Skip to main content

Parallel Numerical Solver for the Simulation of the Heat Conduction in Electrical Cables

  • Chapter
Parallel Scientific Computing and Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 27))

  • 1474 Accesses

Abstract

The modeling of the heat conduction in electrical cables is a complex mathematical problem. To get a quantitative description of the thermo-electrical characteristics in the electrical cables, one requires a mathematical model for it. In this chapter, we develop parallel numerical algorithms for the heat transfer simulation in cable bundles. They are implemented using MPI and targeted for distributed memory computers, including clusters of PCs. The results of simulations of two-dimensional heat transfer models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. čiegis, R., Ilgevičius, A., Liess, H., Meilūnas, M., Suboč, O.: Numerical simulation of the heat conduction in electrical cables. Mathematical Modelling and Analysis 12(4), 425–439 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. čiegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Computational Methods in Applied Mathematics 7(2), 118–134 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Emmrich, E., Grigorieff, R.: Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order sobolev spaces. Comp. Meth. Appl. Math. 6(2), 154–852 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Ewing, R., Iliev, O., Lazarov, R.: A modified finite volume approximation of second order elliptic with discontinuous coefficients. SIAM J. Sci. Comp. 23(4), 1334–13350 (2001)

    Article  MathSciNet  Google Scholar 

  5. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Review 41(2), 278–300 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA (1994)

    MATH  Google Scholar 

  7. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, Inc., New York–Basel (2001)

    MATH  Google Scholar 

  8. Van der Vorst, H.: Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(3), 631–644 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jankevičiūtė, G., čiegis, R. (2009). Parallel Numerical Solver for the Simulation of the Heat Conduction in Electrical Cables. In: Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09707-7_18

Download citation

Publish with us

Policies and ethics