  Google Scholar 

  • Bogatin, J.; Bondarenko, N. Ph.; Gak, E. Z.; Rokhinson, E. E.; Ananyev, I. P. “Magnetic Treatment of Irrigation Water: Experimental Results and Application Conditions,” Environ. Sci. Technol. 1999, 33, 1280–1285.

    Article  CAS  Google Scholar 

  • “Waste Treatment News: An Attractive Way to Clean Up,” Chem. Ind. March 16, 1998. p. 197.

    Google Scholar 

  • Hirota, K.; Hakoda, T.; Taguchi, M.; Takigami, M.; Kim, H.; Kojima, T. “Application of Electron Beam for the Reduction of PCDD/F Emission from Municipal Solid Waste Incinerators,” Environ. Sci. Technol. 2003, 37, 3164–3170.

    Article  CAS  Google Scholar 

  • Lepkowski, W. “Arsenic Crisis in Bangladesh,” Chem. Eng. News, Nov. 16, 1998. pp. 27–29.

    Google Scholar 

  • Motamedi, S.; Cai, Y; O’Shea, K. E. “Ultrasonic Treatment of Arsenic in Drinking Water,” Am. Chem. Soc. Meet., Orlando, FL. April 7–11, 2002. Prepr. Extd. Abstr. 2002, 42(1) 161–165.

    CAS  Google Scholar 

  • Osmonics, Inc. The Filtration Spectrum: Minnetonka, MN, USA, 1996.

    Google Scholar 

  • Patel-Predd, P. “Water Desalination Takes a Step Forward,” Environ. Sci. Technol. Online Technology News, May 3, 2006. http://pubs.acs.org/subscribe/journals/esthag-w/2006/may/tech/pp_desalination.html#

    Google Scholar 

  • Priestly, A. J. “Innovative Approaches to Water and Wastewater Treatment Developed at CSIRO, Australia,” 5th World Congr. Chem. Eng. and Chem., Am. Inst. Chem. Eng.: San Diego, CA, Jul. 14–18, 1996. Book of Abstracts, Vol. Ill, pp. 803–808.

    Google Scholar 

  • Reese, K. M. “Cheap Way to Remove Arsenic,” Chem. Eng. News, July 8, 2002. pp. 56.

    Google Scholar 

  • Wang, Jo. S.; Wai, C. M. “Arsenic in Drinking Water—A Global Environmental Problem,” J. Chem. Educ. 2004, 81, 207–213.

    Article  CAS  Google Scholar 

  • Wilson, E. “Coated Mesoporous Silica: Supersoaker for Heavy Metals,” Chem. Eng. News, May 19, 1997. pp. 46–47.

    Google Scholar 

  • Zhang, M.; Reardon, E. J. “Removal of B, Cr, Mo, and Se from Wastewater by Incorporation into Hydrocalumite and Ettringite” Environ. Sci. Technol. 2003, 37, 2947–2952.

    Article  CAS  Google Scholar 

  • Zuo, Y.; Zhang, K; Deng, Y. “Occurrence and Photochemical Fate of Hormone Steroids in New Bedford Seawater,” Am. Chem. Soc. Meet., Anaheim, CA. March 28–Apr. 1, 2004. Div. Environ. Chem. Sym. Pap., pp. 60–64.

    Google Scholar 

Combined Treatments

  • Horikoshi, S.; Hojo, F.; Hidaka, H.; Serpone, N. “Environmental Remediation by an Integrated Microwave/UV Illumination Technique. 8. Fate of Carboxylic Acids, Aldehydes, Alkoxycarbonyl and Phenolic Substrates in a Microwave Radiation Field in the Presence of TiO2 Particles under UV Irradiation,” Environ. Sci. Technol. 2004, 38, 2198–2208.

    Article  CAS  Google Scholar 

  • Rivas, F. J.; Beitran, F. J.; Gimeno, O.; Carbajo, M. “Fluorene Oxidation by Coupling of Ozone, Radiation, and Semiconductors: Mathematical Approach to the Kinetics” Ind. Eng. Chem. Res. 2006, 45, 166–174.

    Article  CAS  Google Scholar 

  • Wada, H.; Naoi, T. “Recycling of Cyanide Wastewater by Ozone Oxidation Combined with UV Radiation and Ion Exchange” J. Chem. Eng. Jap. 1994, 27(2), 262.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Physicochemical and Physical Treatment of Pollutants and Wastes. In: Environmental Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31435-8_10

Download citation

Publish with us

Policies and ethics