Skip to main content

Teaching and Understanding Mathematical Modelling through Fermi-Problems

  • Chapter
Book cover Tasks in Primary Mathematics Teacher Education

Part of the book series: Mathematics Teacher Education ((MTEN,volume 4))

While there is a large body of research on mathematical problem solving and modelling at primary school level, the mathematical modelling process itself has not been given much attention in research. In order to support and identify mathematical modelling processes, Fermi problems have been used in a classroom based study with third and fourth graders. In contrast to standard word problems that frequently just require the application of one or two simple algorithms and therefore do not provide information on how to find a mathematical model, Fermi problems provide the necessary complexity for studying authentic mathematical modelling. Videotapes of small group work in a grade four classroom provided the data basis. The analysis of the classroom data suggests that word problems with a high level of complexity can be solved in sensible and appropriate ways by third and fourth graders. The Fermi problems in this context served as “model-eliciting tasks”, because the required modelling process necessitates multiple modelling cycles with multiple ways of thinking about givens, goals, and solution paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauersfeld, H. (1991). Sachaufgaben! — Nichts als Ä rger!? Grundschulzeitschrift, 42, 8–10.

    Google Scholar 

  • Bauersfeld, H., Krummheuer, G.,&Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related mircroethnographical studies. In H.-G. Steiner&A. Vermandel (Eds.), Foundations and methodology of the discipline mathematics education (pp. 174–188). Bielefeld: Bielefeld University, IDM.

    Google Scholar 

  • Bell, M. (1993). Modelling and applications of mathematics in the primary curriculum. In T. Breiteig, I. Huntley,&G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 71–80). London: Ellis Horwood.

    Google Scholar 

  • Clarke, D. J.,&McDonough, A. (1989). The problems of the problem-solving classroom. The Australian Mathematics Teacher, 45(2), 20–24.

    Google Scholar 

  • de Lange, J. (1998). Real problems with real world mathematics. In C. Alsina, J. Alvarez, M. Niss, A. Pérez, L. Rico,&A. Sfard (Eds.), Proceedings of the 8th International Congress on Mathematical Education (pp. 83–110). Seville: SAEM Thales.

    Google Scholar 

  • Freudenthal, H. (1984). Wie alt ist der Kapitän? Mathematik lehren, 5, 38–39.

    Google Scholar 

  • Heymann, H. W. (2003). Why teach mathematics? A focus on general education. Dordrecht: Kluwer.

    Google Scholar 

  • Lesh, R.,&Doerr, H. (2000). Symbolizing, communicating and mathematizing: Key components of models and modelling. In P. Cobb, E. Yackel,&K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 361–383). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Pehkonen, E. (1991). Developments in the understanding of problem solving. Zentralblatt für Mathematikdidaktik, 23(2), 46–50.

    Google Scholar 

  • Peschel, F. (1996). Offener Unterricht am Ende — oder erst am Anfang? Projekt OASE Bericht No. 2, FB2 der Universität Gesamthochschule Siegen.

    Google Scholar 

  • Peter-Koop, A. (2001). From “teachers researchers” to “student teacher researchers”: Diagnosti-cally enriched didactics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 72–79). Utrecht University.

    Google Scholar 

  • Peter-Koop, A. (2002). Real-world problem solving in small groups: Interaction patterns of third and fourth graders. In B. Barton, C. Irwin, M. Pfannkuch,&M. O. J. Thomas (Eds.), Mathematics education in the south pacific (Proceedings of the 25th annual conference of the Mathematics Education Research Group of Australasia, Auckland, pp. 559–566). Sydney: MERGA.

    Google Scholar 

  • Peter-Koop, A.,&Wollring, B. (2001). Student teacher participation in interpretative classroom research projects. Mathematics Teacher Education and Development, 3, 4–15.

    Google Scholar 

  • Pólya, G. (1957). How to solve it. A new aspect of mathematical method. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Reed, S. K. (1999). Word problems. Research and curriculum reform. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Renkl, A.,&Stern, E. (1994). Die Bedeutung von kognitiven Eingangsvoraussetzungen und schulischen Lerngelegenheiten für das Lösen von einfachen und komplexen Textaufgaben. Zeitschrift für Pädagogische Psychologie, 8(1), 27–39.

    Google Scholar 

  • Silver, E. A. (1995). The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. Zentralblatt für Didaktik der Mathematik, 27(2), 67–72.

    Google Scholar 

  • van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. Utrecht: CD-B Press, Utrecht University.

    Google Scholar 

  • Verschaffel, L.,&De Corte, E. (1997). Teaching realistic mathematical modelling and problem solving in the elementary school. A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28(5), 577–601.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E.,&Lasure, S. (1994). Realistic considerations in mathematical modelling of school arithmetic word problems. Learning and Instruction, 4, 273–294.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E.,&Lasure, S. (1999). Children's conceptions about the role of real-world knowledge in mathematical modelling of school word problems. In W. Schnotz, S. Vosniadou, M. Carretero (Eds.), New perspectives on conceptual change (pp. 175–189). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Verschaffel, L., Greer, B., and de Corte, E. (2000). Making sense of word problems. Lisse: Svets Zeitlinger.

    Google Scholar 

  • Winter, H. (1994). Modelle als Konstrukte zwischen lebensweltlichen Situationen und arithmetis-chen Begriffen. Grundschule, 26(3), 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peter-Koop, A. (2009). Teaching and Understanding Mathematical Modelling through Fermi-Problems. In: Clarke, B., Grevholm, B., Millman, R. (eds) Tasks in Primary Mathematics Teacher Education. Mathematics Teacher Education, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09669-8_10

Download citation

Publish with us

Policies and ethics