[1]
J.
Adam
and N.
Bellomo,
A survey of models for tumor-immune system dynamics, Birkhauser, Boston, 1997.
MATH[2]
A. Adamatzky and O. Holland,
Phenomenology of excitation in 2-D cellular automata and swarm systems, Chaos Solitons Fractals,
9 (1998), pp. 1233–1265.
MathSciNetMATH [3]
M. Alber and M. Kiskowski,
On aggregation in CA models in biology, J. Phys. A: Math. Gen.,
34 (2001), pp. 10707–10714.
MathSciNetMATH [4]
M. Alber, M. Kiskowski, and Y. Jiang, A model of rippling and aggregation in Myxobacteria, 2002 preprint.
[5]
B. Alberts, M. Raff, J. Watson, K. Roberts, D. Bray, and J. Lewis, Molecular biology of the cell, 3rd edition. Garland Publishing, NY, 1994.
[6]
J. Ashkin and E. Teller, Statistics of two-dimensional lattices with four components, Phys. Rev., 64 (1943), pp. 178–184.
[7]
E. Ben-Jacob, I. Cohen, A. Czirk, T. Vicsek, and D.L. Gutnick, Chemo-modulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development, Physica A, 238 (1997), pp. 181–197.
[8]
E. Ben-Jacob and H. Levine, The artistry of microorganisms, Scientific American, 279 (1998), pp. 82–87.
[9]
E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorganisms, Advances in Physics, 49 (2000), pp. 395–554.
[10]
L. Besseau and M. Giraud-Guille, Stabilization of ßuid cholesteric phases of collagen to ordered gelated matrices, J. Mol. Bio., 251 (1995), pp. 137–145.
[11]
D. Beysens, G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97 (2000) pp. 9467–9471.
[12]
H. Bode, K. Flick, and G. Smith, Regulation of interstitial cell-differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell-population size, J. Cell Sci., 20 (1976), pp. 29–46.
[13]
E. Bonabeau, M. Dorigo, and G. Theraulaz,
Swarm intelligence: From natural to artificial systems, Oxford University Press, NY, 1999.
MATH [14]
J. Boon., D. Dab, R. Kapral, and A. Lawniczak,
Lattice gas automata for relative systems, Physics Reports,
273 (1996), pp. 55–147.
MathSciNet [15]
U. Börner, A. Deutsch, H. Reichenbach, and M. Bar, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, 2002 preprint.
[16]
H. Bussemaker, A. Deutsch, and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion, Phys. Rev. Lett., 78 (1997), pp. 5018–5027.
[17]
M. Caterina and P. Devreotes, Molecular insights into eukaryotic Chemotaxis, FASEB J., 5 (1991), pp. 3078–3085.
[18]
S. Chen, S.P. Dawson, G.D. Doolen, D.R. Janecky, and A. Lawniczak, Lattice methods and their applications to reacting systems. Computers & Chemical Engineering, 19 (1995), pp. 617–646.
[19]
B. Chopard and M. Droz,
Cellular automata modeling of physical systems, Cambridge University Press, NY, 1998.
MATH [20]
L Cohen, LG. Ron, and E. Ben-Jacob, From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria, Physica A, 286 (2000), pp. 321–336.
[21]
J. Cook,
Waves of alignment in populations of interacting, oriented individuals. Forma,
10 (1995), pp. 171–203.
MathSciNetMATH [22]
J. Cook, A. Deutsch, and A. Mogilner, Models for spatio-angular self-organization in cell biology, in W. Alt, A. Deutsch and G. Dunn (Eds.) Dynamics of cell and tissue motion, Birkhuser, Basel, Switzerland, 1997, pp. 173–182.
[23]
M. Cross and P. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), pp. 851–1112.
[24]
A. Czirok, A. L. Barabasi, and T. Vicsek, Collective motion of organisms in three dimensions, Phys. Rev. Lett., 82 (1999), pp. 209–212.
[25]
J. Dallon and J. Sherratt,
A mathematical model for spatially varying extra cellular matrix alignment, SIAM J. Appl. Math.,
61 (2000), pp. 506–527.
MathSciNetMATH [26]
L.A. Davidson, M.A.R. Koehl, R. Keller, and G.F. Oster, How do sea-urchins invaginate — Using biomechanics to distinguish between mechanisms of primary invagination, Development, 121 (1995), pp. 2005–2018.
[27]
A.M. Delprato, A. Samadani, A. Kudrolli, and L.S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 87 (2001), 158102.
[28]
A. Deutsch, Towards analyzing complex swarming patterns in biological systems with the help of lattice-gas automaton model, J. Biol. Syst., 3 (1995), pp. 947–955.
[29]
A. Deutsch,
Orientation-induced pattern formation: Swarm dynamics in a lattice-gas automaton model. Int. J. Bifurc. Chaos,
6 (1996), pp. 1735–1752.
MATH [30]
A. Deutsch, Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena, J. Biosc., 24 (1999), pp. 115–120.
[31]
A. Deutsch,
Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics, Mathematical Biosciences,
156 (1999), pp. 255–269.
MathSciNetMATH [32]
A. Deutsch,
A new mechanism of aggregation in a lattice-gas cellular automaton model. Mathematical and Computer Modeling,
31 (2000), pp. 35–40.
MathSciNetMATH [33]
A. Deutsch and S. Dormann, Cellular automata and biological pattern formation modeling, 2002 preprint.
[34]
S. Dormann, Pattern formation in cellular automation models, Dissertation, Angewandte Systemwissenschaft FB Mathematik/Informatik, Universität Osnabrück, Austria, 2000.
[35]
S. Dormann, A. Deutsch, and A. Lawniczak,
Fourier analysis of Turing-like pattern formation in cellular automaton models. Future Computer Generation Systems,
17 (2001), pp. 901–909.
MATH [36]
S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, Silico Biology, 2 (2002), 0035.
[37]
D. Drasdo and G. Forgacs, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Developmental Dynamics, 219 (2000), pp. 182–191.
[38]
M. Dworkin and D. Kaiser, Myxobacteria II, American Society for Microbiology, Washington, DC, 1993.
[39]
M. Dworkin
Recent advances in the social and developmental biology of the myxobacteria, Microbiol. Rev., 60 (1996), pp. 70–102.
[40]
M. Eden, Vol. 4: Contributions to biology and problems of medicine, in J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium in Mathematics, Statistics and Probability, University of California Press, Berkeley, 1961, pp. 223–239.
[41]
R. Engelhardt, Modeling pattern formation in reaction diffusion systems. Master’s Thesis, Dept. of Chemistry, University of Copenhagen, Denmark, 1994.
[42]
G. Ermentrout and L. Edelstein-Keshet, Cellular automata approach in biological modeling, J. Theor. Biol., 160 (1993), pp. 97–133.
[43]
S.E. Esipov and J.A. Shapiro,
Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol.,
36 (1998), pp. 249–268.
MathSciNetMATH [44]
M. Fontes and D. Kaiser, Myxococcus cells respond to elastic forces in their substrate, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 8052–8057.
[45]
G. Forgacs, R. Foty, Y. Shafrir, and M. Steinberg, Viscoelastic properties of living embryonic tissues: a quantitative study, Biophys. J., 74 (1998), pp. 2227–2234.
[46]
R. Foty, G. Forgacs, C. Pfleger, and M. Steinberg, Liquid properties of embryonic tissues: measurements of interfacial tensions, Phys. Rev. Lett., 72 (1994), pp. 2298–2300.
[47]
R. Foty, C. Pfleger, G. Forgacs, and M. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, 122 (1996), pp. 1611–1620.
[48]
J. Freyer and R. Sutherland, Selective dissociation and characterization of cells from different regions of multicell spheroids during growth. Cancer Research, 40 (1980), pp. 3956–3965.
[49]
J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/RO multicellular spheroids induced by the glucose and oxygen supply. Cancer Research, 46 (1986), pp. 3504–3512.
[50]
M. Gardner, The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American, 223 (1970), pp. 120–123.
[51]
F. Gianocotti, Integrin-signaling: specificity and control of cell survival and cell cycle progression, Curr. Opin. Cell Biol, 9 (1997), pp. 691–700.
[52]
J.A. Glazier, Dynamics of cellular patterns, Ph.D. Thesis, The University of Chicago, USA, 1989.
[53]
J.A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47 (1993), pp. 2128–2154.
[54]
D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature, 395 (1998), pp. 387–391.
[55]
I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Studies of bacterial branching growth using reaction-diffusion models for colonial development, Physica A, 260 (1998), pp. 510–554.
[56]
A. Gonzalez-Reyes and D. St. Johnston, Patterning of the follicle cell epithe lium along the anterior-posterior axis during Drosophila oogenesis. Development, 125 (1998), pp. 2837–2846.
[57]
F. Graner and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional Extended Potts Model, Phys. Rev. Lett., 69 (1992), pp. 2013–2016.
[58]
J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A, 13 (1976), pp. 1949–1961.
[59]
P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation, J. Theor. Biol., 203 (2000), pp. 317–333.
[60]
P. Hogeweg, Shapes in the shadow: Evolutionary dynamics of morphogenesis, Artificial Life, 6 (2000), pp. 611–648.
[61]
E. Holm, J.A. Glazier, D. Srolovitz, and G. Crest, Effects of lattice anisotropy and temperature on domain growth in the 2-dimensional Potts model, Phys. Rev. A, 43 (1991), pp. 2262–2268.
[62]
A. Howe, A. Aplin, S. Alahari, and R. Juliano, Integrin signaling and cell growth control, Curr. Opin. Cell Biol., 10 (1998), pp. 220–231.
[63]
O. Igoshin, A. Mogilner, D. Kaiser, and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14913–14918.
[64]
L. Jelsbak and L. Sogaard-Andersen, The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis, Devel. Bio, 96 (1998), pp. 5031–5036.
[65]
L. Jelsbak and L. Sogaard-Andersen, Pattern formation: Fruiting body morphogenesis in Myxococcus xanthus. Current Opinion in Microbiology, 3 (2000), pp. 637–642.
[66]
Y. Jiang and J.A. Glazier, Extended large-Q Potts model simulation of foam drainage, Philos. Mag. Lett., 74 (1996), pp. 119–128.
[67]
Y. Jiang, Cellular pattern formation, Ph.D. Thesis, University of Notre Dame, USA, 1998.
[68]
Y. Jiang, H. Levine, and J.A. Glazier, Possible cooperation of differential adhesion and Chemotaxis
in mound formation of Dictyostelium, Biophys. J., 75 (1998), pp. 2615–2625.
[69]
B. Julien, D. Kaiser, and A. Garza, Spatial control of cell differentiation in Myxococcus xanthus, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9098–9103.
[70]
L.P. Kadanoff, G.R. McNamara, and G. Zanetti, From automata to fluid-flow-Comparisons óf
simulation and theory, Phys. Rev. A, 40 (1989), pp. 4527–4541.
[71]
D. Kaiser,
How and why myxobacteria talk to each other, Current Opinion in Microbiology,
1 (1998), pp. 663–668.
MathSciNet [72]
D. Kaiser, Intercellular signaling for multicellular morphogenesis, Society for General Microbiology Symposium 57, Cambridge University Press, Society for General Microbiology Ltd., UK, 1999.
[73]
A. Kansal, S. Torquato, E. Chiocca, and T. Deisboeck, Emergence of a sub-population in a computational model of tumor growth, J. Theor. Biol., 207 (2000), pp. 431–441.
[74]
N. Kataoka, K. Saito, and Y. Sawada, NMR microimaging of the cell sorting process, Phys. Rev. Lett., 82 (1999), pp. 1075–1078.
[75]
E.F. Keller and L.A. Segal, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), pp. 399–415.
[76]
P. Kiberstis and J. Marx, Frontiers in cancer research, Science, 278 (1977), pp. 1035–1035.
[77]
S. Kim and D. Kaiser, Cell alignment in differentiation of Myxococcus xanthus, Science, 249 (1990), pp. 926–928.
[78]
S. Kim and D. Kaiser, C-factor has distinct aggregation and sporulation thresholds during Myxococcus development, J. Bacteriol., 173 (1991), pp. 1722–1728.
[79]
M. Kiskowski, M. Alber, G. Thomas, J. Glazier, N. Bronstein, and S. Newman, Interaction between reaction-diffusion process and cell-matrix adhesion in a cellular automata model for chondrogenic pattern formation: a prototype study for developmental modeling, 2002, in preparation.
[80]
J. Kuner and D. Kaiser, Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus, J. Bacteriol., 151 (1982), pp. 458–46L
[81]
S. Kyriacou, C. Davatzikos, S. Zinreich, and R. Bryan, Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model, IEEE Transactions On Medical Imaging, 18 (1999), pp. 580–592.
[82]
J. Landry, J. Freyer, and R. Sutherland, A model for the growth of multicellular spheroids, Cell Tiss. Kinet., 15 (1982), pp. 585–594.
[83]
C. Leonard, H. Fuld, D. Frenz, S. Downie, Massagué, and S. Newman, Role of transforming growth factor-β
in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin
gene expression by exogenous TGF-β-like
activity, Devel. Bio., 145 (1991), pp. 99–109.
[84]
H. Levine, I. Aranson, L. Tsimring, and T. Truong, Positive genetic feedback governs CAMP spiral wave formation in Dictyostelium, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 6382–6386.
[85]
A. Nicol, W.J. Rappel, H. Levine, and W.F. Loomis, Cell-sorting in aggregates of Dictyostelium discoideum, J. Cell. Sci., 112 (1999), pp. 3923–3929.
[86]
H. Levine, W-J. Rappel, and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2001), 017101.
[87]
S. Li, B. Lee and L. Shimkets, csgA expression entrains Myxococcus Xanthus development. Genes Development, 6 (1992), pp. 401–410.
[88]
W. Loomis, Lateral inhibition and pattern formation in Dictyostelium, Curr. Top. Dev. Biol., 28 (1995), pp. 1–46.
[89]
F. Lutscher, Modeling alignment and movement of animals and cells, J. Math. Biol., DOI: 10.1007/s002850200146, 2002.
[90]
F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems. Journal of Nonlinear Sciences, 2002 preprint.
[91]
P. Maini, Mathematical models in morphogenesis, pp. 151–189. In V. Capasso and O. Dieckmann (Eds.), Mathematics Inspired Biology, Springer, Berlin, 1999.
[92]
A. Maree, A. Panfilov, and P. Hogeweg, Migration and thermotaxis of Dictyostelium discoideum slugs, a model study, J. Theor. Biol., 199 (1999), pp. 297–309.
[93]
A. Maree, From pattern formation to morphogenesis: Multicellular coordination in Dictyostelium discoideum, Ph.D. Thesis., Utrecht University, the Netherlands, 2000.
[94]
A. Maree and P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 3879–3883.
[95]
M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput., 29 (1991), pp. 149–158.
[96]
M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif., 27 (1994), pp. 73–94.
[97]
J. Marrs and W. Nelson, Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol., 165 (1996), pp. 159–205.
[98]
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Combinatorial minimization, J. Chem. Phys., 21 (1953), pp. 1087–1092.
[99]
A. Mogilner and L. Edelstein-Keshet,
Spatio-angular order in populations of self-aligning objects: formation of oriented patches, Physica D,
89 (1996), pp. 346–367.
MathSciNetMATH [100]
A. Mogilner, L. Edelstein-Keshet, and G. Ermentrout,
Selecting a common direction.
II. Peak-like solutions representing total alignment of cell clusters, J. Math. Biol.,
34 (1996), pp. 811–842.
MathSciNetMATH [101]
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, J. Math. Biol.,
38 (1999), pp. 534–570.
MathSciNetMATH [102]
J. Mombach, J.A. Glazier, R. Raphael, and M. Zajac, Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of ßuctuations, Phys. Rev. Lett., 75 (1995), pp. 2244–2247.
[103]
J. Mombach and J.A. Glazier, Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett., 76 (1996), pp. 3032–3035.
[104]
F. Monier-Gavelle and J. Duband, Cross talk between adhesion molecules: Control of N-cadherin activity by intracellular signals elicited by beta 1 and beta 3 integrins in migrating neural crest cells, J. Cell. Biol., 137 (1997), pp. 1663–1681.
[105]
J. Murray,
Mathematical biology, Biomathematics
19, Springer, New York, 1989.
MATH [106]
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Bio., 42 (1973), pp. 63–105.
[107]
S. Newman and H. Frisch, Dynamics of skeletal pattern formation in developing chick limb. Science, 205 (1979), pp. 662–668.
[108]
S. Newman, Sticky fingers: Hox genes and cell adhesion in vertebrate development, Bioessays, 18 (1996), pp. 171–174.
[109]
K. O’Connor and D. Zusman, Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus, J. Bacteriol., 171 (1989), pp. 6013–6024.
[110]
G.M. Odell and J.T. Bonner, How the Dictyostelium discoideum grex crawls, Philos. Trans. Roy. Soc. London, B., 312 (1985), pp. 487–525.
[111]
C. Ofria, C. Adami, T.C. Collier, and G.K. Hsu, E
volution of differentiated expression patterns in digital organisms; Lect. Notes Artif. Intell., 1674 (1999), pp. 129–138.
[112]
H.G. Othmer, S. Dunbar, and W. Alt,
Models of dispersal in biological systems, J. Math. Biol.,
26 (1988), pp. 263–298.
MathSciNetMATH [113]
H.G. Othmer and T. Hillen,
The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math.,
62 (2002), pp. 1222–1250.
MathSciNetMATH [114]
J.K. Parrish and W. Hamner, (Eds.), Animal groups in three dimensions, Cambridge University Press, Cambridge, 1997.
[115]
J.K. Parrish and L. Edelstein-Keshet, From individuals to aggregations: Complexity, epiphenomena, and evolutionary trade-offs of animal aggregation, Science, 284 (1999), pp. 99–101.
[116]
A. Pelizzola, Low-temperature phase of the three-state antiferromagnetic Potts model on the simple-cubic lattice, Phys. Rev. E, 54 (1996), pp. R5885-R5888.
[117]
J. Pjesivac and Y. Jiang, A cellular model for avascular tumor growth, unpublished (2002).
[118]
T. Pollard and J. Cooper, Actin
and act in-binding proteins. A critical evaluation of mechanisms and function, Ann. Rev. Biochem., 55 (1986), pp. 987–1035.
[119]
R. Potts,
Some generalized order-disorder transformations, Proc. Cambridge Phil. Soc.,
48 (1952), pp. 106–109.
MathSciNetMATH [120]
I. Prigogine and R. Herman,
Kinetic theory of vehicular traffic, American Elsevier, New York, 1971.
MATH [121]
S. Rahman, E. Rush, and R. Swendsen, Intermediate-temperature ordering in a three-state antiferromagnetic Potts model, Phys. Rev. B. 58 (1998). pp. 9125–9130.
[122]
W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W.F. Loomis
Self-organized vortex state in two-dimensional Dictyostelium dynamics, Phys. Rev. Lett., 83 (1999), pp. 1247–1250.
[123]
H. Reichenbach, Myxobacteria: A most peculiar group of social prokaryotes, in Myxobacteria development and cell interactions, E. Rosenburg (Ed.) Springer-Verlag, NY, 1984, pp. 1–50.
[124]
C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, ACM Computer Graphics, SIGGRAPH ’87, 21 (1987), pp. 25–34.
[125]
D. Richardson
Random growth in a tessellation, Proc. Camb. Phil. Soc., 74 (1973), pp. 563–573.
[126]
J. Rieu, A. Upadhyaya, J.A. Glazier, N. Ouchi, and Y. Sawada, Diffusion and deformations of single hydra cells in cellular aggregates, Biophys. J, 79 (2000), pp. 1903–1914.
[127]
J. Rubin and A. Robertson, The tip of the Dictyostelium pseudoplasmodium as an organizer, J. Embryol. Exp. Morphol., 33 (1975), pp. 227–241.
[128]
B. Sager and D. Kaiser, Two cell-density domains within the Myxococcus xanthus fruiting body, Proc. Natl. Acad. Sci., 90 (1993), pp. 3690–3694.
[129]
B. Sager and D. Kaiser, Intercellular C-signaling and the traveling waves of Myxococcus xanthus. Genes Development, 8 (1994), pp. 2793–2804.
[130]
P. Sahni, G. Grest, M. Anderson, and D. Srolovitz, Kinetics of the Q-state Potts model in 2 dimensions, Phys. Rev. Lett., 50 (1983), pp. 263–266.
D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Grain-growth in 2 dimensions, Scripta Met., 17 (1983), pp. 241–246.
D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 2. Grain-size distribution, topology, and local dynamics. Acta Met., 32 (1984), pp. 793–802.
D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 3. Influence
of a particle dispersion. Acta Met., 32 (1984), pp. 1429–1438.
G. Grest, D. Srolovitz, and M. Anderson, Kinetics of domain growth: universality of kinetic exponents, Phys. Rev. Letts,. 52 (1984), pp. 1321–1329.
D. Srolovitz, G. Grest, and M. Anderson, Computer-simulation of grain growth. 5. Abnormal grain-growth, Acta Met., 33 (1985), pp. 2233–2247.
[131]
N. Savill and p. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Bio., 184 (1997), pp. 229–235.
[132]
M. scalerandi, B. Sansone, and C. Condat, Diffusion with evolving sources and competing sinks: Development of angiogenesis, Phys. Rev. E, 65 (2002), 011902.
[133]
J.A. Shapiro, Bacteria as multicellular organisms. Scientific American, 258 (1988), pp. 82–89.
[134]
J. A. Shapiro, The significances of bacterial colony patterns, Bioessays, 17 (1995), pp. 597–607.
[135]
J.A. Shapiro, Thinking about bacterial populations as multicellular organisms, Annual Review of Microbiology, 52 (1998), pp. 81–104.
[136]
N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M. Sano, Collective motion in a system of motile elements, Phys. Rev. Lett., 76 (1996), pp. 3870–3873.
[137]
E. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979), pp. 595–605.
[138]
S. Simpson, A. McCaffery, and B. Hagele, A behavioural analysis of phase change in the desert locust. Bio. Rev. of the Cambridge Philosophical Society, 74 (1999), pp. 461–480.
[139]
D. Soll, Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells, Computerized Medical Imaging and Graphics, 23 (1999), pp. 3–14.
[140]
D. Soll, E. Voss, O. Johnson, and D. Wessels, Three-dimensional reconstruction and motion analysis of living, crawling cells, Scanning, 22 (2000), pp. 249–257.
[141]
J. Stavans, The evolution of cellular structures. Rep. Prog. Phys., 56 (1993), pp. 733–789.
[142]
M. Steinberg, Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events. Science, 137 (1962), pp. 762–763.
[143]
M. Steinberg, Cell membranes in development. Academic Press, NY, 1964.
[144]
A. Stevens,
A stochastic cellular automaton modeling gliding and aggregation of Myxobacteria, SIAM J. Appl. Math.,
61 (2000), pp. 172–182.
MathSciNetMATH [145]
E. Stott, N. Britton, J. A. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, 30 (1999), pp. 183–198.
[146]
U. Technau and T. Holstein, Cell sorting during the regeneration of hydra from reaggregated cells, Devel. Bio, 151 (1992), pp. 117–127.
[147]
D. Thompson,
On growth and form, Cambridge University Press, Cambridge, 1942.
MATH [148]
A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 237 (1952), pp. 37–72.
[149]
A. Upadhyaya, Thermodynamics and fluid properties of cells, tissues and membranes, Ph.D. Thesis., The University of Notre Dame, USA, 2001.
[150]
A. Upadhyaya, J. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A, 293 (2001), pp. 49–558.
[151]
P. Van Haaster, Sensory adaptation of Dictyostelium discoideum cells to chemotactic signals, J. Cell Biol., 96 (1983), pp. 1559–1565.
[152]
B. Vasiev, F. Siegert and C.J. Weijer, A hydrodynamic model approach for Dictyostelium mound formation, J. Theor. Biol., 184 (1997), pp. 441–450.
[153]
T. Vicsek, A. Czirok, E. Ben-Jacob, I Cohen, O. Shochet, and A. Tenenbaum, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.
[154]
J. von Neumann, Theory of self-reproducing automata, (edited and completed by A. W. Burks), University of Illinois Press, Urbana, 1966.
[155]
J. Wartiovaara, M. Karkinen-Jääskelänen, E. Lehtonen, S. Nordling, and L. Saxen, Morphogenetic cell interactions in kidney development, in N. Müller-Bér) (Ed.), Progress in differentiation research. North-Holland Publishing Company, Amsterdam, 1976, 245–252.
[156]
D. Weaire and N. Rivier, Soap, cells and statistics: random patterns in 2 dimensions, Contemp. Phys. 25 (1984) pp. 59–99.
[157]
H. Williams, S. Desjardins, and F. Billings, Two-dimensional growth models, Phys. Lett. A, 250 (1998), pp. 105–110.
[158]
J. Williams, Regulation of cellular differentiation during Dictyostelium morphogenesis, Curr. Opin. Genet. Dev., 1 (1991), pp. 338–362.
[159]
J. Wejchert, D. Weaire, and J. Kermode, Monte-Carlo simulation of the evolution of a two-dimensional soap froth, Phil. Mag. B, 53 (1986), pp. 15–24.
[160]
R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14907–14912.
[161]
T. Witten and L. Sander,
Diffusion-limited aggregation, Phys. Rev. B,
27 (1983), pp. 5686–5697.
MathSciNet [162]
D. Wolf-Gladrow,
Lattice-gas cellular automata and lattice Boltzmann models — An introduction. Springer-Ver lag, Berlin, Lecture Notes in Mathematics
1725 (2000).
MATH [163]
S. Wolfram,
Statistical mechanics of cellular automata. Rev. Mod. Phys.,
55 (1983), pp. 601–604.
MathSciNetMATH [164]
S. Wolfram,
Cellular automata and complexity, Addison-Wesley, Reading, 1994.
MATH [165]
S. Wolfram,
A new kind of science, Wolfram Media, Champaign, 2002.
MATH [166]
C. wolgemuth and E. Hoiczyk, How Myxohactevia glide. Current Biology, 12 (2002), pp. 369–377.
[167]
F. Wu, The Potts-model, Rev. Mod. Phys., 54 (1982), pp. 235–268.
[168]
M. Zajac, G. Jones, and J.A. Glazier, Model of convergent extension in animal morphogenesis, Phys. Rev. Lett., 85 (2000), pp. 2022–2025.
[169]
M. Zajac, Modeling convergent extension by way of anisotropic differential adhesion. Ph.D. thesis. The University of Notre Dame, USA, 2002.