Skip to main content

Electronic Generators

  • Chapter
Book cover PET

Abstract

In the mid 1970s, when positron emission tomography (PET) was developed as a technology for the noninvasive assessment of various biochemical processes in living humans,1–8 PET radiopharmaceuticals were synthesized manually in relatively low yields and with significant radiation exposure to the personnel.9 Moreover, cyclotron technology appropriate to satisfy the particular demands of this new imaging procedure was not fully developed.10 For widespread use of this technique in research and clinical care, an important technological development was necessary in the areas of cyclotrons, target bodies, and radiosynthesis modules for the production of positron-emitting radiopharmaceuticals.10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction. J Nucl Med. 1975; 16: 210–224.

    PubMed  CAS  Google Scholar 

  2. Phelps ME, Hoffman EJ, Mullani NA, Higgins CS, Ter-Pogossian MM. Design considerations for a positron emission transaxial tomography (PETT III). IEEE Nucl Sci. 1976;NS-23:516–522.

    Google Scholar 

  3. Hoffman EJ, Phelps ME, Mullani NA, Coble CS, Ter-Pogossian MM. Design and performance characteristics of a whole body positron transaxial tomography. J Nucl Med. 1976; 17: 493–502.

    Google Scholar 

  4. Phelps ME. Emission computed tomography. Semin Nucl Med. 1977; 7: 337–365.

    Article  PubMed  CAS  Google Scholar 

  5. Phelps ME, Hoffman EJ, Huang S-C, Kuhl DE. ECAT: A new computerized tomograph imaging system for positron-emitting radiopharmaceuticals. J Nucl Med. 1978; 19: 635–647.

    PubMed  CAS  Google Scholar 

  6. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2–fluoro-2–deoxy-D-glucose: Validation of method. Ann Neurol. 1979; 6: 371–388.

    Article  PubMed  CAS  Google Scholar 

  7. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casalla V, Fowler J, Hoffman E, Mavi A, Som P, Sokoloff L. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979; 44: 127–137.

    Article  PubMed  CAS  Google Scholar 

  8. Phelps ME. Positron computed tomography studies of cerebral glucose metabolism in man: Theory and application in nuclear medicine. Semin Nucl Med. 1981; 11: 32–49.

    Article  PubMed  CAS  Google Scholar 

  9. Proceedings of the Symposium on New Developments in Radiopharmaceuticals and Labeled Compounds. Vol. I and II. International Atomic Energy Agency, Vienna, Austria, 1973.

    Google Scholar 

  10. Phelps ME, Hoffman EJ. Role of cyclotrons and positron imaging in the future of nuclear medicine. In: Serafini AN, Beaver JE, eds. Medical Cyclotrons in Nuclear Medicine. Progress in Nuclear Medicine. Vol. 4. Basel: S. Karger; 1978: 165–183.

    Google Scholar 

  11. Tilyou SM. Yesterday, today and tomorrow-The evolution of positron emission tomography. J Nucl Med. 1991; 32: 15N - 26N.

    PubMed  CAS  Google Scholar 

  12. Livingston MS. High-energy Accelerators. New York: Interscience Publishers, Inc.; 1954.

    Google Scholar 

  13. Evans RD. The Atomic Nucleus. New York: McGraw-Hill Book Company, Inc.; 1955.

    Google Scholar 

  14. Livingston MS. Particle Accelerators: A Brief History. Cambridge: Harvard University Press; 1969.

    Google Scholar 

  15. Livingston MS, Blewett JP. Particle Accelerators. New York: McGraw-Hill Book Cornpany, Inc.; 1962.

    Google Scholar 

  16. Livingood JJ. Principles of Cyclic Particle Accelerators. Princeton, NJ: D. Van Nostrand Company, Inc.; 1961.

    Google Scholar 

  17. Persico E, Ferrari E, Segre SE. Principles of Particle Accelerators. New York: W.A. Benjamin, Inc.; 1968.

    Google Scholar 

  18. Kolomensky AA, Lebedev AN. Theory of Cyclic Accelerators. Amsterdam: North-Holland Publishing Company; 1966.

    Google Scholar 

  19. Kollath R, ed. Particle Accelerators. London: Sir Isaac Pitman and Sons Ltd.; 1967.

    Google Scholar 

  20. Scharf W. Particle Accelerators and Their Uses. Part I. Chur: Harwood Academic Publishers; 1986.

    Google Scholar 

  21. Humphries S Jr. Principles of Charged Particle Acceleration. New York: John Wiley liu Sons; 1986.

    Google Scholar 

  22. Conte M, Mackay WW. An Introduction to the Physics of Particle Accelerators. Singapore: World Scientific; 1991.

    Google Scholar 

  23. Wolf AP, Jones WB. Cyclotrons for biomedical radioisotope production. Radiochim Acta. 1983; 34: 1–7.

    CAS  Google Scholar 

  24. Comar D, Crouzel C. Biomedical cyclotrons for radioisotope production. Nucl Med Biol. 1986; 13: 101–107.

    CAS  Google Scholar 

  25. Hoop B Jr, Laughlin JS, Tilbury RS. Cyclotrons in nuclear medicine. In: Hine GJ, Sorensen JA, eds. Instrumentation in Nuclear Medicine. Part 2. New York: Academic Press; 1974: 407–457.

    Google Scholar 

  26. Wolf AP, Schlyer DJ. Accelerators for positron emission tomography. In: Burns HD, Gibson RE, Dannals RF, Siegel PKS, eds. Nuclear Imaging in Drug Discovery, Development, and Approval. Boston: Birkhauser; 1993: 33–54.

    Chapter  Google Scholar 

  27. Fowler JS, Wolf AP. Positron emitter-labeled compounds: Priorities and problems. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press; 1986: 391–450.

    Google Scholar 

  28. Glasstone S. Source Book on Atomic Energy. New York: Van Nostrand Reinhold Company; 1967.

    Google Scholar 

  29. White HE. Introduction to College Physics. New York: Van Nostrand Reinhold Company; 1969.

    Google Scholar 

  30. Paul AC. Variable Energy Extraction from a Negative Ion Cyclotron and Related Measurements. Ph.D. Dissertation; University of California, Los Angeles; 1967.

    Google Scholar 

  31. Paul AC, Wright BT. Variable energy extraction from negative ion cyclotrons. IEEE Trans Nucl Sci. 1966;NS-13:74–83.

    Google Scholar 

  32. Richardson JR, Wright BT. The UCLA SF cyclotron; Progress and status, January 1966. IEEE Trans Nucl Sci 1966;NS-13:495–499.

    Google Scholar 

  33. Lofgren EJ. Negative ions and charge neutralization in the cyclotron. Rev Sci Instr. 1951; 22: 321–323.

    Article  CAS  Google Scholar 

  34. Judd DL. Electric dissociation of negative hydrogen ions in cyclotrons and synchrocyclotrons. Nucl Instr Meth. 1962;18,19:70–73.

    Google Scholar 

  35. Forrester AT. Large Ion Beams. Fundamentals of Generation and Propagation. New York: Wiley-Interscience Publication; 1988.

    Google Scholar 

  36. Weast RC, ed. CRC Handbook of Chemistry and Physics. 61st ed. Boca Raton: CRC Press, Inc.; 1980.

    Google Scholar 

  37. MacDonald NS. The UCLA biomedical cyclotron facility. In: Serafini AN, Beaver JE, eds. Medical Cyclotrons in Nuclear Medicine. Progress in Nuclear Medicine. Vol. 4. Basel: S. Karger; 1978; 23–27.

    Google Scholar 

  38. Ter-Pogossian MM, Wagner HN Jr. A new look at the cyclotron for making short-lived isotopes. Semin Nucl Med. 1998; 28: 202–212.

    Article  PubMed  CAS  Google Scholar 

  39. Wagner HN Jr. A brief history of positron emission tomography (PET). Semin Nucl Med. 1998; 28: 213–220

    Article  PubMed  Google Scholar 

  40. Friesel DL, Smith W. Medical applications at the Indiana University cyclotron facility. In: Serafini AN, Beaver JE, eds. Medical Cyclotrons in Nuclear Medicine. Progress in Nuclear Medicine. Vol. 4. Basel: S. Karger; 1978; 63–71.

    Google Scholar 

  41. Robinson GD Jr. Cyclotron-related radiopharmaceutical development program at UCLA. In: Serafini AN, Beaver JE, eds. Medical Cyclotrons in Nuclear Medicine. Progress in Nuclear Medicine. Vol. 4. Basel: S. Karger; 1978; 80–92.

