On Cellular Automaton Approaches to Modeling Biological Cells
 Mark S. Alber,
 Maria A. Kiskowski,
 James A. Glazier,
 Yi Jiang
 … show all 4 hide
Abstract
We discuss two different types of Cellular Automata (CA): latticegasbased cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling.
LGCA were originally developed for modeling ideal gases and fluids. We describe several extensions of the classical LGCA model to selfdriven biological cells. In particular, we review recent models for rippling in myxobacteria, cell aggregation, swarming, and limb bud formation. These LGCAbased models show the versatility of CA in modeling and their utility in addressing basic biological questions.
The CPM is a more sophisticated CA, which describes individual cells as extended objects of variable shape. We review various extensions to the original Potts model and describe their application to morphogenesis; the development of a complex spatial structure by a collection of cells. We focus on three phenomena: cell sorting in aggregates of embryonic chicken cells, morphological development of the slime mold Dictyostelium discoideum and avascular tumor growth. These models include intercellular and extracellular interactions, as well as cell growth and death.
 J. Adam and N. Bellomo, A survey of models for tumorimmune system dynamics, Birkhauser, Boston, 1997.
 A. Adamatzky and O. Holland, Phenomenology of excitation in 2D cellular automata and swarm systems, Chaos Solitons Fractals, 9 (1998), pp. 1233–1265.
 M. Alber and M. Kiskowski, On aggregation in CA models in biology, J. Phys. A: Math. Gen., 34 (2001), pp. 10707–10714.
 M. Alber, M. Kiskowski, and Y. Jiang, A model of rippling and aggregation in Myxobacteria, 2002 preprint.
 B. Alberts, M. Raff, J. Watson, K. Roberts, D. Bray, and J. Lewis, Molecular biology of the cell, 3rd edition. Garland Publishing, NY, 1994.
 J. Ashkin and E. Teller, Statistics of twodimensional lattices with four components, Phys. Rev., 64 (1943), pp. 178–184.
 E. BenJacob, I. Cohen, A. Czirk, T. Vicsek, and D.L. Gutnick, Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development, Physica A, 238 (1997), pp. 181–197.
 E. BenJacob and H. Levine, The artistry of microorganisms, Scientific American, 279 (1998), pp. 82–87.
 E. BenJacob, I. Cohen, and H. Levine, Cooperative selforganization of microorganisms, Advances in Physics, 49 (2000), pp. 395–554.
 L. Besseau and M. GiraudGuille, Stabilization of ßuid cholesteric phases of collagen to ordered gelated matrices, J. Mol. Bio., 251 (1995), pp. 137–145.
 D. Beysens, G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97 (2000) pp. 9467–9471.
 H. Bode, K. Flick, and G. Smith, Regulation of interstitial celldifferentiation in Hydra attenuata. I. Homeostatic control of interstitial cellpopulation size, J. Cell Sci., 20 (1976), pp. 29–46.
 E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: From natural to artificial systems, Oxford University Press, NY, 1999.
 J. Boon., D. Dab, R. Kapral, and A. Lawniczak, Lattice gas automata for relative systems, Physics Reports, 273 (1996), pp. 55–147.
 U. Börner, A. Deutsch, H. Reichenbach, and M. Bar, Rippling patterns in aggregates of myxobacteria arise from cellcell collisions, 2002 preprint.
 H. Bussemaker, A. Deutsch, and E. Geigant, Meanfield analysis of a dynamical phase transition in a cellular automaton model for collective motion, Phys. Rev. Lett., 78 (1997), pp. 5018–5027.
 M. Caterina and P. Devreotes, Molecular insights into eukaryotic Chemotaxis, FASEB J., 5 (1991), pp. 3078–3085.
 S. Chen, S.P. Dawson, G.D. Doolen, D.R. Janecky, and A. Lawniczak, Lattice methods and their applications to reacting systems. Computers & Chemical Engineering, 19 (1995), pp. 617–646.
 B. Chopard and M. Droz, Cellular automata modeling of physical systems, Cambridge University Press, NY, 1998.
 L Cohen, LG. Ron, and E. BenJacob, From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria, Physica A, 286 (2000), pp. 321–336.
 J. Cook, Waves of alignment in populations of interacting, oriented individuals. Forma, 10 (1995), pp. 171–203.
 J. Cook, A. Deutsch, and A. Mogilner, Models for spatioangular selforganization in cell biology, in W. Alt, A. Deutsch and G. Dunn (Eds.) Dynamics of cell and tissue motion, Birkhuser, Basel, Switzerland, 1997, pp. 173–182.
 M. Cross and P. Hohenberg, Patternformation outside of equilibrium, Rev. Mod. Phys., 65 (1993), pp. 851–1112.
 A. Czirok, A. L. Barabasi, and T. Vicsek, Collective motion of organisms in three dimensions, Phys. Rev. Lett., 82 (1999), pp. 209–212.
 J. Dallon and J. Sherratt, A mathematical model for spatially varying extra cellular matrix alignment, SIAM J. Appl. Math., 61 (2000), pp. 506–527.
 L.A. Davidson, M.A.R. Koehl, R. Keller, and G.F. Oster, How do seaurchins invaginate — Using biomechanics to distinguish between mechanisms of primary invagination, Development, 121 (1995), pp. 2005–2018.
 A.M. Delprato, A. Samadani, A. Kudrolli, and L.S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 87 (2001), 158102.
 A. Deutsch, Towards analyzing complex swarming patterns in biological systems with the help of latticegas automaton model, J. Biol. Syst., 3 (1995), pp. 947–955.
 A. Deutsch, Orientationinduced pattern formation: Swarm dynamics in a latticegas automaton model. Int. J. Bifurc. Chaos, 6 (1996), pp. 1735–1752.
 A. Deutsch, Principles of morphogenetic motion: swarming and aggregation viewed as selforganization phenomena, J. Biosc., 24 (1999), pp. 115–120.
 A. Deutsch, Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics, Mathematical Biosciences, 156 (1999), pp. 255–269.
 A. Deutsch, A new mechanism of aggregation in a latticegas cellular automaton model. Mathematical and Computer Modeling, 31 (2000), pp. 35–40.
 A. Deutsch and S. Dormann, Cellular automata and biological pattern formation modeling, 2002 preprint.
 S. Dormann, Pattern formation in cellular automation models, Dissertation, Angewandte Systemwissenschaft FB Mathematik/Informatik, Universität Osnabrück, Austria, 2000.
 S. Dormann, A. Deutsch, and A. Lawniczak, Fourier analysis of Turinglike pattern formation in cellular automaton models. Future Computer Generation Systems, 17 (2001), pp. 901–909.
 S. Dormann and A. Deutsch, Modeling of selforganized avascular tumor growth with a hybrid cellular automaton, Silico Biology, 2 (2002), 0035.
 D. Drasdo and G. Forgacs, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Developmental Dynamics, 219 (2000), pp. 182–191.
 M. Dworkin and D. Kaiser, Myxobacteria II, American Society for Microbiology, Washington, DC, 1993.
 M. Dworkin Recent advances in the social and developmental biology of the myxobacteria, Microbiol. Rev., 60 (1996), pp. 70–102.
 M. Eden, Vol. 4: Contributions to biology and problems of medicine, in J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium in Mathematics, Statistics and Probability, University of California Press, Berkeley, 1961, pp. 223–239.
 R. Engelhardt, Modeling pattern formation in reaction diffusion systems. Master’s Thesis, Dept. of Chemistry, University of Copenhagen, Denmark, 1994.
 G. Ermentrout and L. EdelsteinKeshet, Cellular automata approach in biological modeling, J. Theor. Biol., 160 (1993), pp. 97–133.
 S.E. Esipov and J.A. Shapiro, Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol., 36 (1998), pp. 249–268.
 M. Fontes and D. Kaiser, Myxococcus cells respond to elastic forces in their substrate, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 8052–8057.
 G. Forgacs, R. Foty, Y. Shafrir, and M. Steinberg, Viscoelastic properties of living embryonic tissues: a quantitative study, Biophys. J., 74 (1998), pp. 2227–2234.
 R. Foty, G. Forgacs, C. Pfleger, and M. Steinberg, Liquid properties of embryonic tissues: measurements of interfacial tensions, Phys. Rev. Lett., 72 (1994), pp. 2298–2300.
 R. Foty, C. Pfleger, G. Forgacs, and M. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, 122 (1996), pp. 1611–1620.
 J. Freyer and R. Sutherland, Selective dissociation and characterization of cells from different regions of multicell spheroids during growth. Cancer Research, 40 (1980), pp. 3956–3965.
 J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/RO multicellular spheroids induced by the glucose and oxygen supply. Cancer Research, 46 (1986), pp. 3504–3512.
 M. Gardner, The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American, 223 (1970), pp. 120–123.
 F. Gianocotti, Integrinsignaling: specificity and control of cell survival and cell cycle progression, Curr. Opin. Cell Biol, 9 (1997), pp. 691–700.
 J.A. Glazier, Dynamics of cellular patterns, Ph.D. Thesis, The University of Chicago, USA, 1989.
 J.A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47 (1993), pp. 2128–2154.
 D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherinbased adhesion. Nature, 395 (1998), pp. 387–391.
 I. Golding, Y. Kozlovsky, I. Cohen, and E. BenJacob, Studies of bacterial branching growth using reactiondiffusion models for colonial development, Physica A, 260 (1998), pp. 510–554.
 A. GonzalezReyes and D. St. Johnston, Patterning of the follicle cell epithe lium along the anteriorposterior axis during Drosophila oogenesis. Development, 125 (1998), pp. 2837–2846.
 F. Graner and J.A. Glazier, Simulation of biological cell sorting using a twodimensional Extended Potts Model, Phys. Rev. Lett., 69 (1992), pp. 2013–2016.
 J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A, 13 (1976), pp. 1949–1961.
 P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation, J. Theor. Biol., 203 (2000), pp. 317–333.
 P. Hogeweg, Shapes in the shadow: Evolutionary dynamics of morphogenesis, Artificial Life, 6 (2000), pp. 611–648.
 E. Holm, J.A. Glazier, D. Srolovitz, and G. Crest, Effects of lattice anisotropy and temperature on domain growth in the 2dimensional Potts model, Phys. Rev. A, 43 (1991), pp. 2262–2268.
 A. Howe, A. Aplin, S. Alahari, and R. Juliano, Integrin signaling and cell growth control, Curr. Opin. Cell Biol., 10 (1998), pp. 220–231.
 O. Igoshin, A. Mogilner, D. Kaiser, and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14913–14918.
 L. Jelsbak and L. SogaardAndersen, The cell surfaceassociated intercellular Csignal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis, Devel. Bio, 96 (1998), pp. 5031–5036.
 L. Jelsbak and L. SogaardAndersen, Pattern formation: Fruiting body morphogenesis in Myxococcus xanthus. Current Opinion in Microbiology, 3 (2000), pp. 637–642.
 Y. Jiang and J.A. Glazier, Extended largeQ Potts model simulation of foam drainage, Philos. Mag. Lett., 74 (1996), pp. 119–128.
 Y. Jiang, Cellular pattern formation, Ph.D. Thesis, University of Notre Dame, USA, 1998.
 Y. Jiang, H. Levine, and J.A. Glazier, Possible cooperation of differential adhesion and Chemotaxis in mound formation of Dictyostelium, Biophys. J., 75 (1998), pp. 2615–2625.
 B. Julien, D. Kaiser, and A. Garza, Spatial control of cell differentiation in Myxococcus xanthus, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9098–9103.
 L.P. Kadanoff, G.R. McNamara, and G. Zanetti, From automata to fluidflowComparisons óf simulation and theory, Phys. Rev. A, 40 (1989), pp. 4527–4541.
 D. Kaiser, How and why myxobacteria talk to each other, Current Opinion in Microbiology, 1 (1998), pp. 663–668.
 D. Kaiser, Intercellular signaling for multicellular morphogenesis, Society for General Microbiology Symposium 57, Cambridge University Press, Society for General Microbiology Ltd., UK, 1999.
 A. Kansal, S. Torquato, E. Chiocca, and T. Deisboeck, Emergence of a subpopulation in a computational model of tumor growth, J. Theor. Biol., 207 (2000), pp. 431–441.
 N. Kataoka, K. Saito, and Y. Sawada, NMR microimaging of the cell sorting process, Phys. Rev. Lett., 82 (1999), pp. 1075–1078.
 E.F. Keller and L.A. Segal, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), pp. 399–415.
 P. Kiberstis and J. Marx, Frontiers in cancer research, Science, 278 (1977), pp. 1035–1035.
 S. Kim and D. Kaiser, Cell alignment in differentiation of Myxococcus xanthus, Science, 249 (1990), pp. 926–928.
 S. Kim and D. Kaiser, Cfactor has distinct aggregation and sporulation thresholds during Myxococcus development, J. Bacteriol., 173 (1991), pp. 1722–1728.
 M. Kiskowski, M. Alber, G. Thomas, J. Glazier, N. Bronstein, and S. Newman, Interaction between reactiondiffusion process and cellmatrix adhesion in a cellular automata model for chondrogenic pattern formation: a prototype study for developmental modeling, 2002, in preparation.
 J. Kuner and D. Kaiser, Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus, J. Bacteriol., 151 (1982), pp. 458–46L
 S. Kyriacou, C. Davatzikos, S. Zinreich, and R. Bryan, Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model, IEEE Transactions On Medical Imaging, 18 (1999), pp. 580–592.
 J. Landry, J. Freyer, and R. Sutherland, A model for the growth of multicellular spheroids, Cell Tiss. Kinet., 15 (1982), pp. 585–594.
 C. Leonard, H. Fuld, D. Frenz, S. Downie, Massagué, and S. Newman, Role of transforming growth factorβ in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGFβlike activity, Devel. Bio., 145 (1991), pp. 99–109.
 H. Levine, I. Aranson, L. Tsimring, and T. Truong, Positive genetic feedback governs CAMP spiral wave formation in Dictyostelium, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 6382–6386.
 A. Nicol, W.J. Rappel, H. Levine, and W.F. Loomis, Cellsorting in aggregates of Dictyostelium discoideum, J. Cell. Sci., 112 (1999), pp. 3923–3929.
 H. Levine, WJ. Rappel, and I. Cohen, Selforganization in systems of selfpropelled particles, Phys. Rev. E, 63 (2001), 017101.
 S. Li, B. Lee and L. Shimkets, csgA expression entrains Myxococcus Xanthus development. Genes Development, 6 (1992), pp. 401–410.
 W. Loomis, Lateral inhibition and pattern formation in Dictyostelium, Curr. Top. Dev. Biol., 28 (1995), pp. 1–46.
 F. Lutscher, Modeling alignment and movement of animals and cells, J. Math. Biol., DOI: 10.1007/s002850200146, 2002.
 F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems. Journal of Nonlinear Sciences, 2002 preprint.
 P. Maini, Mathematical models in morphogenesis, pp. 151–189. In V. Capasso and O. Dieckmann (Eds.), Mathematics Inspired Biology, Springer, Berlin, 1999.
 A. Maree, A. Panfilov, and P. Hogeweg, Migration and thermotaxis of Dictyostelium discoideum slugs, a model study, J. Theor. Biol., 199 (1999), pp. 297–309.
 A. Maree, From pattern formation to morphogenesis: Multicellular coordination in Dictyostelium discoideum, Ph.D. Thesis., Utrecht University, the Netherlands, 2000.
 A. Maree and P. Hogeweg, How amoeboids selforganize into a fruiting body: Multicellular coordination in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 3879–3883.
 M. Marusic, Z. Bajzer, J. Freyer, and S. VukPavlovic, Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput., 29 (1991), pp. 149–158.
 M. Marusic, Z. Bajzer, J. Freyer, and S. VukPavlovic, Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif., 27 (1994), pp. 73–94.
 J. Marrs and W. Nelson, Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol., 165 (1996), pp. 159–205.
 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Combinatorial minimization, J. Chem. Phys., 21 (1953), pp. 1087–1092.
 A. Mogilner and L. EdelsteinKeshet, Spatioangular order in populations of selfaligning objects: formation of oriented patches, Physica D, 89 (1996), pp. 346–367.
 A. Mogilner, L. EdelsteinKeshet, and G. Ermentrout, Selecting a common direction. II. Peaklike solutions representing total alignment of cell clusters, J. Math. Biol., 34 (1996), pp. 811–842.
 A. Mogilner and L. EdelsteinKeshet, A nonlocal model for a swarm, J. Math. Biol., 38 (1999), pp. 534–570.
 J. Mombach, J.A. Glazier, R. Raphael, and M. Zajac, Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of ßuctuations, Phys. Rev. Lett., 75 (1995), pp. 2244–2247.
 J. Mombach and J.A. Glazier, Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett., 76 (1996), pp. 3032–3035.
 F. MonierGavelle and J. Duband, Cross talk between adhesion molecules: Control of Ncadherin activity by intracellular signals elicited by beta 1 and beta 3 integrins in migrating neural crest cells, J. Cell. Biol., 137 (1997), pp. 1663–1681.
 J. Murray, Mathematical biology, Biomathematics 19, Springer, New York, 1989.
 V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Bio., 42 (1973), pp. 63–105.
 S. Newman and H. Frisch, Dynamics of skeletal pattern formation in developing chick limb. Science, 205 (1979), pp. 662–668.
 S. Newman, Sticky fingers: Hox genes and cell adhesion in vertebrate development, Bioessays, 18 (1996), pp. 171–174.
 K. O’Connor and D. Zusman, Patterns of cellular interactions during fruitingbody formation in Myxococcus xanthus, J. Bacteriol., 171 (1989), pp. 6013–6024.
 G.M. Odell and J.T. Bonner, How the Dictyostelium discoideum grex crawls, Philos. Trans. Roy. Soc. London, B., 312 (1985), pp. 487–525.
 C. Ofria, C. Adami, T.C. Collier, and G.K. Hsu, E volution of differentiated expression patterns in digital organisms; Lect. Notes Artif. Intell., 1674 (1999), pp. 129–138.
 H.G. Othmer, S. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), pp. 263–298.
 H.G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), pp. 1222–1250.
 J.K. Parrish and W. Hamner, (Eds.), Animal groups in three dimensions, Cambridge University Press, Cambridge, 1997.
 J.K. Parrish and L. EdelsteinKeshet, From individuals to aggregations: Complexity, epiphenomena, and evolutionary tradeoffs of animal aggregation, Science, 284 (1999), pp. 99–101.
 A. Pelizzola, Lowtemperature phase of the threestate antiferromagnetic Potts model on the simplecubic lattice, Phys. Rev. E, 54 (1996), pp. R5885R5888.
 J. Pjesivac and Y. Jiang, A cellular model for avascular tumor growth, unpublished (2002).
 T. Pollard and J. Cooper, Actin and act inbinding proteins. A critical evaluation of mechanisms and function, Ann. Rev. Biochem., 55 (1986), pp. 987–1035.
 R. Potts, Some generalized orderdisorder transformations, Proc. Cambridge Phil. Soc., 48 (1952), pp. 106–109.
 I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, 1971.
 S. Rahman, E. Rush, and R. Swendsen, Intermediatetemperature ordering in a threestate antiferromagnetic Potts model, Phys. Rev. B. 58 (1998). pp. 9125–9130.
 W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W.F. Loomis Selforganized vortex state in twodimensional Dictyostelium dynamics, Phys. Rev. Lett., 83 (1999), pp. 1247–1250.
 H. Reichenbach, Myxobacteria: A most peculiar group of social prokaryotes, in Myxobacteria development and cell interactions, E. Rosenburg (Ed.) SpringerVerlag, NY, 1984, pp. 1–50.
 C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, ACM Computer Graphics, SIGGRAPH ’87, 21 (1987), pp. 25–34.
 D. Richardson Random growth in a tessellation, Proc. Camb. Phil. Soc., 74 (1973), pp. 563–573.
 J. Rieu, A. Upadhyaya, J.A. Glazier, N. Ouchi, and Y. Sawada, Diffusion and deformations of single hydra cells in cellular aggregates, Biophys. J, 79 (2000), pp. 1903–1914.
 J. Rubin and A. Robertson, The tip of the Dictyostelium pseudoplasmodium as an organizer, J. Embryol. Exp. Morphol., 33 (1975), pp. 227–241.
 B. Sager and D. Kaiser, Two celldensity domains within the Myxococcus xanthus fruiting body, Proc. Natl. Acad. Sci., 90 (1993), pp. 3690–3694.
 B. Sager and D. Kaiser, Intercellular Csignaling and the traveling waves of Myxococcus xanthus. Genes Development, 8 (1994), pp. 2793–2804.
 P. Sahni, G. Grest, M. Anderson, and D. Srolovitz, Kinetics of the Qstate Potts model in 2 dimensions, Phys. Rev. Lett., 50 (1983), pp. 263–266.
 D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Graingrowth in 2 dimensions, Scripta Met., 17 (1983), pp. 241–246.
 D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computersimulation of graingrowth. 2. Grainsize distribution, topology, and local dynamics. Acta Met., 32 (1984), pp. 793–802.
 D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computersimulation of graingrowth. 3. Influence of a particle dispersion. Acta Met., 32 (1984), pp. 1429–1438.
 G. Grest, D. Srolovitz, and M. Anderson, Kinetics of domain growth: universality of kinetic exponents, Phys. Rev. Letts,. 52 (1984), pp. 1321–1329.
 D. Srolovitz, G. Grest, and M. Anderson, Computersimulation of grain growth. 5. Abnormal graingrowth, Acta Met., 33 (1985), pp. 2233–2247.
 N. Savill and p. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Bio., 184 (1997), pp. 229–235.
 M. scalerandi, B. Sansone, and C. Condat, Diffusion with evolving sources and competing sinks: Development of angiogenesis, Phys. Rev. E, 65 (2002), 011902.
 J.A. Shapiro, Bacteria as multicellular organisms. Scientific American, 258 (1988), pp. 82–89.
 J. A. Shapiro, The significances of bacterial colony patterns, Bioessays, 17 (1995), pp. 597–607.
 J.A. Shapiro, Thinking about bacterial populations as multicellular organisms, Annual Review of Microbiology, 52 (1998), pp. 81–104.
 N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M. Sano, Collective motion in a system of motile elements, Phys. Rev. Lett., 76 (1996), pp. 3870–3873.
 E. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979), pp. 595–605.
 S. Simpson, A. McCaffery, and B. Hagele, A behavioural analysis of phase change in the desert locust. Bio. Rev. of the Cambridge Philosophical Society, 74 (1999), pp. 461–480.
 D. Soll, Computerassisted threedimensional reconstruction and motion analysis of living, crawling cells, Computerized Medical Imaging and Graphics, 23 (1999), pp. 3–14.
 D. Soll, E. Voss, O. Johnson, and D. Wessels, Threedimensional reconstruction and motion analysis of living, crawling cells, Scanning, 22 (2000), pp. 249–257.
 J. Stavans, The evolution of cellular structures. Rep. Prog. Phys., 56 (1993), pp. 733–789.
 M. Steinberg, Mechanism of tissue reconstruction by dissociated cells, II. Timecourse of events. Science, 137 (1962), pp. 762–763.
 M. Steinberg, Cell membranes in development. Academic Press, NY, 1964.
 A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of Myxobacteria, SIAM J. Appl. Math., 61 (2000), pp. 172–182.
 E. Stott, N. Britton, J. A. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, 30 (1999), pp. 183–198.
 U. Technau and T. Holstein, Cell sorting during the regeneration of hydra from reaggregated cells, Devel. Bio, 151 (1992), pp. 117–127.
 D. Thompson, On growth and form, Cambridge University Press, Cambridge, 1942.
 A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 237 (1952), pp. 37–72.
 A. Upadhyaya, Thermodynamics and fluid properties of cells, tissues and membranes, Ph.D. Thesis., The University of Notre Dame, USA, 2001.
 A. Upadhyaya, J. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and nonGaussian velocity distribution of Hydra cells in cellular aggregates, Physica A, 293 (2001), pp. 49–558.
 P. Van Haaster, Sensory adaptation of Dictyostelium discoideum cells to chemotactic signals, J. Cell Biol., 96 (1983), pp. 1559–1565.
 B. Vasiev, F. Siegert and C.J. Weijer, A hydrodynamic model approach for Dictyostelium mound formation, J. Theor. Biol., 184 (1997), pp. 441–450.
 T. Vicsek, A. Czirok, E. BenJacob, I Cohen, O. Shochet, and A. Tenenbaum, Novel type of phase transition in a system of selfdriven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.
 J. von Neumann, Theory of selfreproducing automata, (edited and completed by A. W. Burks), University of Illinois Press, Urbana, 1966.
 J. Wartiovaara, M. KarkinenJääskelänen, E. Lehtonen, S. Nordling, and L. Saxen, Morphogenetic cell interactions in kidney development, in N. MüllerBér) (Ed.), Progress in differentiation research. NorthHolland Publishing Company, Amsterdam, 1976, 245–252.
 D. Weaire and N. Rivier, Soap, cells and statistics: random patterns in 2 dimensions, Contemp. Phys. 25 (1984) pp. 59–99.
 H. Williams, S. Desjardins, and F. Billings, Twodimensional growth models, Phys. Lett. A, 250 (1998), pp. 105–110.
 J. Williams, Regulation of cellular differentiation during Dictyostelium morphogenesis, Curr. Opin. Genet. Dev., 1 (1991), pp. 338–362.
 J. Wejchert, D. Weaire, and J. Kermode, MonteCarlo simulation of the evolution of a twodimensional soap froth, Phil. Mag. B, 53 (1986), pp. 15–24.
 R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14907–14912.
 T. Witten and L. Sander, Diffusionlimited aggregation, Phys. Rev. B, 27 (1983), pp. 5686–5697.
 D. WolfGladrow, Latticegas cellular automata and lattice Boltzmann models — An introduction. SpringerVer lag, Berlin, Lecture Notes in Mathematics 1725 (2000).
 S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys., 55 (1983), pp. 601–604.
 S. Wolfram, Cellular automata and complexity, AddisonWesley, Reading, 1994.
 S. Wolfram, A new kind of science, Wolfram Media, Champaign, 2002.
 C. wolgemuth and E. Hoiczyk, How Myxohactevia glide. Current Biology, 12 (2002), pp. 369–377.
 F. Wu, The Pottsmodel, Rev. Mod. Phys., 54 (1982), pp. 235–268.
 M. Zajac, G. Jones, and J.A. Glazier, Model of convergent extension in animal morphogenesis, Phys. Rev. Lett., 85 (2000), pp. 2022–2025.
 M. Zajac, Modeling convergent extension by way of anisotropic differential adhesion. Ph.D. thesis. The University of Notre Dame, USA, 2002.
 Title
 On Cellular Automaton Approaches to Modeling Biological Cells
 Book Title
 Mathematical Systems Theory in Biology, Communications, Computation, and Finance
 Pages
 pp 139
 Copyright
 2003
 DOI
 10.1007/9780387216966_1
 Print ISBN
 9781441923264
 Online ISBN
 9780387216966
 Series Title
 The IMA Volumes in Mathematics and its Applications
 Series Volume
 134
 Series ISSN
 09406573
 Publisher
 Springer New York
 Copyright Holder
 SpringerVerlag New York
 Additional Links
 Topics
 eBook Packages
 Editors

 Joachim Rosenthal ^{(2)}
 David S. Gilliam ^{(3)}
 Editor Affiliations

 2. Department of Mathematics, University of Notre Dame
 3. Department of Mathematics and Statistics, Texas Tech University
 Authors

 Mark S. Alber ^{(4)}
 Maria A. Kiskowski ^{(5)}
 James A. Glazier ^{(6)}
 Yi Jiang ^{(7)}
 Author Affiliations

 4. Department of Mathematics and Interdisciplinary Center for the Study of Biocomplexity, University of Notre Dame, 465565670, Notre Dame, IN, USA
 5. Department of Mathematics, University of Notre Dame, 465565670, Notre Dame, IN, USA
 6. Department of Physics and Biocomplexity Institute, Indiana University, 474057105, Bloomington, IN, USA
 7. Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
Continue reading...
To view the rest of this content please follow the download PDF link above.