Skip to main content

Secondary Causes of Diabetes Mellitus

  • Chapter
  • First Online:
Principles of Diabetes Mellitus

Abstract

The diabetic syndromes include type 1 diabetes with immune destruction of the pancreatic islets, type 2 diabetes with a complex pathophysiology of insulin resistance combined with insulin secretory failure, distinct monogenetic abnormalities (maturity onset diabetes of the young – MODY), and extreme insulin resistance of several different etiologies. In addition, secondary causes of diabetes mellitus refer to a category in which diabetes is associated with other diseases or conditions. Presumably, the diabetes is caused by those conditions and could be reversed if those conditions were cured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31(Suppl 1):S55–S60.

    Article  CAS  Google Scholar 

  2. Pitchumoni CS, Patel NM, Shah P. Factors influencing mortality in acute pancreatitis. J Clin Gastroenterol. 2005;39:798–814.

    Article  PubMed  CAS  Google Scholar 

  3. Thow J, Semad A, Alberti KGMM. Epidemiology and general aspects of diabetes secondary to pancreatopathy. In: Tiengo A, Alberti KGMM, Del Prato S, Vranic M, eds. Diabetes Secondary to Pancreatopathy. Amsterdam: Excerpta Medica; 1988:7–20.

    Google Scholar 

  4. Del Prato S, Tiengo A. Diabetes secondary to acquired disease of the pancreas. In: Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, eds. International Textbook of Diabetes Mellitus. New York: John Wiley & Sons, Inc.; 1992:199.

    Google Scholar 

  5. Ueda T, Takeyama Y, Yasuda T, et al. Simple scoring system for the prediction of the prognosis of severe acute pancreatitis. Surgery. 2007;141:51–58.

    Article  PubMed  Google Scholar 

  6. Drew SI, Joffe B, Vinik AI, et al. The first 24 hours of acute pancreatitis. Changes in biochemical and endocrine homeostasis inpatients with pancreatitis compared to those in control subjects undergoing stress for reasons other than pancreatitis. Am J Med. 1978;64:795–803.

    Article  PubMed  CAS  Google Scholar 

  7. Donowitz M, Hendeler R, Spiro HM, et al. Glucagon secretion in acute and chronic pancreatitis. J Intern Med. 1975;83:778–781.

    CAS  Google Scholar 

  8. Kaya E, Dervisoglu A, Polat C. Evaluation of diagnostic findings and scoring systems in outcome prediction in acute pancreatitis. World J Gastroenterol. 2007;13(22):3090–3094.

    PubMed  CAS  Google Scholar 

  9. Andersen DK. Mechanisms and emerging treatments of the metabolic complications of chronic pancreatitis. Pancreas. 2007;35(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  10. Mlka D, Hammel P, Sauvanet A, et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology. 2000;119:1324–1332.

    Article  Google Scholar 

  11. Angelopoulos N, Dervenis C, Goula A, et al. Endocrine pancreatic insufficiency in chronic pancreatitis. Pancreatology. 2005;5:122–131.

    Article  PubMed  Google Scholar 

  12. Larsen S. Diabetes mellitus secondary to chronic pancreatitis. Dan Med Bull. 1993;40(2):153–162.

    PubMed  CAS  Google Scholar 

  13. Hedetoft C, Sheikh SP, Larsen S, Holst JJ. Effect of glucagons-like peptide 1(7-36)amide in insulin-treated patients with diabetes mellitus secondary to chronic pancreatitis. Pancreas. 2000;20(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  14. Mergener K, Baillie J. Chronic pancreatitis. Lancet. 1997;350:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  15. Chari ST, Leibson CL, Rabe KG, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134:95–101.

    Article  PubMed  CAS  Google Scholar 

  16. Murat S, Parviz PM. Diabetes and its relationship to pancreatic carcinoma. Pancreas. 2003;26(4):381–387.

    Article  Google Scholar 

  17. Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 2004;89:3629–3643.

    Article  PubMed  CAS  Google Scholar 

  18. Casas S, Gomis R, Gribble FM, et al. Impairment of the ubiquitin–proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell apoptosis. Diabetes. 2007;56:2284–2294.

    Article  PubMed  CAS  Google Scholar 

  19. Permert J, Larsson J, Fruin AB, et al. Islet hormone secretion in pancreatic cancer patients with diabetes. Pancreas. 1997;15:60–68.

    Article  PubMed  CAS  Google Scholar 

  20. Slezak LA, Andersen DK. Pancreatic resection: effects on glucose metabolism. World J Surg. 2001;25:452–460.

    Article  PubMed  CAS  Google Scholar 

  21. Brennan AL, Geddes DM, Gyi KM, Baker EH. Clinical importance of cystic fibrosis-related diabetes. J Cyst Fibros. 2004;3(4):209–222.

    Article  PubMed  CAS  Google Scholar 

  22. Dobson L, Stride A, Bingham C, et al. Microalbuminuria as a screening tool in cystic fibrosis-related diabetes. Pediatr Pulmonol. 2005;39(2):103–107.

    Article  PubMed  CAS  Google Scholar 

  23. Shwachman H, Kowalski M, Khaw KT. Cystic fibrosis: a new outlook, 70 patients above 25 years of age. Medicine. 1977;56:24–49.

    Article  Google Scholar 

  24. Alves Cde A, Aguiar RA, Alves AC, Santana MA. Diabetes mellitus in patients with cystic fibrosis. J Bras Pneumol. 2007;33(2):213–221.

    Article  PubMed  Google Scholar 

  25. Bizzarri C, Lucidi V, Ciampalini P, et al. Clinical effects of early treatment with insulin glargine in patients with cystic fibrosis and impaired glucose tolerance. J Endocrinol Invest. 2006;29(3):RC1–RC4.

    PubMed  CAS  Google Scholar 

  26. Williams R, Williams HS, Scheuer PJ, et al. Iron absorption and siderosis in chronic liver disease. Quart J Med. 1967;35:151–166.

    Google Scholar 

  27. Powell LW, Yapp TR. Hemochromatosis. Clin Liver Dis. 2000;4(1):211–228.

    Article  PubMed  CAS  Google Scholar 

  28. Wilson J, Lindquist J, Grambow S, et al. Potential role of increased iron stores in diabetes. Am J Med Sci. 2003;325(6):332–339.

    Article  PubMed  Google Scholar 

  29. Swaminathan S, Fonseca V, Alam M, Shah S. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–1933.

    Article  PubMed  CAS  Google Scholar 

  30. Wermers RA, Fatourechi V, Wynne AG, et al. The glucagonoma syndrome. Medicine. 1996;75:53.

    Article  PubMed  CAS  Google Scholar 

  31. Warner R. Enteroendocrine tumors other than carcinoid: a review of clinically significant advances. Gastroenterol. 2005;128:1668–1684.

    Article  Google Scholar 

  32. Beek AP, de Haas ERM, van Vloten WA, et al. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol. 2004;151:531–537.

    Article  PubMed  Google Scholar 

  33. Lefgbvre PJ. Glucagon and its family revisited. Diabetes Care. 1995;18:715–730.

    Google Scholar 

  34. Vinik AI, Strodel WE, Eckhauser FE, et al. Somatostatinomas, PPomas, neurotensinomas. Semin Oncol. 1987;14:263–281.

    PubMed  CAS  Google Scholar 

  35. Sassolas G, Chayvialle JA. GRFomas, somatostatinomas: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, eds. Endocrine Tumors of the Pancreas: Recent Advances in Research and Management. Frontiers of Gastrointestinal Research, Vol. 23. Basel, Switzerland: S. Karger; 1995:194.

    Google Scholar 

  36. Matuchansky C, Rambuaud JC. VIPomas and endocrine cholera: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, eds. Endocrine Tumors of the Pancreas: Recent Advances in Research and Management. Frontiers of Gastrointestinal Research, Vol. 23. Basel, Switzerland: S. Karger; 1995;166.

    Google Scholar 

  37. McCallum RW, Parameswaran V, Burgess JR. Multiple endocrine neoplasia type 1 (MEN 1) is associated with an increased prevalence of diabetes mellitus and impaired fasting glucose. Clin Endocrinol. 2006;65:163–168.

    Article  CAS  Google Scholar 

  38. Feldman JM, Plonk JW, Bivens CH, Levobitz HE. Glucose intolerance in the carcinoid syndrome. Diabetes. 1975;24:664–671.

    Article  PubMed  CAS  Google Scholar 

  39. Mitzner LD, Nohria A, Chacho M, Inzucchi SE. Sequential hypoglycemia, hyperglycemia, and the carcinoid syndrome arising from a plurihormonal neuroendocrine neoplasm. Endocr Pract. 2000;6:370–374.

    PubMed  CAS  Google Scholar 

  40. DeFronzo RA, Ferrannini E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev. 1987;3:415–459.

    Article  PubMed  CAS  Google Scholar 

  41. Zein NN. Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease. J Hepatol. 2000;32:209–217.

    Article  PubMed  CAS  Google Scholar 

  42. Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–743.

    Article  PubMed  CAS  Google Scholar 

  43. Albright ES, Bell DSH. The liver, liver disease, and diabetes mellitus. Endocrinol. 2003;13(1):58–66.

    Article  CAS  Google Scholar 

  44. Cavallo-Perin P, Cassader M, Bozzo C, et al. Mechanism of insulin resistance in human liver cirrhosis: evidence of combined receptor and postreceptor defect. J Clin Invest. 1985;75:1659–1665.

    Article  PubMed  CAS  Google Scholar 

  45. Harrison SA. Liver disease in patients with diabetes mellitus. J Clin Gastroenterol. 2006;40:68–76.

    Article  PubMed  Google Scholar 

  46. Holstein A, Hinze S, Thiessen E, et al. Clinical implications of hepatogenous diabetes in liver cirrhosis. J Gastroenterol Hepatol. 2002;17(6):677–681.

    Article  PubMed  Google Scholar 

  47. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–1801.

    Article  PubMed  CAS  Google Scholar 

  48. Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117:739–745.

    Article  PubMed  CAS  Google Scholar 

  49. Fartoux L, Poujol-Robert A, Guéchot J, et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005;54(7):1003–1008.

    Article  PubMed  CAS  Google Scholar 

  50. Hickman IJ, Macdonald GA. Impact of diabetes on the severity of liver disease. Am J Med. 2007;120(10):829–834.

    Article  PubMed  Google Scholar 

  51. Fraser GM, Harman I, Meller N, et al. Diabetes mellitus is associated with chronic hepatitis C but not chronic hepatitis B infection. Isr J Med Sci. 1996;32:526–530.

    PubMed  CAS  Google Scholar 

  52. Knobler H, Schihmanter R, Zifroni A, et al. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355–359.

    Article  PubMed  CAS  Google Scholar 

  53. Huang JF, Dai CY, Hwang SJ, et al. Hepatitis C viremia increases the association with type 2 diabetes mellitus in a hepatitis B and C endemic area: an epidemiological link with virological implication. Am J Gastroenterol. 2007;102(6):1237–1243.

    Article  PubMed  Google Scholar 

  54. Mehta SH, Brancati FL, Strathdee SA, et al. Hepatitis C virus infection and incident type 2 diabetes. Hepatology. 2003;38(1):50–56.

    Article  PubMed  Google Scholar 

  55. Zein CO, Levy C, Basu A, Zein NN. Chronic hepatitis C and type II diabetes mellitus: a prospective cross-sectional study. Am J Gastroenterol. 2005;100(1):48–55.

    Article  PubMed  Google Scholar 

  56. Lecube A, Hernández C, Genescà J, Simó R. Glucose abnormalities in patients with hepatitis C virus infection: epidemiology and pathogenesis. Diabetes Care. 2006;29(5):1140–1149.

    Article  PubMed  CAS  Google Scholar 

  57. Mehta SH, Brancati FL, Sulkowski MS, et al. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Hepatology. 2001;33(6):1554.

    Article  PubMed  CAS  Google Scholar 

  58. Huang JF, Dai CY, Hwang SJ, et al. Hepatitis C viremia increases the association with type 2 diabetes mellitus in a hepatitis B and C endemic area: an epidemiological link with virological implication. Am J Gastroenterol. 2007;102(6):1237–1243.

    Article  PubMed  Google Scholar 

  59. Hadziyannis SJ. The spectrum of extrahepatic manifestations in hepatitis C virus infection. J Vir Hepat. 1997;4:9–28.

    Article  CAS  Google Scholar 

  60. Oben JA, Paulon E. Fatty liver in chronic hepatitis C infection: unraveling the mechanisms. Gut. 2007;56:1186–1188.

    Article  PubMed  CAS  Google Scholar 

  61. Knobler H, Schattner A. TNF-alpha, chronic hepatitis C and diabetes: a novel triad. QJM. 2005;98(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  62. Chen LK, Chou YC, Tsai ST, et al. Hepatitis C virus infection-related type 1 diabetes mellitus. Diabetes Med. 2005;22(3):340–343.

    Article  Google Scholar 

  63. Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165(5):1499–1508.

    Article  PubMed  CAS  Google Scholar 

  64. Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384–1392.

    PubMed  CAS  Google Scholar 

  65. Romero-Gómez M, Del Mar Viloria M, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology. 2005;128(3):636–641.

    Article  PubMed  CAS  Google Scholar 

  66. Hickman IJ, Powell EE, Prins JB, et al. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy. J Hepatol. 2003;39(6):1042–1048.

    Article  PubMed  CAS  Google Scholar 

  67. Taura N, Ichikawa T, Hamasaki K, et al. Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients. Am J Gastroenterol. 2006;101(12):2752–2759.

    Article  PubMed  CAS  Google Scholar 

  68. Trombetta M, Spiazzi G, Zoppini G, Muggeo M. Review article: type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22(Suppl 2):24–27.

    Article  PubMed  Google Scholar 

  69. Record CO, Alberti KG, Williamson DH, Wright R. Glucose tolerance and metabolic changes in human viral hepatitis. Clin Sci Mol Med. 1973;45:677–690.

    PubMed  CAS  Google Scholar 

  70. Bianchi G, Marchesini G, Zoli M, et al. Prognostic significance of diabetes in patients with cirrhosis. Hepatology. 1994;20:119–125.

    PubMed  CAS  Google Scholar 

  71. Vesely DL, Dilley RW, Duckworth WC, Paustian FF. Hepatitis A-induced diabetes mellitus, acute renal failure, and liver failure. Am J Med Sci. 1999;317(6):419–425.

    Article  PubMed  CAS  Google Scholar 

  72. Masuda H, Atsumi T, Fujisaku A, et al. Acute onset of type 1 diabetes accompanied by acute hepatitis C: the potential role of proinflammatory cytokine in the pathogenesis of autoimmune diabetes. Diabetes Res Clin Pract. 2007;75(3):357–361.

    Article  PubMed  CAS  Google Scholar 

  73. Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001;286(16):1945–1948.

    Article  PubMed  CAS  Google Scholar 

  74. Lambertus MW, Murthy AR, Nagami P, et al. Diabetic ketoacidosis following pentamidine therapy in a patient with the acquired immunodeficiency syndrome. West J Med. 1988;149:602–604.

    PubMed  CAS  Google Scholar 

  75. Bouchard P, Sai P, Reach G, et al. Diabetes mellitus following pentamidine-induced hypoglycemia in humans. Diabetes. 1982;31:40–45.

    Article  PubMed  CAS  Google Scholar 

  76. Assan R, Perronne C, Assan D, et al. Pentamidine-induced derangements of glucose homeostasis. Diabetes Care. 1995;18:47–55.

    Article  PubMed  CAS  Google Scholar 

  77. Pandit MK, Burke J, Gustafson AB, et al. Drug-induced disorders of glucose tolerance. Ann Intern Med. 1993;118:529–540.

    PubMed  CAS  Google Scholar 

  78. O’Byrne S, Feely J. Effects of drugs on glucose tolerance in non-insulin-dependent diabetes (parts I and II). Drugs. 1990;40:203–219.

    Article  PubMed  Google Scholar 

  79. Shiba T, Morino Y, Tagawa K, et al. Onset of diabetes with high titer anti-GAD antibody after IFN therapy for chronic hepatitis. Diabetes Res Clin Pract. 1996;30:237–241.

    Article  Google Scholar 

  80. Gallanosa AG, Spyker DA, Curnow RT. Diabetes mellitus associated with autonomic and peripheral neuropathy after Vacor poisoning: a review. Clin Toxicol. 1981;18:441–449.

    Article  PubMed  CAS  Google Scholar 

  81. Florescu D, Kotler DP. Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther. 2007;12:149–162.

    PubMed  CAS  Google Scholar 

  82. Moyle G. Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr. 2007;45:S19–S26.

    Article  PubMed  CAS  Google Scholar 

  83. Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357:592–598.

    Article  PubMed  CAS  Google Scholar 

  84. Liang J, Distler O, Cooper DA, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med. 2001;7:1327–1331.

    Article  PubMed  CAS  Google Scholar 

  85. Riddle TM, Kuhel DG, Woollett LA, et al. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem. 2001;276:37514–37519.

    Article  PubMed  CAS  Google Scholar 

  86. Martine C, Auclair M, Vigouroux C, et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50:1378–1388.

    Article  Google Scholar 

  87. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275:20251–20254.

    Article  PubMed  CAS  Google Scholar 

  88. Usala AL, Madigan T, Burguera B, et al. Treatment of insulin-resistant diabetic ketoacidosis with insulin-like growth factor I in an adolescent with insulin-dependent diabetes [Brief report]. N Engl J Med. 1992;327:853–857.

    Article  PubMed  CAS  Google Scholar 

  89. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.

    Article  PubMed  CAS  Google Scholar 

  90. Leung KC, Ho KKY. Stimulation of mitochondrial fatty acid oxidation by growth hormone in human fibroblasts. J Clin Endocrinol Metab. 1997;82:4208–4213.

    Article  PubMed  CAS  Google Scholar 

  91. Goodman HN. The metabolic actions of growth hormone. In: Jefferson LS, Cherrington AD, Goodman HM, eds. Handbook of Physiology, Section, 7; The Endocrine System, Vol. 2. The Endocrine Pancreas and Regulation of Metabolism. New York: Oxford University Press, Inc.; 2001:849–906.

    Google Scholar 

  92. Vilar L, Naves LA, Costa SS, et al. Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract. 2007;13:363–372.

    PubMed  Google Scholar 

  93. Butler AA, LeRoith D. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinol. 2001;142:1685–1688.

    Article  CAS  Google Scholar 

  94. Munck A, Naray-Fejes-Toth A. Glucocorticoid physiology. In: DeGroot LJ, Jameson LJ, eds. Endocrinology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2006:2287–2309.

    Google Scholar 

  95. Salati LM. Regulation of fatty acid biosynthesis and lipolysis. In: Jefferson LS, Cherrington AD, Goodman HM, eds. Handbook of Physiology, Section, 7; The Endocrine System, Vol. 2. The Endocrine Pancreas and Regulation of Metabolism. New York: Oxford University Press, Inc.; 2001:495–527.

    Google Scholar 

  96. Jefferson LS, Vary TC, Kimball SR. Regulation of protein metabolism in muscle. In: Jefferson LS, Cherrington AD, Goodman HM, eds. Handbook of Physiology, Section, 7; The Endocrine System, Vol. 2. The Endocrine Pancreas and Regulation of Metabolism. New York: Oxford University Press, Inc.; 2001:536.

    Google Scholar 

  97. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–2170.

    Article  PubMed  CAS  Google Scholar 

  98. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21:1443–1455.

    Article  PubMed  CAS  Google Scholar 

  99. Gura T. Pot-bellied mice point to obesity enzyme [News of the Week]. Science. 2001;294:2071–2072.

    Article  PubMed  CAS  Google Scholar 

  100. Manger WM, Gifford RW. Clinical and Experimental Pheochromocytoma. 2nd ed. Cambridge: Blackwell Science, Inc.; 1996:209.

    Google Scholar 

  101. Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92(11):4069–4079.

    Article  PubMed  CAS  Google Scholar 

  102. Cryer PE. Catecholamines, pheochromocytoma and diabetes. Diabetes Rev. 1993;1:309–317.

    Google Scholar 

  103. Romero R, Casanova B, Pulido N, et al. Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter proteins. J Endocrinol. 2000;164:187–195.

    Article  PubMed  CAS  Google Scholar 

  104. Tosi F, Moghetti P, Castello R, et al. Early changes in plasma glucagon and growth hormone response to oral glucose in experimental hyperthyroidism. Metab Clin Exp. 1996;45:1029–1033.

    Article  PubMed  CAS  Google Scholar 

  105. Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000 July;14(7):947–955.

    Article  PubMed  CAS  Google Scholar 

  106. Mokuno T, Uchimura K, Hayashi R, et al. Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers. J Endocrinol. 1999;160:285–289.

    Article  PubMed  CAS  Google Scholar 

  107. Kreze A Sr., Kreze-Spirova E, Mikulecky M. Diabetes mellitus in primary aldosteronism. Bratisl Lek Listy. 2000;101:187–190.

    PubMed  Google Scholar 

  108. Ferrannini E, Galvan AQ, Santoro D, Natali A. Potassium as a link between insulin and the rennin–angiotensin–aldosterone system. J Hypertension. 1992;10(Suppl 1):S5–S10.

    Article  CAS  Google Scholar 

  109. Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension. 2007;50:750–755.

    Article  PubMed  CAS  Google Scholar 

  110. Strauch B, Widimsky J, Sindelka G, Skrha J. Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiol Res. 2003;52(4):503–506.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne M. Fleckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garger, Y.B., Joshi, P.M., Pareek, A.S., Romero, C.M., Seth, A.K., Fleckman, A.M. (2010). Secondary Causes of Diabetes Mellitus. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics