Skip to main content

Novel Mechanisms of Estrogen Action in the Developing Brain

  • Conference paper
Biology of Menopause

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 117 Accesses

Abstract

Estrogen and the neurotrophins [e.g., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin4/5, (NT-4/5)] have been implicated in the development, survival, plasticity, and aging of neurons in mammalian forebrain regions that subserve cognitive functions. Neurons in overlapping forebrain regions of both sexes coexpress estrogen and neurotrophin receptors, and they are the sites of estrogen and neurotrophin synthesis (1,2). An important question raised by these associations concerns the biological significance of receptor co-expression and the potential for interactions of their ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toran-Allerand CD, Miranda RC, Bentham W, Sohrabji F, Brown TJ, Hochberg RB, et al. Estrogen receptors co-localize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 1992;89:4668–72.

    Article  PubMed  CAS  Google Scholar 

  2. Miranda RC, Sohrabji F, Toran-Allerand CD. Estrogen target neurons co-localize the mRNAs for the neurotrophins and their receptors during development: a basis for the interactions of estrogen and the neurotrophins, Mol Cell Neurosci 1993;4:510–25.

    Article  PubMed  CAS  Google Scholar 

  3. Toran-Allerand CD. The estrogen/neurotrophin connection during neural development: is co-localization of estrogen receptors with the neurotrophins and their receptors biologically relevant? Dev Neurosci 1996;18:36–48.

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto A, Arai Y. Neuronal plasticity in the deafferented hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J Comp Neurol 1981:197–206.

    Google Scholar 

  5. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996:93:5925–30.

    Article  PubMed  CAS  Google Scholar 

  6. Pettersson K, Grandien K, Kuiper GG, Gustafsson JA. Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol 1997;11:1486–96.

    Article  PubMed  CAS  Google Scholar 

  7. Landers JP, Spelsberg TC. New concepts in steroid hormone action: transcription factors, proto-oncogenes and the cascade model for steroid regulation of gene expression. Crit Rev Eukaryotic Gene Expression 1992;2:19–63.

    CAS  Google Scholar 

  8. Sukovich DA, Mukherjee R, Benfield PA. A novel, cell-type-specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Mol Cell Biol 1994;14:7134–433.

    PubMed  CAS  Google Scholar 

  9. Garcia-Segura LM, Olmos G, Tranque P, Naftolin F. Rapid effects of gonadal steroids upon hypothalamic neuronal membrane ultrastructure. J Steroid Biochem 1987;27:615–23.

    Article  PubMed  CAS  Google Scholar 

  10. Migliaccio A, Pagano M, Auricchio F. Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells. Oncogene 1993;8: 2183–219.

    PubMed  CAS  Google Scholar 

  11. Watson CS, Pappas TC, Gametchy B. The other estrogen receptor in the plasma membrane: implications for the actions of environmental estrogens. Env Health Perspect 1995;103(suppl 7):41–50.

    Article  CAS  Google Scholar 

  12. Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 1977;265:69–72.

    Article  PubMed  CAS  Google Scholar 

  13. Karthikeyan N, Thampan RV. Plasma membrane is the primary site of localization of the nonactivated estrogen receptor in the goat uterus: hormone binding causes receptor internalization. Arch Biochem Biophys 1996;325:47–57.

    Article  PubMed  CAS  Google Scholar 

  14. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995;270:1491–94.

    Article  PubMed  CAS  Google Scholar 

  15. Read L, Greene G, Katzenellenbogen B. Regulation of estrogen receptor messenger ribonucleic acid and protein levels in human breast cancer cell lines by sex steroid hormones, their antagonists, and growth factors. Mol Endocrinol 1989;3: 295–304.

    Article  PubMed  CAS  Google Scholar 

  16. Ignar-Trowbridge DM, Nelson KG, Biwell MC, Curtis SW, Washburn TF, McLachlan JA, et al. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 1992;89: 4658–62.

    Article  PubMed  CAS  Google Scholar 

  17. Bunone G, Briand P-A, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the Map kinase pathway and direct phosphorylation. Embo J 1996;15:2174–83.

    PubMed  CAS  Google Scholar 

  18. Patrone C, Ma ZQ, Pollio G, Agrati P, Parker MG, Maggi A. Cross-coupling between insulin and estrogen receptor in human neuroblastoma cells. Mol Endocrinol 1996;10:499–507.

    Article  PubMed  CAS  Google Scholar 

  19. Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA. Cross talk between peptide growth factor and estrogen receptor signaling systems. Env Health Perspect 1995;103(suppl 7):35–38.

    Article  CAS  Google Scholar 

  20. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, et al. Tyrosine kinase/p21 ras/Map kinase pathway activation by estrogen-receptor complex in MCF-7 cells. Embo J 1996;15:1292–300.

    PubMed  CAS  Google Scholar 

  21. Barde Y A. Trophic factors and neuronal survival. Neuron 1989;2:1525–34.

    Article  PubMed  CAS  Google Scholar 

  22. Chao MV. Neurotrophin receptors: a window into neuronal differentiation. Neuron 1992;9:583–93.

    Article  PubMed  CAS  Google Scholar 

  23. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995;80:179–85.

    Article  PubMed  CAS  Google Scholar 

  24. Blenis J. Signal transduction via the MAP kinases: Proceed at your own RSK. Proc Natl Acad Sci USA 1993;90:5889–92.

    Article  CAS  Google Scholar 

  25. Rabin SJ, Clehon V, Kaplan DR. SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol 1993;13:2203–13.

    PubMed  CAS  Google Scholar 

  26. Sohrabji F, Miranda RC, Toran-Allerand CD. Ovarian hormones differentially regulate estrogen and nerve growth factor mRNAs in adult sensory neurons. J Neurosci 1994;14:459–71.

    PubMed  CAS  Google Scholar 

  27. Sohrabji F, Greene LA, Miranda RC, Toran-Allerand CD. Reciprocal regulation of estrogen and nerve growth factor receptors by their ligands in PC12 cells. J Neurobiol 1994;22:974–88.

    Article  Google Scholar 

  28. Qui MS, Green SH. PC12 cell neuronal differentiation is associated with prolonged p2 l ras activity and consequent prolonged ERK activity. Neuron 1992;9:705–17.

    Article  PubMed  CAS  Google Scholar 

  29. Singh M, Sétáló G Jr, Warren M, Toran-Allerand CD. Estrogen-induced activation of MAP kinase (ERK) in cerebral cortical explants: cross-coupling of estrogen and neurotrophin signaling pathways. J Neurosci 1999;19:1179–88.

    PubMed  CAS  Google Scholar 

  30. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. Comp Neurol 1997;388:507–25.

    Article  CAS  Google Scholar 

  31. Reddy KB, Mangold GL, Tandon AK, Yoneda T, Mundy GR, Zilberstein A, et al. Inhibition of breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res 1992;52:3636–41.

    PubMed  CAS  Google Scholar 

  32. Jaiswal RK, Moodie SA, Wolfman A, Landreth GE. The mitogen activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21 Ras Mol Cell Biol 1994;14:6944–53.

    CAS  Google Scholar 

  33. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997;272: 6525–33.

    Article  PubMed  CAS  Google Scholar 

  34. Liu P, Ying Y, Anderson RG. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci USA 1997;94: 13666–70.

    Article  PubMed  CAS  Google Scholar 

  35. Costello B, Meymandi A, Freeman J. Factors influencing GAP-43 gene expression in PC12 pheochromocytoma cells. J Neurosci 1990;10:1398–406.

    PubMed  CAS  Google Scholar 

  36. Lustig R, Sudol M, Pfaff D, Federoff H. Estrogenic regulation and sex dimorphism of growth-associated protein 43 kDa (GAP-43) messenger RNA in the rat. Brain Res Mol Brain Res 1991;11:125–32.

    Article  PubMed  CAS  Google Scholar 

  37. Drubin D, Feinstein S, Shooter E, Kirschner M. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 1985;101:1799–807.

    Article  PubMed  CAS  Google Scholar 

  38. Guo JZ, Gorski J. Estrogen effects on histone messenger ribonucleic acid levels in the rat uterus. Mol Endocrinol 1988;2:693–700.

    Article  PubMed  CAS  Google Scholar 

  39. Black M, Aletta J, Greene L. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J Cell Biol 1986;103: 545–57.

    Article  PubMed  CAS  Google Scholar 

  40. Ferreira A, Caceres A. Estrogen-enhanced neurite growth: evidence for a selective induction of tau and stable microtubules. J Neurosci 1991;11:293–400.

    Google Scholar 

  41. Fischer I, Richter-Landsberg C, Safaei R. Regulation of microtubule associated protein 2 (MAP2) expression by nerve growth factor in PC 12 cells. Exp Cell Res 1991;194:195–201.

    Article  PubMed  CAS  Google Scholar 

  42. Lorenzo A, Diaz H, Carrer H, Caceres A. Amygdala neurons in vitro: neurite growth and effects of estradiol. J Neurosci Res 1992;33:418–35.

    Article  PubMed  CAS  Google Scholar 

  43. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the CAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci USA 1994;91:8517–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Toran-Allerand, C.D. (2000). Novel Mechanisms of Estrogen Action in the Developing Brain. In: Bellino, F.L. (eds) Biology of Menopause. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21628-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21628-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9530-0

  • Online ISBN: 978-0-387-21628-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics