A Case Study in Model-driven Synthetic Biology


We report on a case study in synthetic biology, demonstrating the model-driven design of a self-powering electrochemical biosensor. An essential result of the design process is a general template of a biosensor, which can be instantiated to be adapted to specific pollutants. This template represents a gene expression network extended by metabolic activity. We illustrate the model-based analysis of this template using qualitative, stochastic and continuous Petri nets and related analysis techniques, contributing to a reliable and robust design.