    Google Scholar 

  42. Sodd VJ. The cyclotron: Past, present, and future role in nuclear medicine. In: Freeman LM, Weissman HS, eds. Nuclear Medicine Annual 1982. New York: Raven Press; 1982; 291–317.

    Google Scholar 

  43. Ehrenkaufer R, Erdman K. Accelerators. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 23–25.

    Google Scholar 

  44. Shefer RE, Klinkowstein RE, Hughey BJ, Welch MJ. Production of PET radionuclides with a high current electrostatic accelerator. In: Weinreich R, ed. Proceedings of the IVth International Workshop on Targetry and Target Chemistry. Villigen: Paul Scherrer Institut; 1992; 4–10.

    Google Scholar 

  45. Wangler TP, Cimabue AG, Merson J, Mills RS, Wood RL, Young LM. Superconducting RFQ linear accelerator. Nucl Instr Meth. 1993; B79: 718–720.

    Article  Google Scholar 

  46. Krohn KA, Link JM, Young P, Hagan WK, Pasquinelli R, Chrisman B, Bida GT. 3He RFQ for PET isotope production. A brief progress report, August 1995. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 38–39.

    Google Scholar 

  47. Robinson GD Jr. Status of AccSys Technology’s PULSAR“ System. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 34–36.

    Google Scholar 

  48. Swenson DA. Compact proton linac systems for medical and industrial applications. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 42–44.

    Google Scholar 

  49. Webster W. NHVG: A compact direct current accelerator. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 28–30.

    Google Scholar 

  50. Roberts AD, Nickles RJ, Davidson RJ. The UW Pelletron lab: PET radioisotope production with the NEC 9SDH tandem accelerator. In: Zeisler S, Helus F, eds. Proceedings of the Seventh International Workshop on Targetry and Target Chemistry. Heidelberg: German Cancer Research Center (DKFZ); 1997; 42–43.

    Google Scholar 

  51. Friedlander A, Kennedy JW, Macias ES, Miller JM. Nuclear and Radiochemistry. 3rd ed. New York: John Wiley liu Sons; 1981.

    Google Scholar 

  52. Browne E, Firestone RB. Table of Radioactive Isotopes. New York: John Wiley liu Sons; 1986.

    Google Scholar 

  53. Keller KA, Lange J, Munzel H. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology. Group I: Nuclear and Particle Physics. Vol. 5: Q-values and Excitation Functions of Nuclear Reactions. Part C: Estimation of Unknown Excitation Functions and Thick Target Yields for p, d, ’He and cr Reactions. Berlin: Springer-Verlag; 1974.

    Google Scholar 

  54. Helus F, Wolber G. Activation techniques. In: Helus F, Colombetti LG, eds. Radionuclides Production. Vol. I. Boca Raton: CRC Press, Inc.; 1983; 57–120.

    Google Scholar 

  55. Wieland BW, Highfill RR. Proton accelerator targets for the production of“C, 73N, 150, and 18F. IEEE Trans Nucl Sci. 1979; N5–26: 1713–1717.

    Google Scholar 

  56. Qaim SM. Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim Acta. 1982; 30: 147–162.

    CAS  Google Scholar 

  57. Williamson C, Boujot J, Picard J. Range-energy tables for charged particles. Centre D’Etudes Nucléaires de Saclay, Report No. CES-R3042; 1966.

    Google Scholar 

  58. Janni JF. Calculations of energy loss, range, path length, straggling, multiple scattering, and the probability of inelastic nuclear collisions for 0.1 to 1000–MeV protons. Technical Report No. AFWL-TR-65–150. Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico; 1966.

    Google Scholar 

  59. Gandarias-Cruz D, Okamoto K. Status on the compilation of nuclear data for medical radioisotopes produced by accelerators. IAEA Nuclear Data Section. Vienna; 1988.

    Google Scholar 

  60. Vaalburg W, Paans AMJ. Short-lived positron emitting radionuclides. In: Helus F, Colombetti LG, eds. Radionuclides Production. Vol. II. Boca Raton: CRC Press, Inc.; 1983; 47–101.

    Google Scholar 

  61. Nozaki T. Other cyclotron radionuclides. In: Helus F, Colombetti LG, eds. Radionuclides Production. Vol. II. Boca Raton: CRC Press, Inc.; 1983; 103–124.

    Google Scholar 

  62. Clark JC, Buckingham PD. Short-lived Radioactive Gases for Clinical Use. London: Butterworths; 1975.

    Google Scholar 

  63. Wieland BW, Schmidt DG, Bida GT, Ruth TJ, Hendry GO. Efficient and economical production of oxygen-15 labeled tracers with low energy protons. J Label Compd Radiopharm. 1986; 23: 1214–1216.

    Google Scholar 

  64. Wieland BW, Hendry GO, Schmidt DG. Design and performance of targets for producing 11C ‘3N 150 and 18F with 11 MeV protons. JLabel Compd Radiopharm. 1986; 23: 1187–1189.

    Google Scholar 

  65. Wieland BW, Hendry GO, Schmidt DG, Bida GT, Ruth TJ. Efficient small volume 180 water target for producing 18F-fluoride with low energy protons. J Label Compd Radiopharm. 1986; 23: 1205–1207.

    Google Scholar 

  66. Qaim SM, Clark JC, Crouzel C, Guillaume M, Helmeke HJ, Nebeling B, Pike VW, Stock-lin G. PET radionuclide production. In: Stocklin G, Pike VW, eds. Radiopharmaceuticals for Positron Emission Tomography. Methodological Aspects. Dordrecht: Kluwer Academic Publishers; 1993; 1–42.

    Google Scholar 

  67. Alvord CW, Zigler SS. Target systems for the RDS-111 cyclotron. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 155–161.

    Google Scholar 

  68. Schlyer DJ, Bastos MAV, Alexoff D, Wolf AP. Separation of [18F]fluoride from [18O]water using anion exchange resin. Appl Radiat Isot. 1990; 41: 531–533.

    Article  CAS  Google Scholar 

  69. Nickles RJ, Daube ME, Ruth TJ. An 180 target for the production of [18F]F2. Int JAppl Radiat Isot. 1984; 35: 117–122.

    Article  CAS  Google Scholar 

  70. Goodman MM. Automated synthesis of radiotracers for PET applications. In: Hubner KL, Collmann J, Buonocore E, Kabalka G, eds. Clinical Positron Emission Tomography. St. Louis: Mosby Year Book; 1992; 110–122.

    Google Scholar 

  71. Tilbery RS, Gelbard AS. 11C 13N, and 150 tracers. In: Rayudu GVS, ed. Radiotracers for Medical Applications. Vol. I. Boca Raton: CRC Press, Inc.; 1983; 275–291.

    Google Scholar 

  72. Clark JC. Production and application of oxygen-15; Radiopharmacy aspects. In: Schubiger PA, Westera G, eds. Progress in Radiopharmacy. Dordrecht: Kluwer Academic Publishers; 1992; 91–107.

    Google Scholar 

  73. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle J-L, Verbruggen R, Ghyoot M. In-target production of [13N]ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Appl Radiat Isot. 1991; 42: 1095–1098.

    Article  CAS  Google Scholar 

  74. Baumgartner FJ, Barrio JR, Henze E, Schelbert HR, MacDonald NS, Phelps ME, Kuhl DE. 13N Labeled L-amino acids for in vivo quantitative assesment of local myocardial metabolism. J Med Chem. 1981; 24: 764–766.

    Article  PubMed  CAS  Google Scholar 

  75. Henze E, Schelbert HR, Barrio JR, Egbert JE, Hansen HW, MacDonald NS, Phelps ME. Evaluation of myocardial metabolism with N-13 and C-11 labeled amino acids for positron computed tomography. J Nucl Med. 1982; 23: 671–681.

    PubMed  CAS  Google Scholar 

  76. Langstrom B, Dannals RF. Carbon-I1 compounds. In: Wagner HN Jr, Szabo Z, Buchanan JW, eds. Principles of Nuclear Medicine. 2nd ed. Philadelphia: W.B. Saunders Company; 1995; 166–178.

    Google Scholar 

  77. Larsen P, Ulin J, Dahlstrom K, Jensen M. Synthesis of [11C]iodomethana by iodination of [11C] methane. Appl Radiat Isot. 1997; 48: 153–157.

    Article  CAS  Google Scholar 

  78. Link JM, Krohn KA, Clark JC. Production of [11C]CH3I by single pass reaction of [I1C]CH4 with I2. Nucl Med Biol. 1997; 24: 93–97.

    Article  PubMed  CAS  Google Scholar 

  79. Jewett DM. A simple synthesis of [11C]methyl triflate. Appl Radiat Isot. 1992; 43: 1383 1385.

    Google Scholar 

  80. O’Hagan D, Rzepa HS. Some influences of fluorine in bioorganic chemistry. Chem Commun. 1997; 645–652.

    Google Scholar 

  81. Welch JT, Eswarakrishnan S. Fluorine in Bioorganic Chemistry. New York: John Wiley liu Sons; 1991.

    Book  Google Scholar 

  82. Zielinski M, Kanska M. Syntheses and uses of isotopically labelled organic halides. In: Patai S, Rappoport Z, eds. The Chemistry of Halides, Pseudo-halides and Azides. Supplement D2. Part 1. Chichester: John Wiley liu Sons; 1995; 403–533.

    Chapter  Google Scholar 

  83. Ido T, Wan C-N, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE. Labeled 2–deoxyD-glucose analogs. 18F-Labeled 2–deoxy-2–fluoro-D-glucose, 2–deoxy-2–fluoro-D-mannose and 14C-2–deoxy-2–fluoro-D-glucose. J Label Compd Radiopharm. 1978; 14: 175–183.

    Article  CAS  Google Scholar 

  84. Bishop A, Satyamurthy N, Bida G, Hendry G, Phelps M, Barrio JR. Proton irradiation of [180]02: Production of [18F]F2 and [18F]F2 + [18F]OF2. Nucl Med Biol. 1996; 23: 189199.

    Google Scholar 

  85. Fowler JS, Wolf AP. The Synthesis of Carbon-11, Fluorine-18 and Nitrogen-13 Labeled Radiotracers for Biomedical Applications. Publication: NAS-NS-3201. Virginia: National Technical Information Service; 1982.

    Google Scholar 

  86. Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F]Fluoro-N-alkylsulfonamides. Novel reagents for mild and regioselective radiofluorination. Appl Radiat Inst. 1990; 41: 733–738.

    Article  CAS  Google Scholar 

  87. Stocklin G. Fluorine-18 compounds. In: Wagner HN Jr, Szabo Z, Buchanan JW, eds. Principles of Nuclear Medicine. 2nd ed. Philadelphia: W.B. Saunders Company; 1995;178194.

    Google Scholar 

  88. Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, Phelps ME, Satyamurthy N. Synthesis of 8–[18F]fluoroguanine derivatives: In vivo probes for imaging gene expression with positron emission tomography. Nucl Med Biol. 2000; 27: 157–162.

    Article  PubMed  CAS  Google Scholar 

  89. Kilbourn MR. Fluorine-18 Labeling of Radiopharmaceuticals. Nuclear Science Series NASNS-3203. Washington, D.C. National Academy Press; 1990.

    Google Scholar 

  90. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrieradded 2–[18F]-fluoro-2–deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986; 27: 235–238.

    PubMed  CAS  Google Scholar 

  91. Alauddin MM, Conti P. Synthesis and preliminary evaluation of 9–(4–[18F]fluoro-3–hydroxymethylbutyl)guanine([18F]FHBG): A new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998; 25: 175–180.

    Article  PubMed  CAS  Google Scholar 

  92. Grierson JR, Shields AF. Radiosynthesis of 3’-deoxy-3’-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol. 2000; 27: 143–156.

    Article  PubMed  CAS  Google Scholar 

  93. De Grado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, Polascik TJ, Price DT. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: Intial findings in prostate cancer. Cancer Res. 2000; 61: 110–117.

    Google Scholar 

  94. Coleman RE. Clinical PET: A technology on the brink. J Nucl Med. 1993; 34: 2269–2271.

    PubMed  CAS  Google Scholar 

  95. Deutsch E. Clinical PET: Its time has come? J Nucl Med. 1993; 34: 1132–1133.

    PubMed  CAS  Google Scholar 

  96. Food and Drug Administration Modernization Act of 1997. Public Law 105–115–Nov. 21, 1997.

    Google Scholar 

  97. Crouzel C, Clark JC, Brihaye C, Langstrom B, Lemaire C, Meyer GJ, Nebeling B, StoneElander S. Radiochemistry automation for PET. In: Stocklin G, Pike VW, eds. Radio-pharmaceuticals for Positron Emission Tomography. Methodological Aspects. Dordrecht: Kluwer Academic Publishers; 1993; 45–79.

    Google Scholar 

  98. Foust AS, Wenzel LA, Clump CW, Maus L, Andersen LB. Principles of Unit Operations. 2nd ed. New York: John Wiley liu Sons; 1980.

    Google Scholar 

  99. McCabe WL, Smith JC, Harriott P. Unit Operations of Chemical Engineering. 5th ed. New York: McGraw-Hill, Inc.; 1993.

    Google Scholar 

  100. Hayashi N, Sugawara T, Shintani M, Kato S. Computer-assisted automatic synthesis II. Development of a fully automated apparatus for preparing substituted N- (carboxyalkyl) amino acids. JAutomatic Chem. 1989; 11: 212–220.

    Article  CAS  Google Scholar 

  101. Hayashi N, Sugawara T, Kato S. Computer-assisted automatic synthesis III. Synthesis of substituted N- (carboxyalkyl) amino acid tert-butyl estser derivatives. JAutomatic Chem. 1991; 13: 187–197.

    Article  CAS  Google Scholar 

  102. Sugawara T, Kato S, Okamoto S. Development of fully-automated synthesis systems. JAutomatic Chem. 1994; 16: 33–42.

    Article  CAS  Google Scholar 

  103. Frisbee AR, Nantz MH, Kramer GW, Fuchs PL. Robotic orchestration of organic reactions: Yield optimization via an automated system with operator-specified reaction sequences. JAm Chem Soc. 1984; 106: 7143–7145.

    Article  CAS  Google Scholar 

  104. Merrifield RB, Stewart JM, Jernberg N. Instrument for automated synthesis of peptides. Anal Chem. 1966; 38: 1905–1914.

    Article  PubMed  CAS  Google Scholar 

  105. Erickson BW, Lukas TJ, Prystowsky MB. Automated solid-phase peptide synthesis. In: Beers RF. Jr, Bassett EG, eds. Polypeptide Hormones New York: Raven Press; 1980;121134.

    Google Scholar 

  106. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981; 256: 7990–7997.

    PubMed  CAS  Google Scholar 

  107. Efcavitch JW. Automated system for the optimized chemical synthesis of oligodeoxyribonucleotides. In: Schlesinger DH, ed. Macromolecular Sequencing and Synthesis. Selected Methods and Applications. New York: Alan R. Liss; 1988; 221–234.

    Google Scholar 

  108. Meldrum D. Automation for genomics, part one: Preparation for sequencing. Genome Res. 2000; 10: 1081–1092.

    Article  Google Scholar 

  109. Plummer GF, Waterworth G, Roberts W. Six years of robots. JAutomatic Chem. 1991; 13: 29–37.

    Article  CAS  Google Scholar 

  110. Weinstein DB, France DS. Jumping into the 20th century before it is too late: Is laboratory robotics still in its infancy? J Automatic Chem. 1992; 14: 59–63.

    Article  CAS  Google Scholar 

  111. McGonagle EJ. Practical aspects of laboratory automation in pharmaceutical development. J Automatic Chem. 1993; 15: 3–8.

    Article  Google Scholar 

  112. Rulon PW. Selection criteria for laboratory robotic application personnel. J Automatic Chem. 1992; 14: 51–53.

    Article  CAS  Google Scholar 

  113. Hutchins B. Robotic applications: lessons on what constitutes success. JAutomatic Chem. 1991; 13: 9–12.

    Article  CAS  Google Scholar 

  114. Barrio JR, MacDonald NS, Robinson GD Jr, Najafi A, Cook JS, Kuhl DE. Remote, semi-automated production of 18F-labeled 2–deoxy-2–fluoro-D-glucose. J Nucl Med. 1981; 22: 372–375.

    PubMed  CAS  Google Scholar 

  115. Padgett HC, Barrio JR, MacDonald NS, Phelps ME. The unit operations approach applied to the synthesis of [1–11C]2–deoxy-D-glucose for routine clinical operations. JNucl Med. 1982; 23: 739–744.

    Google Scholar 

  116. Padgett HC, Robinson GD, Barrio JR. [1–11C]Palmitic acid: Improved radiopharmaceutical preparation. Int J Appl Radiat Isot. 1982; 33: 1471–1472.

    Article  PubMed  CAS  Google Scholar 

  117. Barrio JR, Keen RE, Ropchan JR, MacDonald NS, Baumgartner FJ, Padgett HC, Phelps ME. L-[1–11C]Leucine: Routine synthesis by enzymatic resolution. JNucl Med. 1983; 24: 515–521.

    CAS  Google Scholar 

  118. Ropchan JR, Ricci A, Low G, Phelps ME, Barrio JR. An automated high pressure vessel for routine preparation of short-lived radiopharmaceuticals. Appl Radiat Isot. 1986; 37: 1063–1068.

    Article  CAS  Google Scholar 

  119. Luxen A, Perlmutter M, Bida GT, Van Moffaert G, Cook JS, Satyamurthy N, Phelps ME, Barrio JR. Remote semiautomated production of 6–[18F]fluoro-L-dopa for human studies with PET. Appl Radiat Isot. 1990; 41: 275–281.

    Article  CAS  Google Scholar 

  120. Satyamurthy N, Namavari M, Barrio JR. Making 18F radiotracers for medical research. Chemtech 1994; 24: 25–32.

    CAS  Google Scholar 

  121. Barrio JR, Bida G, Satyamurthy N, Padgett HC, MacDonald NS, Phelps ME. A minicyclotron-based technology for the production of positron-emitting labeled radiopharmaceuticals. In: Greitz T, Ingvar DH, Widen L, eds. The Metabolism of the Human Brain Studied with Positron Emission Tomography. New York: Raven Press; 1985; 113–121.

    Google Scholar 

  122. Padgett HC, Schmidt DG, Luxen A, Bida GT, Satyamurthy N, Barrio JR. Computer-controlled radiochemical synthesis: A chemistry process control unit for the automated production of radiochemicals. Appl Radiat Isot. 1989; 40: 433–445.

    Article  CAS  Google Scholar 

  123. Morelle J-L. Coincidence technologies. Liege, Belgium. Private communication.

    Google Scholar 

  124. PET Trace Synthesizer Modules and PET Laboratory Equipment. Product information. Nuclear Interface, Munster, Germany.

    Google Scholar 

  125. Zhang ZY, Kabalka GW, Longford CPD, Padgett HC, Zigler SS. Automated production of 6—[18F]fluoro-L-dopa in a commercially available chemistry module. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 305–306.

    Google Scholar 

  126. Dessy R. Robots in the laboratory: Part I. Anal Chem. 1983; 55: 1100A - 1114A.

    Article  Google Scholar 

  127. Dessy R. Robots in the laboratory: Part II. Anal Chem. 1983; 55: 1232A - 1242A.

    Article  Google Scholar 

  128. Mackay DG, Steel CJ, Poole K, McKnight S, Schmitz F, Ghyoot M, Vebruggen R, Vamecq F, Jongen Y. Quality assurance for PET gas production using the cyclone 3D oxygen-15 generator. Appl Radiat Isot. 1999; 51: 403–409.

    Article  CAS  Google Scholar 

  129. de Vries EFJ, Luurtsema G, Brussermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6– [18F] fluoro-L-DOPA. Appl Radiat Isot. 1999; 51: 389–394.

    Article  Google Scholar 

  130. Silberstein EB, Pharmacopeia Committee of the Society of Nuclear Medicine. Prevalence of adverse reactions to positron emitting radiopharmaceuticals in nuclear medicine. J Nucl Med. 1998; 39: 2190–2192.

    Google Scholar 

  131. Terrett NK. Combinatorial Chemistry. Oxford: Oxford University Press; 1998.

    Google Scholar 

  132. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ. Efficient production of high specific activity “Cu using a biomedical cyclotron. Nucl Med Biol. 1997; 24: 35–43.

    Article  PubMed  CAS  Google Scholar 

  133. Vaidyanathan G, Wieland BW, Larsen RH, Zweit, J, Zalutsky MR. High-yield production of iodine-124 using the 125Te (p, 2n) 1241 reaction. In: Link JM, Ruth TJ, eds. Proceedings of the Sixth Workshop on Targetry and Target Chemistry. Vancouver: TRIUMF; 1995; 87–88.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Satyamurthy, N. (2004). Electronic Generators. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics