Skip to main content

Scanning Capacitance Microscopy for Electrical Characterization of Semiconductors and Dielectrics

  • Chapter
Book cover Scanning Probe Microscopy

Abstract

A scanning capacitance microscope (SCM) combines an atomic force microscope (AFM) with a 1-GHz tuned inductance-capacitance-resistance (LCR) circuit to measure the capacitance between a conducting tip and sample. When applied to a semiconductor sample, an ac voltage at around 10 kHz is used to induce a depletion region within the semiconductor. The resulting differential capacitance is measured with a lock-in amplifier. The SCM contrast is proportional to this differential capacitance, which in turn is proportional to the inverse square root of the dopant concentration in the semiconductor beneath the tip. In this way dopant gradients in semiconductors, either natural or process induced, can be imaged. The differential capacitance measured by the SCM is also dependent on the properties of any native oxide or deposited dielectric film on the semiconductor surface, and the carrier mobility, which may be degraded near defects. This chapter will first review the history, principles, and modes of operation of the SCM. The remainder of the chapter will discuss major applications of scanning capacitance microscopy (SCM) for the electrical characterization of semiconductors and dielectric films, including qualitative characterization for integrated circuit failure analysis, quantitative dopant profiling and models for interpreting SCM images as dopant profiles, applications to semiconductors other than silicon, characterization of dielectric films, and optical pumping for carrier mobility measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Kopanski, “Capacitive Probe Microscopy,”Wiley Encyclopedia of Imaging Science and Technology, (John Wiley & Sons, New York, 2005), pp. 16–31.

    Google Scholar 

  2. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, (John Wiley & Sons, New York, 1982).

    Google Scholar 

  3. S. M. Sze, Physics of Semiconductor Devices, (John Wiley & Sons, New York, 1981).

    Google Scholar 

  4. The International Technology Roadmap for Semiconductors is published by International SEMATECH, 3101 Industrial Terrace Suite 106, Austin, TX 78758. The 2004 update is available at http://www.itrs.net/Common/2004Update/2004Update.htm.

    Google Scholar 

  5. J. R. Matey and J. Blanc, J. Appl. Phys. 57, 1437–1444 (1985).

    Article  Google Scholar 

  6. J. R. Matey, SPIE Scanning Microscopy Technologies and Applications 897, 110–117 (1988).

    CAS  Google Scholar 

  7. J. K. Clemens, RCA Review 39, 33–59 (1978).

    Google Scholar 

  8. R. C. Palmer, E. J. Denlinger, and H. Kawamoto, RCA Review 43, 194–211 (1982).

    Google Scholar 

  9. C. D. Bugg and P. J. King, J. Phys. E, Sci. Instrum. 21, 147–151 (1988).

    Article  CAS  Google Scholar 

  10. H. P. Kleinknecht, J. R. Sandercock, and H. Meier, Scanning Microscopy 2, 1839–1844 (1988).

    Google Scholar 

  11. C. C. Williams, W. P. Hough, and S. A. Rishton, Appl. Phys. Lett. 55, 203–205 (1989).

    Article  Google Scholar 

  12. C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, J. Vac. Sci. Technol. A 8, 895–898 (1990).

    Article  CAS  Google Scholar 

  13. C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Appl. Phys. Lett. 55, 1662–1664 (1989).

    Article  CAS  Google Scholar 

  14. M. D. Kirk, S. I. Park, and I. R. Smith, “3-Dimensional dopant profiling using scanning capacitance microscopy,” Final Technical Report on DARPA Contract #DAAH01-91-C-R118, September 9, 1991.

    Google Scholar 

  15. J. A. Slinkman, H. K. Wickramasinghe, and C. C. Williams, “Scanning capacitance-voltage microscopy,” U. S. Patent No. 5,065,103, Nov. 12, 1991.

    Google Scholar 

  16. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney in Semiconductor Characterization: Present Status and Future Needs, W. M. Bullis, D. G. Seiler, and A. C. Diebold, Eds. (AIP, New York, 1996), pp. 308–312.

    Google Scholar 

  17. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, J. Vac. Sci. Technol. B 12, 242–247 (1996).

    Article  Google Scholar 

  18. G. Neubauer, A. Erickson, C. C. Williams, J. J. Kopanski, M. Rodgers, and D. Adderton, J. of Vac. Sci. Technol. B 14, 426–432 (1996).

    Article  CAS  Google Scholar 

  19. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, Mat. Sci. Eng. B 44, 46–51 (1997).

    Article  Google Scholar 

  20. J. J. Kopanski, J. F. Marchiando, and R. Alvis in, Diagnostic Techniques for Semiconductor Materials and Devices, Vol 97–12, P. Rai-Choudhury, J. L. Benton, D. K. Schroder, and T. J. Shaffner, Eds., (The Electrochemical Society, Inc, Pennington, New Jersey, 1997), pp. 183–193.

    Google Scholar 

  21. J. F. Marchiando, J. R. Lowney, and J. J. Kopanski, Scanning Microscopy 11(1), 205–224, (1997).

    Google Scholar 

  22. J. J. Kopanski, J. F. Marchiando, D.W. Berning, R. Alvis, and H. E. Smith, J. Vac. Sci. Technol. B 16, 339–343 (1998).

    Article  CAS  Google Scholar 

  23. J. J. Kopanski and S. Mayo, Appl. Phys. Lett. 72, 2469–2471 (1998).

    Article  CAS  Google Scholar 

  24. S. Mayo, J. J. Kopanski, and W. F. Guthrie in Characterization and Metrology for ULSI Technology, D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters, Eds., AIP Conf. Proceedings 449 (AIP, New York, 1998), pp. 567–572.

    Google Scholar 

  25. J. J. Kopanski, J. F. Marchiando, and B. G. Rennex, J. Vac. Sci. Technol. B 18, 409–413 (2000).

    Article  CAS  Google Scholar 

  26. J. F. Marchiando, Intl. J. Num. Meth. Engineer. 39, 1029–1040 (1996).

    Article  Google Scholar 

  27. J. F. Marchiando, J. J. Kopanski, and J. R. Lowney, J. Vac. Sci. Technol. B 16, 463–470 (1998).

    Article  CAS  Google Scholar 

  28. J. J. Kopanski, J. F. Marchiando, J. Albers, and B. G. Rennex in Characterization and Metrology for ULSI Technology, D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters, Eds. AIP Conf. Proceedings 449, (AIP, New York, 1998), pp. 725–729.

    Google Scholar 

  29. J. F. Marchiando, J. J. Kopanski, and J. Albers, J. Vac. Sci. Technol. B 18, 414–417 (2000).

    Article  CAS  Google Scholar 

  30. B. G. Rennex, J. J. Kopanski, and J. F. Marchiando in Characterization and Metrology for ULSI Technology: 2000, D. G. Seiler, A. C. Diebold, T. J. Shaffner, R. McDonald, W. M Bullis, P. J. Smith, and E. M. Secula, Eds., AIP Conference Proceedings 550 (AIP, New York, 2001), pp. 635–640.

    Chapter  Google Scholar 

  31. Y. Huang and C. C. Williams, J. Vac. Sci. Technol. B 12, 369–372 (1994).

    Article  CAS  Google Scholar 

  32. Y. Huang, C. C. Williams, and J. Slinkman, Appl. Phys. Lett. 66, 344–346 (1995).

    Article  CAS  Google Scholar 

  33. Y. Huang, C. C. Williams, and H. Smith, J. Vac. Sci. Technol. B 14, 433–436 (1996).

    Article  CAS  Google Scholar 

  34. J. S. McMurray, J. Kim, and C. C. Williams, J. Vac. Sci. Technol. B 15, 1011–1014 (1997).

    Article  CAS  Google Scholar 

  35. J. S. McMurray, J. Kim, C. C. Williams, and J. Slinkman, J. Vac. Sci. Technol. B 16, 344–348 (1998).

    Article  CAS  Google Scholar 

  36. J. Kim, J. S. McMurray, C. C. Williams, and J. Slinkman, J. Appl. Phys. 84, 1305–1309 (1998).

    Article  CAS  Google Scholar 

  37. V. V. Zavyalov, J. S. McMurray, and C. C. Williams, J. Appl. Phys. 85, 7774–7783 (1999).

    Article  CAS  Google Scholar 

  38. J. S. McMurray and C. C. Williams in Characterization and Metrology for ULSI Technology, D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters, Eds., AIP Conf. Proceedings 449, (AIP, New York, 1998), pp. 731–735.

    Google Scholar 

  39. V. V. Zavyalov, J. S. McMurray, and C. C. Williams in Characterization and Metrology for ULSI Technology, D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters, Eds. AIP Conference Proceedings 449 (AIP, New York, 1998), pp. 753–756.

    Google Scholar 

  40. V. V. Zavyalov, J. S. McMurray, and C. C. Williams, Review of Scientific Instruments 70, 158–164 (1999).

    Article  CAS  Google Scholar 

  41. V. V. Zavyalov, J. S. McMurray, S. D. Stirling, C. C. Williams, and H. Smith, J. Vac. Sci. Technol. B 18, 549–554 (2000).

    Article  CAS  Google Scholar 

  42. L. Ciampolini, M. Ciappa, P. Malberti, and W. Fichtner in Proceedings of the 1 st European Workshop on Ultimate Integration of Silicon, Grenoble, France (January 20–21, 2000).

    Google Scholar 

  43. L. Ciampolini, M. Ciappa, P. Malberti, and W. Fichtner in Proceedings of the 3 rd International Conference on Modeling and Simulation of Microsystems, San Diego, CA (March 27–29, 2000).

    Google Scholar 

  44. L. Ciampolini, Scanning Capacitance Microscope Imaging and Modeling, Series in Microelectronics 130, (Hartung-Gorre, Verlag, Konstanz, 2002).

    Google Scholar 

  45. J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Loffler, M. Schatzmayr, and H, Enichlmair, Appl. Phys. Lett. 79, 3162–3164 (2001).

    Article  Google Scholar 

  46. D. Goghero, V. Raineri, and F. Giannazzo, Appl. Phys. Lett. 81, 1824–1826 (2002).

    Article  CAS  Google Scholar 

  47. J. Yang and F. C. J. Kong, Appl. Phys. Lett. 81, 4973–4975 (2002).

    Article  CAS  Google Scholar 

  48. M. N. Chang, C. Y. Chen, F. M. Pan, J. H. Lai, W.W. Wan, and J. H. Liang, Appl. Phys. Lett. 82, 3955–3957 (2003).

    Article  CAS  Google Scholar 

  49. G. H. Buh and J. J. Kopanski, Appl. Phys. Lett. 83, 2486–2488 (2003).

    Article  CAS  Google Scholar 

  50. G. H. Buh, J. J. Kopanski, J. F. Marchiando, A. G. Birdwell, and Y. Kuk, J. Appl. Phys. 94, 2680–2685 (2003).

    Article  CAS  Google Scholar 

  51. Y. Li, J. N. Nxumalo, and D. J. Thomson, J. Vac. Sci. Technol. B 16, 457–462 (1998).

    Article  CAS  Google Scholar 

  52. Scanning Capacitance Microscopy, Support Note No. 224, Rev. B, Digital Instruments Inc., 520 E. Montecito St., Santa Barbara, CA (1996).

    Google Scholar 

  53. D. E. McBride, J. J. Kopanski, and B. J. Belzer in Characterization and Metrology for ULSI Technology 2000, D. G. Seiler, W. M. Bullis, A. C. Diebold, R. McDonald, T. J. Shaffner, P. Smith, and E. M. Secula, Eds., (AIP, New York, 2001), pp. 657–661.

    Google Scholar 

  54. G. D. Wilk and B. Brar, IEEE Electron Dev. Lett. 20, 132–134 (1999).

    Article  CAS  Google Scholar 

  55. J. J. Kopanski, J. F. Marchiando, B. G. Rennex, D. Simons, and Q. Chau, J. Vac. Sci. Technol. B. 22, 399–405 (2004).

    Article  CAS  Google Scholar 

  56. C. C. Williams and J. S. McMurray, Conversion Algorithm and Software for converting Scanning Capacitance Microscopy Data to 2D Dopant Density—DPAK—Version 3.01 (September 2000) is available through the University of Utah Technology Transfer Office.

    Google Scholar 

  57. J. J. Kopanski and J. F. Marchiando in Proceedings of the 29th International Symposium for Testing and Failure Analysis, 2–6 November 2003, Santa Clara, California, pp. 398–405.

    Google Scholar 

  58. J. F. Marchiando and J. J. Kopanski, J. Appl. Phys. 92, 5798–5809 (2003).

    Article  Google Scholar 

  59. R. Stephenson, A. Verhulst, P. DeWolf, M. Caymax, and W. Vandervorst, J. Vac. Sci. Technol. B. 18, 405 (2000).

    Article  CAS  Google Scholar 

  60. F. Giannazzo, L. Calcagnao, V. Raineri, L. Ciampolini, M. Ciappa, and E. Napolitani, Appl. Phys. Lett. 79, 1211–1213 (2001).

    Article  CAS  Google Scholar 

  61. D. M. Schaadt, E. J. Miller, E. T. Yu, and J. M. Redwing, Appl. Phys. Lett. 78, 88–90 (2001).

    Article  CAS  Google Scholar 

  62. K. V. Smith, E. T. Yu, C. R. Elsass, B. Heying, and J. S. Speck, Appl. Phys. Lett. 79, 2749–2751 (2001).

    Article  CAS  Google Scholar 

  63. X. Zhou, E. T. Yu, D. Florescu, J. C. Raner, D. S. Lee, and E. A. Armour, Appl. Phys. Lett. 85, 407–410 (2001).

    Article  Google Scholar 

  64. K. Maknys, O. Douheret, and S. Anand, Appl. Phys. Lett. 83, 4205–4207 (2001).

    Article  Google Scholar 

  65. S. Anand, C. F. Carlström, E. R. Messmer, S. Lourdudoss, and G. Landgren, Appl. Surf. Sci. 144–145, 525–529 (1999).

    Article  Google Scholar 

  66. O. Bowallius, S. Anand, M. Hammar, S. Nilsson, and G. Landgren, Appl. Surf. Sci. 144–145, 137–140 (1999).

    Article  Google Scholar 

  67. S. Anand, IEEE Circuits and Devices 16, 12–18 (2000).

    Article  Google Scholar 

  68. R. C. Barrett and C. F. Quate, J. Appl. Phys. 70, 2725–2733 (1991).

    Article  CAS  Google Scholar 

  69. J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, Z. G. Khim, and S.-I. Park, Appl. Phys. Lett. 75, 1760–1762 (1999).

    Article  CAS  Google Scholar 

  70. C. J. Kang, G. H. Buh, S. Lee, C. K. Kim, K. M. Mang, C. Im, and Y. Kuk, Appl. Phys. Lett. 74, 1815–1817 (1999).

    Article  CAS  Google Scholar 

  71. C. J. Kang, C. K. Kim, Y. Kuk, and C. C. Williams, Appl. Phys. A 66, S415–S419 (1998).

    Article  CAS  Google Scholar 

  72. R. Yamamoto, K. Sanada, and S. Umemura, Jpn. J. Appl. Phys. 35, 5284–5287 (1996).

    Article  CAS  Google Scholar 

  73. H. Tomiye, T. Yao, H. Kawami, and T. Hayashi, Appl. Phys. Lett. 69, 4050–4052 (1996).

    Article  CAS  Google Scholar 

  74. H. Tomiye and T. Yao, Appl. Phys. A 66, S431–S434 (1998).

    Article  CAS  Google Scholar 

  75. M. Dreyer and R. Wiesendanger, Appl. Phys. A 61, 357–362 (1995).

    Google Scholar 

  76. W. K. Chim, K. M. Wong, Y. T. Yeow, Y. D. Hong, Y. Lei, L. W. Teo, and W. K. Choi, IEEE Electron Dev. Lett. 24, 667 (2003).

    Article  CAS  Google Scholar 

  77. Y. D. Hong, Y. T. Yeow, W.-K. Chim, K.-M. Wong, and J. J. Kopanski, IEEE Trans. Electron Dev. 51, 1496–1503 (2004).

    Article  Google Scholar 

  78. J. J. Kopanski, W. R. Thurber, and M. L. Chun, in Interfaces in Electronic Materials, Electrochemical Society Symposium, Orlando, Fla., October 13–16, 2003.

    Google Scholar 

  79. E. M. Vogel, C. A. Richter, and B. G. Rennex, Solid-State Electron. 47, 1589 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kopanski, J.J. (2007). Scanning Capacitance Microscopy for Electrical Characterization of Semiconductors and Dielectrics. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_4

Download citation

Publish with us

Policies and ethics