Skip to main content

Late Transition Metal Complexes Immobilized on Structured Surfaces as Catalysts for Hydrogenation and Oxidation Reactions

  • Chapter
Nanostructured Catalysts

Abstract

New advances in the preparation of catalysts on well-defined active sites are reviewed, including molecular imprinting, organic zeolites, chiral polymers and supported dendrimers. The effect of the support, the grafting technique and the choice of ligand are discussed with particular emphasis on hydrogenation and dihydroxylation catalysts. The use of highly ordered mesoporous materials such as MCM-41,1 SBA-15,2 or FSM-163 in catalysis is of particular importance.4,5 Phosphine6,7,8 and amine9 ligands have been immobilized onto the surfaces of mesoporous silicates. The grafting of phosphines (chiral and achiral) for use in hydrogenation reactions is described in detail.6,7 Similarly, chiral cinchona alkaloids grafted onto SBA-15 are shown to be very effective ligands for the osmium-catalyzed dihydroxylation of olefins.10,11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartulli, J.C.; Beck, J.S. Nature 1992, 359, 710. Beck, J.S.; Vartulli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.-W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. J. Am. Chem. Soc. 1992, 114, 10834.

    Article  CAS  Google Scholar 

  2. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Science 1998, 279, 548. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. J. Am. Chem. Soc. 1998, 120, 6024.

    Article  CAS  Google Scholar 

  3. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988. Inagaki, S.; Koiwai, A.; Suzuki, N.; Fukushima, Y.; Kuroda, K. Bull. Chem. Soc. Jpn. 1996, 69, 1449. Inagaki, S.; Sakamoto, Y.; Fukushima, Y.; Terasaki, O. Chem. Mater. 1996, 8, 2089.

    Article  CAS  Google Scholar 

  4. Reviews: Stein, A.; Melde, B.J.; Schroden, R.C. Adv. Mater. 2000, 12, 1403. Moller, K.; Bein, T. Chem. Mater. 1998, 10, 2950. Brunei, D.; Bellocq, N.; Sutra, P.; Cauvel, A.; Laspéras, M.; Moreau, P.; Di Renzo, F.; Galarneau, A.; Fajula, F. Coord. Chem. Rev. 1998, 178-180, 1085. Ying, J.Y.; Mehnert, C.P.; Wong, M.S. Angew. Chem. Int. Ed. 1999, 38, 56. Corma, A. Chem. Rev. 1997, 97, 2373. Thomas, J.M. Angew. Chem. Int. Ed. 1999, 38, 3588. He, X.; Antonelli, D. Angew. Chem. Int. Ed. 2002, 41, 214.

    Article  Google Scholar 

  5. Asymmetric allylic animation: Johnson, B.F.G.; Raynor, S.A.;. Shephard, D.S; Mashmeyer, T.; Thomas, J.M.; Sankar, G.; Bromley, S.; Oldroyd, R.; Gladden, L.; Mantle, M.D. Chem. Commun. 1999, 1167. Asymmetric hydrogenation of enamines: Raynor, S.A.; Thomas, J.M.; Raja, R.; Johnson, B.F.G.; Bell, R.G.; Mantle, M.D. Chem. Commun. 2000, 1925. Asymmetric addition of diethyl zinc to aldehydes: Laspéras, M.; Bellocq, N.; Brunei, D.; Moreau, P. Tetrahedron: Asymm. 1998, 9, 3053. Kim, S.-W.; Bae, S.J.; Hyeon, T.; Kim, B.M. Micropor. Mesopor. Mater. 2001, 44-45, 523. Bae, S.J.; Kim, S.-W.; Hyeon, T.; Kim, B.M. Chem. Commun. 2000, 31. Asymmetric epoxidation: Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Li, S.G.; Li, L.-S.; Che, C.-M. Chem. Commun. 1999, 1789. Kim, G.-J.; Kim, S.-H. Catal. Lett. 1999, 57, 139. Pauson Khand: Kim, S.W.; Son, S.U;. Lee, S.I.; Hyeon, T.; Chung, Y.K. J. Am. Chem. Soc. 2000, 122, 1550. Polymerization: Kageyama, K.; Tamazawa, J.-I.; Aida, T. Science 1999, 285, 2113. Hydroformylation: Nowotny, M.; Maschmeyer, T.; Johnson, B.F.G.; Lahuerta, P.; Thomas, J.M.; Davies, J.E. Angew. Chem. Int. Ed. 2001, 40, 955. Heckreaction: Mehnert, C.P.; Ying, J.Y. Chem. Commun. 1997, 2215. Mehnert, C.P.; Weaver, D.W.; Ying, J.Y. J. Am. Chem. Soc. 1998, 120, 12289. Suzuki Reaction: Kosslick, H.; Mönnich, I.; Paetzold, E.; Fuhrmann, H.; Fricke, R.; Müller, D.; Oehme, G. Micropor. Mesopor. Mater. 2001, 44-45, 537. Epoxidation: Liu, C.-J.; Yu, W.-Y.; Li, S.-G.; Che, C.-M. J. Org. Chem. 1998, 63, 7364. Cheng, A.K.-W.; Lin, W.-Y.; Li, S.-G.; Che, C.-M.; Pang, W.-Q. New J. Chem. 1999, 23, 733. Butterworth, A.J.; Clark, J.H.; Walton, P.H.; Barlow, S.J. J. Chem. Soc., Chem. Comm. 1996, 1859. Chisem, I.C.; Rafelt, J.; Shieh, M.T.; Chisem, J.; Clark, J.H.; Jachuck, R.; Macquarrie, D.; Ramshaw, C.; Scott, K. J. Chem. Soc., Chem. Comm. 1998, 1949. Das, T.K.; Chaudhari, K.; Nandanan, E.; Chandwadkar, A.J.; Sudalai, A.; Ravindranathan, T.; Sivasanker, S. Tetrahedron Lett. 1997, 38, 3631. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J.M. Nature 1995, 378, 159. Ernst, S.; Selle, M. Micropor. Mesopor. Mater. 1999, 27, 355. Maschmeyer, T.; Oldroyd, R.D.; Sankar, G.; Thomas, J.M.; Shannon, I.J.; Klepetko, J.A.; Masters, A.F.; Beattie, J.K.; Catlow, C.R.A. Angew. Chem. Int. Ed. 1997, 36, 1639. Arens, I.W.C.E.; Sheldon, R.A.; Wallau, M.; Schuchardt, U. Angew. Chem. Int. Ed. 1997, 36, 1145.

    Google Scholar 

  6. Shyu, S.-G.; Cheng, S.-W.; Tzou, D.-L. Chem. Commun. 1999, 2337.

    Google Scholar 

  7. Crudden, C.M.; Allen, D.; Mikoluk, M.D.; Sun, J. Chem. Commun. 2001, 1154.

    Google Scholar 

  8. Liu, A.M.; Hidajat, K.; Kawi, S. J. Mol. Catal. A: Chem. 2001, 168, 303. See also ref. 5(a).

    Article  CAS  Google Scholar 

  9. Lasperas, M.; Lloret, T.; Chaves, L.; Rodriguez, I.; Cauvel, A.; Brunei, D. Stud. Surf. Sci. Catal. 1997, 108, 75. Subba Rao, Y.V.; De Vos, D.E.; Jacobs, P.A. Angew. Chem. Int. Ed. 1997, 36, 2661. Cauvel, A.; Renard, G.; Brunei, D. J. Org. Chem. 1997, 62, 749. Subba Rao, Y.V.; De Vos, D.E.; Jacobs, P.A. Angew. Chem. Int. Ed. 1997, 36, 2261. Jaenicke, S.; Chuah, G.K.; Lin, X.H.; Hu, X.C. Micropor. Mesopor. Mater. 2000, 35–36 143. Lin, X.; Chuah, G.K.; Jaenicke, S. J. Mol. Catal. A: Chem. 1999, 150, 287. Macquarrie, D.J.; Jackson, D.B.; Tailland, S.; Utting, K.A. J. Mater. Chem. 2001, 11, 1843. Demicheli, G.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G.; Bigi, F. Tetrahedron Lett. 2001, 42, 2401. Thoelen, C.; Van de Walle, K.; Vankelecom, I.F.J.; Jacobs, P.A. Chem. Commun. 1999, 1841.

    Article  CAS  Google Scholar 

  10. Motorina, I.; Crudden, C.M. Org. Lett. 2001, 3, 2325.

    Article  CAS  Google Scholar 

  11. Lee, H.M.; Kim, S.-W.; Hyeon, T.; Kim, B.M. Tetrahedron: Asymm. 2001, 12, 1537.

    Article  CAS  Google Scholar 

  12. Noyori, R. Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons: New York, 1994. Ojima, I. Catalytic Asymmetric Synthesis, 2nd Ed. VCH Publishers: New York, 2000. Jacobsen, E.N.; Pfaltz, A; Yamamoto, H. Comprehensive Asymmetric Catalysis, Springer-Verlag: Heidelberg, 1999.

    Google Scholar 

  13. Orito, Y.; Imai, S.; Niwa, S. J. Chem. Soc. Jpn. 1980, 4, 670. Blaser, H.U.; Jalett, H.P.; Lottenbach, W.; Studer, M. J. Am. Chem. Soc. 2000, 122, 12675. von Arx, M.; Mallat, T.; Baiker, A. Angew. Chem. Int. Ed. 2001, 40, 2302. LeBlond, C.; Wang, J; Liu, J.; Andrews, A.T.; Sun, Y.-K. J. Am. Chem. Soc. 1999, 121, 4920. The hydrogenation of diketones can also be accomplished with high ee using tartaric acid modified Raney nickel: Tai, A.; Kikukawa, T.; Sugimura, T.; Inoue, Y.; Osawa, T.; Fujii, S. J. Chem. Soc., Chem. Comm. 1991, 795.

    Google Scholar 

  14. Dumont, W.; Poulin, J.-C.; Dang, T.-P.; Kagan, H.B. J. Am. Chem. Soc. 1973, 95, 8295.

    Article  CAS  Google Scholar 

  15. Bruner, H.; Bailar Jr., J.C. Inorg. Chem. 1973, 12, 1465.

    Article  CAS  Google Scholar 

  16. Grubbs, R.H.; Kroll, L.C. J. Am. Chem. Soc. 1971, 93, 3062.

    Article  CAS  Google Scholar 

  17. Colhnan, J.P.; Hegedus, L.S.; Cooke, M.P.; Norton, J.R.; Dolcetti, G.; Marquardt, D.N. J. Am. Chem. Soc. 1972, 94, 1789.

    Article  Google Scholar 

  18. Capka, M.; Svoboda, P.; Creny, M.; Hetflejs, J. Tetrahedron Lett. 1971, 4787.

    Google Scholar 

  19. Bailey, D.C.; Langer, S.H. Chem. Rev. 1981, 81, 109. Pittman, C.U., Jr. in Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F.G.A.; Abel, E.W. Eds.; Pergamon Press: Oxford, 1982, Vol. 8. Hartley, F.R.; Vezey, P.N. Adv. Organomet. Chem. 1977, 15, 189. Hartley, F.R. Supported Metal Complexes, Reidel, Dordrecht, 1985.

    Article  CAS  Google Scholar 

  20. Lindner, E.; Schneller, T.; Auer, F.; Mayer, H.A. Angew. Chem. Int. Ed. 1999, 38, 2154.

    Article  Google Scholar 

  21. For example: Holland, B.T.; Walkup, C.; Stein, A. J. Phys. Chem. B 1998, 102, 4301. Seen, A.J.; Townsend, A.T.; Bellis, J.C.; Cavell, K.J. J. Mol. Catal. A: Chem. 1999, 149, 233. Quiroga, M.E.; Cagnola, E.A.; Liprandi, D.A; L’Argentiere, P.C. J. Mol. Catal. A: Chem. 1999, 149, 147. Yang, H.; Gao, H.; Angelici, R.J. Organometallics 2000, 19, 622. Nagel, U.; Leipold, J. Chem. Ber. 1996, 129, 815.

    Article  Google Scholar 

  22. Pugin, B. J. Mol. Catal. A: Chem. 1996, 107, 273.

    Article  CAS  Google Scholar 

  23. Drago, R.; Pribich, D.C. Inorg. Chem. 1985, 24, 1983.

    Article  CAS  Google Scholar 

  24. Hodge, P. Chem. Soc. Rev. 1997, 26, 417.

    Article  CAS  Google Scholar 

  25. Merrifield, R.B. J. Am. Chem. Soc. 1963, 85, 2149. Merrifield, R.B. Science 1965, 150, 178.

    Article  CAS  Google Scholar 

  26. Phosphines are also known to break down by phosphorus-carbon bond cleavage, which can be a second contributor to leaching: Garrou, P.E. Chem. Rev. 1985, 85, 171. Carry, A.J. Pure Appl. Chem. 1982, 54, 113.

    Article  Google Scholar 

  27. Santini, R.; Griffith, M.C.; Qi, M. Tetrahedron Lett. 1998, 39, 8951. Shuttleworth, S.J.; Allin, S.M.; Sharma, P.K. Synthesis 1997, 1217.

    Article  CAS  Google Scholar 

  28. Shemyakin, M.M.; Ovchinnikov, Yu. A.; Kiryushkin, A.A.; Kozhevnikova, I.V. Tetrahedron Lett. 1965, 6, 2323. Mutter, M.; Hagenmaier, H.; Bayer, E. Angew. Chem. Int. Ed. 1971, 10, 811. Andreatta, R.H.; Rink, H. Helv. Chim. Acta 1973, 56, 1205. Narita, M. Bull. Chem. Soc. Jpn. 1978, 51, 1477. Gravert, D.J.; Janda, K.D. Chem. Rev. 1997, 97, 489. Wentworth Jr., P.; Janda, K.D. J. Chem. Soc, Chem. Comm. 1999, 1917.

    Article  Google Scholar 

  29. Bergbreiter, D.E.; Weatherford, D.A. J. Org. Chem. 1989, 54, 2726. Bergbreiter, D.E. CHEMTECH 1987, 686. Bergbreiter, D.E.; Chandran, R. J. Am. Chem. Soc. 1987, 109, 174. Hartley, F.R. Brit. Polym. J. 1984, 16, 199.

    Article  CAS  Google Scholar 

  30. Bergbreiter, D.E.; Osburn, P.L.; Wilson, A.; Sink, E.M. J. Am. Chem. Soc. 2000, 122, 9058. Bergbreiter, D.E.; Osburn, P.L.; Frels, J.D. J. Am. Chem. Soc. 2001, 123, 11105.

    Article  CAS  Google Scholar 

  31. Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 4051. Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 1911.

    Article  CAS  Google Scholar 

  32. Taylor, R.A.; Santora, B.P.; Gagné, M.R. Org. Lett. 2000, 2, 1781. Santora, B.P.; Larsen, A.O.; Gagné, M.R. Organometallics 1999, 18, 3138. Santora, B.P.; White, P.S.; Gagné, M.R. Organometallics 1999, 18, 2557.

    Article  CAS  Google Scholar 

  33. Nestler, O.; Severin, K. Org. Lett. 2001, 3, 3907 and references cited therein.

    Google Scholar 

  34. Fisher, L.; Muller, R.; Ekberg, B.; Mosbach, K. J. Am. Chem. Soc. 1991, 113, 9358.

    Article  Google Scholar 

  35. Beach, J.V.; Shea, K.J. J. Am. Chem. Soc. 1994, 116, 379. Wulff, G; Gross, T.; Schönfeld, R. Angew. Chem. Int. Ed. 1997, 36, 1962. Liu, X.-C.; Mosbach, K. Macromol. Rapid Commun. 1997, 18, 609. Robinson, D. K.; Mosbach, K. J. Chem. Soc., J. Chem. Soc., Chem. Comm. 1989, 969. Strikovsky, A.G.; Kasper, D.; Grün, M.; Green, B.S.; Hradil, J.; Wulff, G. J. Am. Chem. Soc. 2000, 122, 6295.

    Article  CAS  Google Scholar 

  36. Brunkan, N.M.; Gagné, M.R. J. Am. Chem. Soc. 2000, 122, 6217.

    Article  CAS  Google Scholar 

  37. Koh, J.H.; Larsen, A.O.; White, P.S.; Gagné, M.R. Organometallics 2002, 21, 7.

    Article  CAS  Google Scholar 

  38. Polborn, K.; Severin, K. Chem. Eur. J. 2000, 6, 4604. A seven-fold increase in rate was observed with Ru systems: Polborn, K.; Severin, K. Eur. J. Inorg. Chem. 2000, 1687. Polborn, K.; Severin, K. Chem. Commun. 1999, 2481.

    Article  CAS  Google Scholar 

  39. Matsui, J.; Nicholls, I.A.; Karube, I.; Mosbach, K. J. Org. Chem. 1996, 61, 5414. Fujii, Y.; Matsutani, K.; Kikuchi, K. J. Chem. Soc., Chem. Comm. 1985, 415.

    Article  CAS  Google Scholar 

  40. Alper, H.; Hamel, N. J. Chem. Soc., Chem. Comm. 1990, 135. See also a cellulose-based phosphite: Kawabata, Y.; Tanaka, M.; Ogata, I. Chem. Lett. 1976, 1213.

    Google Scholar 

  41. The use of peptides as ligands for asymmetric catalysis has the advantage that many different peptides can be prepared rapidly using combinatorial methods, unlike the preparation of chiral phosphines which can be laborious. For the use of peptides as ligands or as catalysts themselves see: Vasbinder, M.M.; Jarvo, E.R.; Miller, S. J. Angew. Chem. Int. Ed. 2001, 40, 2824. Mizutani, H.; Degrado, S.J.; Hoveyda, A.H. J. Am. Chem. Soc. 2002, 124, 779. Josephsohn, N.S.; Kuntz, K.W.; Snapper, M.L.; Hoveyda, A.H. J. Am. Chem. Soc. 2001, 123, 11594.

    Article  Google Scholar 

  42. Lère-Porte, J.P.; Moreau, J. J.E.; Serein-Spirau, F.; Wakim, S. Tetrahedron Lett. 2001, 42, 3073.

    Article  Google Scholar 

  43. Fan, Q.-H.; Ren, C.-Y.; Yeung, C.-H.; Hu, W.-H.; Chan, A.S.C. J. Am. Chem. Soc. 1999, 121, 7407.

    Article  CAS  Google Scholar 

  44. For an excellent review see Yu, H.-B.; Pu, L. Chem. Rev. 2001, 101, 757.

    Article  CAS  Google Scholar 

  45. Yu, H.-B.; Hu, Q.-S.; Pu, L. TetrahedronLett. 2000, 41, 1681.

    Article  CAS  Google Scholar 

  46. Yu, H.-B.; Hu, Q.-S.; Pu, L. J. Am. Chem. Soc. 2000, 122, 6500

    Article  CAS  Google Scholar 

  47. Saluzzo, C.; Halle, R.; Touchard, F.; Fache, F.; Schulz, E.; Lemaire, M. J. Organomet. Chem. 2000, 603, 30.

    Article  CAS  Google Scholar 

  48. Halle, R.; Colasson, B.; Schulz, E.; Spagnol, M.; Lemaire, M. Tetrahedron Lett. 2000, 41, 643.

    Article  Google Scholar 

  49. Locatelli, F.; Gamez, P.; Lemaire, M. J. Mol. Catal. A: Chem. 1998, 135, 89.

    Article  CAS  Google Scholar 

  50. Gamez, P.; Dunjic, B.; Pinel, C.; Lemaire, M. Tetrahedron Lett. 1995, 36, 8779.

    Article  CAS  Google Scholar 

  51. For a review on nanoporous and mesoporous organic materials see: Langley, P.J.; Hulliger, J. Chem. Soc. Rev. 1999, 28, 279. For the preparation of ordered, mesoporous carbon: Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.

    Article  Google Scholar 

  52. Wuest, J.D. in Mesomolecules: From Molecules to Materials, Mendenhall, G.D.; Greenberg, A.; Liebman, J.F., Eds. Chapman & Hall: New York, 1995.

    Google Scholar 

  53. Miller, S.A.; Kim, E.; Gray, D.H.; Gin, D.L. Angew. Chem. Int. Ed. 1999, 38, 3022.

    Article  CAS  Google Scholar 

  54. Gu, W.; Zhou, W.-J.; Gin, D.L. Chem Mater. 2001, 13, 1949.

    Article  CAS  Google Scholar 

  55. Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.

    Article  CAS  Google Scholar 

  56. Clark, J.H.; Macquarrie, D.J. Chem. Soc. Rev. 1996, 303. Clark, J.H.; Macquarrie, D.J. Chem. Commun. 1998, 853. See also reference 20.

    Google Scholar 

  57. Davis, M.E. Micropor. Mesopor. Mater. 1998, 21, 173 and references therein.

    Article  CAS  Google Scholar 

  58. Pinnavaia, T.J.; Raythatha, R.; Lee, J.G.-S.; Halloran, L.J.; Hoffman, J.F. J. Am. Chem. Soc. 1979, 101, 6891. Pinnavaia, T.J. Science 1983, 220, 365. Sento, T.; Shimazu, S.; Ichikuni, N.; Uematsu, T. Chem. Lett. 1998, 1191.

    Article  CAS  Google Scholar 

  59. Kumar, K.R.; Choudary, B.M.; Jamil, Z.; Thyagarajan, G. J. Chem. Soc., Chem. Comm. 1986, 130. Choudary, B.M.; Kumar, K.R.; Jamil, Z.; Thyagarajan, G. J. Chem. Soc., Chem. Comm. 1985, 937. Kumar, K.R.; Choudary, B.M.; Jamil, Z.; Thyagarajan, G. J. Chem. Soc., Chem. Comm. 1985, 937.

    Google Scholar 

  60. Aldea, R.; Alper, H. J. Org. Chem. 1998, 63, 9425.

    Article  CAS  Google Scholar 

  61. Pd clay prepared with BIPY ligands: Valli, V.L.K.; Alper, H. J. Am. Chem. Soc. 1993, 115, 3778.

    Article  CAS  Google Scholar 

  62. Margalef-Catala, R.; Claver, C.; Salagre, P.; Fernandez, E. Tetrahedron: Asymm. 2000, 11, 1469.

    Article  CAS  Google Scholar 

  63. Segarra, A.M.; Guerrero, R.; Claver, C.; Fernandez, E. Chem. Commun. 2001, 1808.

    Google Scholar 

  64. Corma, A.; Martinez, A. Adv. Mater. 1995, 7, 137. Dartt, C.B.; Davis, M.E. Catal. Today 1994, 19, 151.

    Article  CAS  Google Scholar 

  65. For the ship-in-a-bottle method of encapsulation see:ai]Kowalak, S.; Weiss, R.C.; Balkus Jr., K. J. J. Chem. Soc., Chem. Comm. 1991, 57. Zhang, Z.; Dai, S.; Hunt, R.D.; Wei, Y.; Qiu, S. Adv. Mater. 2001, 13, 493. Ernst, S.; Fuchs, E.; Yang, X. Micropor. Mesopor. Mater. 2000, 35-36, 137.

    Google Scholar 

  66. For the seminal contributions of the Davis group see: Davis, M.E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C. Nature 1988, 331, 698. Freyhardt, C.C.; Tsapatsis, M.; Lobo, R.F.; Balkus, K.J.; Davis, M.E. Nature 1996, 381, 295. Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.; Davis, M.E. Chem. Commun. 1997, 2179.

    Article  Google Scholar 

  67. Corma, A.; Iglesias, M.; del Pino, C.; Sanchez, F. J. Chem. Soc., Chem Comm. 1991, 1253.

    Google Scholar 

  68. Katz, A.; Davis, M.E. Nature 2000, 403, 286. Davis, M.E. Stud. Surf. Sci. Catal. 2000, 130, 49.

    Article  CAS  Google Scholar 

  69. For an excellent review see: Raimondi, M.E.; Seddon, J.M. Liquid Cryst. 1999, 26, 305.

    Article  Google Scholar 

  70. For the “true-liquid-crystal-templating” procedure see: Attard, G.S.; Glyde, J.C.; Göltner, C.G.; Nature 1995, 378, 366. Göltner, C.G.; Antonietti, M. Adv. Mater. 1997, 9, 431. 74. Wingen, A.; Anastasievic, N.; HoUnagel, A.; Werner, D.; Schüth, F. J. Catal. 2000, 193, 248. See also references 4 and 5.

    Article  Google Scholar 

  71. Jung, J.H.; Ono, Y.; Hanabusa, K.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 5008. Ono, Y.; Nakahima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Commun. 1998, 1477. Jung, J.H.; Ono, Y.; Shinkai, S. Angew. Chem. Int. Ed. 2000, 39, 1862. Jung, J.H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S. J. Am. Chem. Soc 2001, 123, 8785.

    Article  CAS  Google Scholar 

  72. For Binol-based organic/inorganic composites see: Brethon, A.; Hesemann, P.; Réjaud, L.; Moreau, J.J.E.; Man, M.W.C. J. Organomet. Chem. 2001, 627, 239. Hesemann, P.; Moreau, J.J.E. Tetrahedron: Asymm. 2000, 11, 2183.

    Article  Google Scholar 

  73. Moreau, J.J.E.; Vellutini, L.; Man, M.W.C.; Bied, C. J. Am. Chem. Soc 2001, 123, 1509.

    Article  CAS  Google Scholar 

  74. Adima, A.; Moreau, J.J.E.; Man, M.W.C. J. Mater. Chem. 1997, 7, 2331.

    Article  CAS  Google Scholar 

  75. Junges, U.; Jacobs, W.; Voigt-Martin, I.; Krutzsch, B.; Schüth, F. J. Chem. Soc., Chem. Comm. 1995, 2283. Corma, A.; Martinez, A.; Martinez-Soria, V. J. Catal. 1997, 169, 480. Luan, Z.; Kevan, L. J. Phys. Chem. B 1997, 101, 2020. Mulukutla, R.S.; Asakura, K.; Namba, S.; Iwasawa, Y. Chem. Commun. 1998, 1425.

    Google Scholar 

  76. Basset, J.-M.; Lefebvre, F.; Santini, C.C. Coord. Chem. Rev. 1998, 178-180, 1703.

    Article  CAS  Google Scholar 

  77. Amor Nait Ajjou, J.; Rice, G.L.; Scott, S.L. J. Am. Chem. Soc. 1998, 120, 13436. Amor Nait Ajjou, J.; Scott, S.L. J. Am. Chem. Soc. 2000, 122, 8968. Richmond, M.K.; Scott, S.L.; Alper, H. J. Am. Chem. Soc. 2001, 123, 10521.

    Article  Google Scholar 

  78. Vidal, V.; Théolier, A.; Thivolle-Cazat, J.; Basset, J.-M. Science 1997, 276, 99. Maury, O.; Lefort, L.; Vidal, V.; Thivolle-Cazat, J.; Basset, J.-M. Angew. Chem. Int. Ed. 1999, 38, 1952. Chabanas, M.; Quadrelli, E.A.; Fenet, B.; Coperet, C.; Thivolle-Cazat, J.; Basset, J.-M.; Lesage, A.W.; Emsley, L. Angew. Chem. Int. Ed. 2001, 40, 4493.

    Article  CAS  Google Scholar 

  79. Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Herdtweck, E.; Spiegler, M. J. Chem. Soc., Dalton Trans. 1998, 847. Gerstberger, G.; Anwander, R. Micropor. Mesopor. Mater. 2001, 44-45, 303.

    Google Scholar 

  80. Kobayashi, S.; Endo, M.; Nagayama, S. J. Am. Chem. Soc. 1999, 121, 11229. See also: Patchornik, A.; Ben-David, Y.;Milstein, D. J. Chem. Soc., Chem. Comm. 1990, 1090, for the immobilization of a Rh complex in polystyrene by mixing the two in THF followed by treatment and extraction with MeOH.

    Article  CAS  Google Scholar 

  81. Rosenfeld, A.; Avnir, D.; Blum, J. J. Chem. Soc., Chem. Comm. 1993, 583.

    Google Scholar 

  82. Gelman, F.; Avnir, D.; Schumann, H.; Blum, J. J. Mol. Catal. A: Chem. 1999, 146, 123.

    Article  CAS  Google Scholar 

  83. Sertchook, H.; Avnir, D.; Blum, J.; Joo, F.; Katho, A.; Schumann, H.; Weimann, R.; Wernik, S. J. Mol. Catal: A Chem. 1996, 108, 153. Rosenfeld, A.; Blum, J.; Avnir, D. J. Catal. 1996, 164, 363.

    Google Scholar 

  84. Blum, J.; Rosenfeld, A.; Polak, N.;Israelson, O.; Schumann, H.; Avnir, D. J. Mol. Catal.: A. Chem. 1996, 107, 217.

    Article  CAS  Google Scholar 

  85. Vankelecom, I.; Wolfson, A.; Geresh, S.; Landau, M.; Gottlieb, M.; Hershkovitz, M. Chem. Commun. 1999, 2407.

    Google Scholar 

  86. Wolfson, A.; Janssens, S.; Vankelecom, I.; Geresh, S.; Gottlieb, M.; Herskowitz, M. Chem. Commun. 2002, 388.

    Google Scholar 

  87. Augustine, R.; Tanielyan, S.; Anderson, S.; Yang, H. Chem. Commun. 1999, 1257. For an application of this method see: Burk, M.J.; Gerlach, A.; Semmeril, D. J. Org. Chem. 2000, 65, 8933.

    Google Scholar 

  88. deRege, F.M.; Morita, D.K.; Ott, K.C.; Tumas, W.; Broene, R.D. Chem. Commun. 2000, 1797.

    Google Scholar 

  89. Bianchini, C.; Barbara, P.; Dal Santo, V.; Gobetto, R.; Meli, A.; Oberhauser, W.; Psaro, R.; Vizza, F. Adv. Syn. Catal. 2001, 343, 41. Wagner, H.H.; Hausmann, H.; Hölderich, W.F. J. Catal. 2001, 203, 150.

    Article  CAS  Google Scholar 

  90. Tollner, K.; Popovitz-Biro, R.; Lahav, M.; Milstein, D. Science 1997, 278, 2100.

    Article  CAS  Google Scholar 

  91. Kuntz, E.G. Fr. Patent 2,550,202 to Rhone-Poulenc Recherches. Kalck, P.; Monteil, F. Adv. Organomet. Chem. 1992, 34, 219.

    Google Scholar 

  92. Bianchini, C.; Dal Santo, V.; Meli, A.; Oberhauser, W.; Psaro, R.; Vizza, F. Organometallics 2000, 19, 2433. Bianchini, C.; Burnaby, D.G.; Evans, J.; Frediani, P.; Meli, A.; Oberhauser, W.; Psaro, R.; Sordelli, L.; Vizza, F. J. Am. Chem. Soc. 1999, 121, 5961.

    Article  CAS  Google Scholar 

  93. For other examples of supported hydroformylation catalysts that do not leach see: Sandee, A.J.; Reek, J.N.H.; Kamer, P.C.J.; vanLeeuwen, P.W.N.M. J. Am. Chem. Soc. 2001, 123, 8468. See also reference 112.

    Article  CAS  Google Scholar 

  94. Arhancet, J.P.; Davis, M.E.; Merola, J.S.; Hanson, B.E. Nature 1989, 339, 454.

    Article  CAS  Google Scholar 

  95. Wan, K.T.; Davis, M.E. Nature 1994, 370, 449.

    Article  CAS  Google Scholar 

  96. Davis postulates that the chloro ligand is removed in water, leading to a less enantioselective catalyst. For the results in a water film see: Wan, K.T.; Davis, M.E. J. Chem. Soc., Chem. Comm. 1993, 1262.

    Google Scholar 

  97. Allum, K.G.; Hancock, R.D.; Howell, I.V.; McKenzie, S.; Pitkethly, R.C.; Robinson, P.J. J. Organomet. Chem. 1975, 87, 203. Czaková, M.; Capka, M. J. Mol. Catal. 1981,11, 313. Zbirovsky, V.; Capka, M. Collect. Czech. Chem. Comm. 1986, 51, 836.

    Article  CAS  Google Scholar 

  98. It is estimated that each alkoxy silane is bound to the surface with approximately 2.5 Si-O bonds. Landmesser, H.; Kosslikc, H.; Storek, W.; Fricke, R. Solid State Ionics 1997, 101-103, 271. Merckle, C.; Blümel, J. Chem. Mater. 2001, 13, 3617.

    Google Scholar 

  99. Feng, X.; Fryxell, G.E.; Wang, L.-Q.; Kim, A.Y.; Liu, J.; Kemner, K.M. Science 1997, 276, 923. Liu, J.; Feng, X.; Fryxell, G.E.; Wang, L.-Q.; Kim, A.Y.; Gong, M. Adv. Mater. 1998, 10, 161. vanRhijin, W.; De Vos, D.;Bossaert, W.; Bullen, J.; Wouters, B.; Grobet, P.; Jacobs, P. Stud. Surf. Sci. Catal. 1998, 117, 183.

    Article  CAS  Google Scholar 

  100. For imprint coating see: Dai, S.; Burleigh, M.C.; Shin, Y.; Morrow, C.C.; Barnes, C.E.; Xue, Z. Angew. Chem. Int. Ed. 1999, 38, 1235.

    Google Scholar 

  101. Dubois, L.H.; Zegarski, B.R. J. Am. Chem. Soc. 1993, 115, 1190. Blumel, J. J. Am. Chem. Soc. 1995, 117, 2112.

    Article  CAS  Google Scholar 

  102. Collman, J.P.; Belmont, J.A.; Brauman, J.J. J. Am. Chem. Soc. 1983, 105, 7288.

    Article  CAS  Google Scholar 

  103. See reference 6 and section 4.2.3. Depending on the conditions, catalysts can use remaining hydroxyls on the surface to migrate across the surface. For an in-depth discussion of this see: Roveda, C.; Church, T.L.; Alper, H.; Scott, S.L. Chem. Mater. 2000, 12, 857.

    Article  CAS  Google Scholar 

  104. Bourque, S.C.; Alper, H.; Manzer, L.E.; Arya, P. J. Am. Chem. Soc. 2000, 122, 956.

    Article  CAS  Google Scholar 

  105. Arya, P.; Panda, G; Venugopal Rao, N.; Alper, H.; Bourque, S.C.; Manzer, L.E. J. Am. Chem. Soc. 2001, 123, 2889.

    Article  CAS  Google Scholar 

  106. Petrucci, M.G.L.; Lebuis, A.M.; Kakkar, A.K. Organometallics 1998, 17, 4966. Petrucci, M.G.L.; Kakkar, A.K. Chem. Mater. 1999, 11, 269.

    Article  CAS  Google Scholar 

  107. Bemi, L.; Clark, H.C.; Davies, J.A.; Fyfe, C.A.; Wasylishen, R.E. J. Am. Chem. Soc. 1982, 104, 438. Blümel, J. Inorg. Chem. 1994, 33, 5050. Behringer, K.D.; Blümel, J. Inorg. Chem. 1996, 35, 1814.

    Article  CAS  Google Scholar 

  108. Li, H.; Luk, Y.-Y.; Mrksich, M. Langmuir 1999, 15, 4957.

    Article  CAS  Google Scholar 

  109. Shon, Y.S.; Mazzitelli, C.; Murray, R.W. Langmuir 2001,17, 7735.

    Article  CAS  Google Scholar 

  110. Ingram, R.S.; Hostetler, M.J.; Murray, R.W. J. Am. Chem. Soc. 1997, 119, 9175.

    Article  CAS  Google Scholar 

  111. Michalska, Z.M.; Strzelec, K. J. Mol. Catal. A: Chem. 2001, 177, 89. 121.

    Article  CAS  Google Scholar 

  112. Jacobsen, E.N.; Marko, I.; Mungall, S.; Schroeder, G.; Sharpless, K.B. J. Am. Chem. Soc. 1988, 110, 1968. Sharpless, K.B.; Amberg, W.; BeUer, M.; Chen, H.; Härtung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585. Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Chem. Rev. 1994, 94, 2483.

    Article  CAS  Google Scholar 

  113. Kim, B.M; Sharpless, K.B. Tetrahedron Lett., 1990, 31, 3003.

    Article  CAS  Google Scholar 

  114. Pini, D.; Petri, A.; Nardi, A.; Rosini, C.; Salvadori, P. Tetrahedron Lett. 1991, 32, 5175.

    Article  CAS  Google Scholar 

  115. Pini, D.; Petri, A.; Salvadori, P. Tetrahedron: Asymm. 1993, 4, 2351.

    Article  CAS  Google Scholar 

  116. Lohray, B.B.; Thomas, A.; Chittari, P.; Ahuja, J.R.; Dhal, P.K. Tetrahedron Lett. 1992, 33, 5453.

    Article  CAS  Google Scholar 

  117. Salvadori, P.; Pini, D.; Petri, A. J. Am. Chem. Soc. 1997, 119, 6929.

    Article  CAS  Google Scholar 

  118. Pini, D.; Petri, A.; Salvadori, P. Tetrahedron 1994, 50, 11321. Petri, A.; Pini, D.; Salvador!, P. Tetrahedron Lett. 1995, 36, 1549. Song, C.E.; Roh, E.J.; Lee, S.-G.; Kim, I.O. Tetrahedron: Asymm. 1995, 6, 2687. Petri, A.; Pini, D.; Rapaccini, S.; Salvador!, P. Chirality, 1995, 7, 580.

    Article  CAS  Google Scholar 

  119. Different solvents are required depending on the co-oxidant. If NMO is used, a less polar solvent mixture can be employed (acetone/water, 10/1). However, higher enantioselectivities are obtained when KFe 3(CN)6 is used as the oxidant, which requires a more polar solvent (t-BuOH/water, 1/1). Minato, M.; Yamamoto, K.; Tsuji, J. J. Org. Chem. 1990, 55, 766. 130. Nandanan, E.; Sudalai, A.; Ravindranathan, T. Tetrahedron Lett. 1997, 38, 2577. Song, C.E.;Yang, J.W.; Ha, H.J.; Lee, S.-G. Tetrahedron: Asymm. 1996, 7, 645. Lohray, B.B.; Nandanan, E.; Bhushan, V. Tetrahedron Lett. 1994, 35, 6559.

    Article  CAS  Google Scholar 

  120. Canali, L.; Song, C.E.; Sherrington, D.C. Tetrahedron: Asymm. 1998, 9, 1029.

    Article  CAS  Google Scholar 

  121. Lohray, B. B.; Nandanan, E.; Bhushan, V. Tetrahedron: Asymm. 1996, 7, 2805.

    Article  CAS  Google Scholar 

  122. Bolm, C.; Maischak, A.; Gerlach, A. Chem. Commun. 1997, 2353.

    Google Scholar 

  123. Bolm, C.; Gerlach, A. Angew. Chem. Int. Ed. 1997, 36, 741. Bolm, C.; Gerlach, A. Eur. J. Org. Chem. 1998, 21. Bolm, C.; Maischak, A. Synlett 2001, 93.

    Article  CAS  Google Scholar 

  124. Han, H.; Janda, K.D. J. Am. Chem. Soc. 1996, 118, 7632. Han, H.; Janda, K. D. Tetrahedron Lett. 1997, 38, 1527. Han, H.; Janda, K.D. Angew. Chem. Int. Ed. 1997, 36. 1731. Toy, P.H.; Janda, K.D. Acc. Chem. Res. 2000, 33, 546.

    Article  CAS  Google Scholar 

  125. For the use of polyvinylpyridine to bind OsO 4 see: Herrmann, W.A.; Kratzer, R.M.; Blümel, J.; Friedrich, H.B.; Fischer, R.W.; Apperley, D.C; Mink, J.; Berkesi, O. J. Mol. Catal. A: Chem. 1997, 120, 197.

    Article  Google Scholar 

  126. Choudary, B.M.; Chowdari, N.S.; Madhi, S.; Kantam, M.L. Angew. Chem. Int. Ed. 2001, 40, 4620. Choudary, B.M.; Chowdari, N.S.; Kantam, M.L.; Raghavan, K.V. J. Am. Chem. Soc. 2001,123, 9220.

    Google Scholar 

  127. Wöltinger, J.; Henniges, H.; Krimmer, H.-P.; Bommarius, A.S.; Drauz, K. Tetrahedron: Asymm. 2001, 12, 2095.

    Article  Google Scholar 

  128. Shephard, D.S.; Zhou, W.; Maschmeyer, T.; Matters, J.M.; Roper, C.L.; Parsons, S.; Johnson, B.F.G.; Duer, M.J. Angew. Chem. Int. Ed. 1998, 37, 2719. See also reference 5(a).

    Article  CAS  Google Scholar 

  129. Badiei, A.-R.; Bonneviot, L. Inorg. Chem. 1998, 37, 4142.

    Article  CAS  Google Scholar 

  130. Aronson, B.J.; Blanford, C.F.; Stein, A. Chem. Mater. 1997, 9, 2842.

    Article  CAS  Google Scholar 

  131. Jervis, H.B.; Raimondi, M.E.; Raja, R.; Maschmeyer, T.; Seddon, J.M.; Bruce, D.W. Chem. Commun. 1999, 2031.

    Google Scholar 

  132. Inagaki, S.; Guan, S.; Fukushima,Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.

    Article  CAS  Google Scholar 

  133. Asefa, T.; MacLachlan, M.J.; Coombs, N.; Ozin, G. Nature 1999, 402, 867.

    CAS  Google Scholar 

  134. Melde, B.J.; Holland, B.T.; Blanford, C.F.; Stein, A. Chem. Mater. 1999, 11, 3302.

    Article  CAS  Google Scholar 

  135. Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I.L.; Ripmeester, J.R. Chem. Mater. 2000, 12, 3857.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Crudden, C.M., Allen, D.P., Motorina, I., Fairgrieve, M. (2005). Late Transition Metal Complexes Immobilized on Structured Surfaces as Catalysts for Hydrogenation and Oxidation Reactions. In: Scott, S.L., Crudden, C.M., Jones, C.W. (eds) Nanostructured Catalysts. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30641-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-30641-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47484-2

  • Online ISBN: 978-0-387-30641-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics