Skip to main content

The Immune Response to Oncogenic Retroviruses

  • Chapter
  • First Online:
  • 628 Accesses

Abstract

Although the discovery of the first oncogenic retrovirus was made almost 100 years ago, considerable insights into the specific host immunity involved in anti-tumor and anti-viral responses during acute and chronic infection with oncogenic retroviruses have been achieved only in the last few decades. Human T-cell lymphotropic virus 1 (HTLV-1) is the only known human oncogenic retrovirus, yet several animal retroviruses have provided knowledge of the mechanisms by which host immunity controls retroviral spread and the sequelae, such as tumor induction; as well as viral escape mechanisms, including mutation of virus-specific antigens and virus-induced immunosuppression of B-and T-cell responses. This chapter will cover advances in the understanding of the immune responses to HTLV-1 and its associated adult T-cell leukemia (ATL), after first examining the cell- and antibody-mediated responses to the AKR/Gross, Friend, and the LP-BM5 murine retroviruses and their tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnulf, B., Thorel, M., Poirot, Y., et al. 2004. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma. Leukemia 18:26–132.

    Google Scholar 

  • Asquith, B., Mosley, A. J., Barfield, A., et al. 2005. A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J. Gen. Virol. 86:1515–1523.

    PubMed  CAS  Google Scholar 

  • Aziz, D. C., Hanna, Z., Jolicoeur, P. 1989. Severe immunodeficiency disease induced by a defective murine leukaemia virus. Nature 338:505–508.

    PubMed  CAS  Google Scholar 

  • Azuma, H., Wegmann, K. W., Green, W. R. 1988. Correlations of in vivo growth of CTL-susceptible and -resistant variant tumor cell lines in CTL-responder AKR.H-2b:Fv-1b and -nonresponder AKR.H-2b mice. Cell. Immunol. 116:123–134.

    PubMed  CAS  Google Scholar 

  • Baba, E., Nakamura, M., Ohkuma, K., et al. 1995. A peptide-based human T cell leukemia virus type I vaccine containing T and B cell epitopes that induces high titers of neutralizing antibodies. J. Immunol. 154:399–412.

    PubMed  CAS  Google Scholar 

  • Baba, E., Nakamura, M., Tanaka, Y., et al. 1993. Multiple neutralizing B-cell epitopes of human T-cell leukemia virus type 1 (HTLV-1) identified by human monoclonal antibodies. A basis for the design of an HTLV-1 peptide vaccine. J. Immunol. 151:1013–1024.

    PubMed  CAS  Google Scholar 

  • Balkow, S., Krux, F., Loser, K., et al. 2007. Friend retrovirus infection of myeloid dendritic cells impairs maturation, prolongs contact to naive T cells, and favors expansion of regulatory T cells. Blood[issue and pages?]

    Google Scholar 

  • Balkwill, F., Charles, K. A., Mantovani, A. 2005. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217.

    PubMed  CAS  Google Scholar 

  • Ballard, D. W., Bohnlein, E., Lowenthal, J. W., et al. 1988. HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. Science 241:1652–1655.

    PubMed  CAS  Google Scholar 

  • Bangham, C. R. 2003. The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J. Gen. Virol. 84:3177–3189.

    PubMed  CAS  Google Scholar 

  • Bangham, C. R., and Osame, M. 2005. Cellular immune response to HTLV-1. Oncogene 24:6035–6046.

    PubMed  CAS  Google Scholar 

  • Barmak, K., Harhaj, E., Grant, C., et al. 2003. Human T cell leukemia virus type I-induced disease: pathways to cancer and neurodegeneration. Virology 308:1–12.

    PubMed  CAS  Google Scholar 

  • Britt, W. J., and Chesebro, B. 1983a. H-2D control of recovery from Friend virus leukemia: H-2D region influences the kinetics of the T lymphocyte response to Friend virus. J. Exp. Med. 157:1736–1745.

    PubMed  CAS  Google Scholar 

  • Britt, W. J., and Chesebro, B. 1983b. Use of monoclonal anti-gp70 antibodies to mimic the effects of the Rfv-3 gene in mice with Friend virus-induced leukemia. J. Immunol. 130:2363–2367.

    PubMed  CAS  Google Scholar 

  • Bullock, T. N., and Eisenlohr, L. C. 1996. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J. Exp. Med. 184:1319–1329.

    PubMed  CAS  Google Scholar 

  • Burnet, F. M. 1970. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13:1–27.

    PubMed  CAS  Google Scholar 

  • Chattopadhyay, S. K., Morse, H. C., 3rd, Makino, M., et al. 1989. Defective virus is associated with induction of murine retrovirus-induced immunodeficiency syndrome. Proc. Natl. Acad. Sci. U S A 86:3862–3866.

    PubMed  CAS  Google Scholar 

  • Chattopadhyay, S. K., Sengupta, D. N., Fredrickson, T. N., et al. 1991. Characteristics and contributions of defective, ecotropic, and mink cell focus-inducing viruses involved in a retrovirus-induced immunodeficiency syndrome of mice. J. Virol. 65:4232–4241.

    PubMed  CAS  Google Scholar 

  • Chen, W., Qin, H., Chesebro, B., et al. 1996. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J. Virol. 70:7773–7782.

    PubMed  CAS  Google Scholar 

  • Chesebro, B., Britt, W., Evans, L., et al. 1983. Characterization of monoclonal antibodies reactive with murine leukemia viruses: use in analysis of strains of friend MCF and Friend ecotropic murine leukemia virus. Virology 127:134–148.

    PubMed  CAS  Google Scholar 

  • Chesebro, B., Miyazawa, M., Britt, W. J. 1990. Host genetic control of spontaneous and induced immunity to Friend murine retrovirus infection. Annu. Rev. Immunol. 8:477–499.

    PubMed  CAS  Google Scholar 

  • Chesebro, B., and Wehrly, K. 1979. Identification of a non-H-2 gene (Rfv-3) influencing recovery from viremia and leukemia induced by Friend virus complex. Proc. Natl. Acad. Sci. U S A 76:425–429.

    PubMed  CAS  Google Scholar 

  • Chesebro, B., Wehrly, K., Stimpfling, J. 1974. Host genetic control of recovery from Friend leukemia virus-induced splenomegaly: mapping of a gene within the major histocompatability complex. J. Exp. Med. 140:1457–1467.

    PubMed  CAS  Google Scholar 

  • Cloyd, M. W., Thompson, M. M., Hartley, J. W. 1985. Host range of mink cell focus-inducing viruses. Virology 140:239–248.

    PubMed  CAS  Google Scholar 

  • Coppola, M. A., and Green, W. R. 1994. Cytotoxic T lymphocyte responses to the envelope proteins of endogenous ecotropic and mink cytopathic focus-forming murine leukemia viruses in H-2b mice. Virology 202:500–505.

    PubMed  CAS  Google Scholar 

  • Coppola, M. A., Green, W. R., Rich, R. F. 1996. Impaired generation of anti-AKR/Gross murine leukemia virus cytotoxic T lymphocytes in mice experimentally infected with MuLV. Viral. Immunol. 9:107–119.

    PubMed  CAS  Google Scholar 

  • Coppola, M. A., Lam, T. M., Strawbridge, R. R., et al. 1995. Recognition of endogenous ecotropic murine leukaemia viruses by anti-AKR/Gross virus cytotoxic T lymphocytes (CTL): epitope variation in a CTL-resistant virus. J. Gen. Virol. 76( Pt 3):635–641.

    PubMed  CAS  Google Scholar 

  • Dittmer, U., and Hasenkrug, K. J. 2000. Different immunological requirements for protection against acute versus persistent Friend retrovirus infections. Virology 272:177–182.

    PubMed  CAS  Google Scholar 

  • Dittmer, U., He, H., Messer, R. J., et al. 2004. Functional impairment of CD8(+) T cells by regulatory T cells during persistent retroviral infection. Immunity 20:293–303.

    PubMed  CAS  Google Scholar 

  • Dittmer, U., Peterson, K. E., Messer, R., et al. 2001. Role of interleukin-4 (IL-4), IL-12, and gamma interferon in primary and vaccine-primed immune responses to Friend retrovirus infection. J. Virol. 75:654–660.

    PubMed  CAS  Google Scholar 

  • Dittmer, U., Race, B., Peterson, K. E., et al. 2002. Essential roles for CD8+ T cells and gamma interferon in protection of mice against retrovirus-induced immunosuppression. J. Virol. 76:450–454.

    PubMed  CAS  Google Scholar 

  • Doig, D., and Chesebro, B. 1979. Anti-Friend virus antibody is associated with recovery from viremia and loss of viral leukemia cell-surface antigens in leukemic mice. Identification of Rfv-3 as a gene locus influencing antibody production. J. Exp. Med. 150:10–19.

    PubMed  CAS  Google Scholar 

  • Dunn, G. P., Bruce, A. T., Ikeda, H., et al. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–998.

    PubMed  CAS  Google Scholar 

  • Earl, P. L., Moss, B., Morrison, R. P., et al. 1986. T-lymphocyte priming and protection against Friend leukemia by vaccinia-retrovirus env gene recombinant. Science 234:728–731.

    PubMed  CAS  Google Scholar 

  • Engel, A. M., Svane, I. M., Rygaard, J., et al. 1997. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand. J. Immunol. 45:463–470.

    PubMed  CAS  Google Scholar 

  • Erbe, J. G., Green, K. A., Crassi, K. M., et al. 1992. Cytolytic T lymphocytes specific for tumors and infected cells from mice with a retrovirus-induced immunodeficiency syndrome. J. Virol. 66:3251–3256.

    PubMed  CAS  Google Scholar 

  • Falk, K., Rotzschke, O., Stevanovic, S., et al. 1991. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296.

    PubMed  CAS  Google Scholar 

  • Fan, H. 1994. Retroviruses and their role in cancer Vol 3 (New York, Plenum Press)

    Google Scholar 

  • Fink, P. J., Shimonkevitz, R. P., Bevan, M. J. 1988. Veto cells. Annu. Rev. Immunol. 6:115–137.

    CAS  Google Scholar 

  • Fischinger, P. J., Nomura, S., Bolognesi, D. P. 1975. A novel murine oncornavirus with dual eco- and xenotropic properties. Proc. Natl. Acad. Sci. U S A 72:5150–5155.

    PubMed  CAS  Google Scholar 

  • Fremont, D. H., Matsumura, M., Stura, E. A., et al. 1992. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257:919–927.

    PubMed  CAS  Google Scholar 

  • Gaur, A., and Green, W. R. 2003. Analysis of the helper virus in murine retrovirus-induced immunodeficiency syndrome: evidence for immunoselection of the dominant and subdominant CTL epitopes of the BM5 ecotropic virus. Viral. Immunol. 16:203–212.

    PubMed  CAS  Google Scholar 

  • Gaur, A., and Green, W. R. 2005. Role of a cytotoxic-T-lymphocyte epitope-defined, alternative gag open reading frame in the pathogenesis of a murine retrovirus-induced immunodeficiency syndrome. J. Virol. 79:4308–4315.

    PubMed  CAS  Google Scholar 

  • Goon, P. K., and Bangham, C. R. 2004. Interference with immune function by HTLV-1. Clin. Exp. Immunol. 137:234–236.

    PubMed  CAS  Google Scholar 

  • Goon, P. K., Biancardi, A., Fast, N., et al. 2004a. Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J. Infect. Dis. 189:2294–2298.

    PubMed  Google Scholar 

  • Goon, P. K., Igakura, T., Hanon, E., et al. 2004b. Human T cell lymphotropic virus type I (HTLV-I)-specific CD4+ T cells: immunodominance hierarchy and preferential infection with HTLV-I. J. Immunol. 172:1735–1743.

    PubMed  CAS  Google Scholar 

  • Green, W. R. 1980. H-2-restricted cytolytic T lymphocytes specific for a subclass of AKR endogenous leukemia virus-induced tumors: correlation of tumor cell susceptibility with expression of the gross cell surface antigen. J. Immunol. 125:2584–2590.

    PubMed  CAS  Google Scholar 

  • Green, W. R. 1983. The specificity of H-2-restricted cytotoxic T lymphocytes directed to AKR/Gross leukemia virus-induced tumors. I. Isolation of a selectively resistant variant tumor subclone. Eur. J. Immunol. 13:863–870.

    CAS  Google Scholar 

  • Green, W. R. 1984. Genetic control of the induction of cytolytic T lymphocyte responses to AKR/Gross viral leukemias. I. H-2-encoded dominant gene control. J. Immunol. 132:2658–2664.

    CAS  Google Scholar 

  • Green, W. R. 1987. Induction of anti-AKR/gross virus cytolytic T lymphocytes in AKR.H-2b:Fv-1b congenic mice: age-dependent conversion to a nonresponder phenotype. J. Immunol. 138:1602–1606.

    PubMed  CAS  Google Scholar 

  • Green, W. R. and Brown, M. A. 1983. The specificity of H-2-restricted cytotoxic T lymphocytes directed to AKR/Gross leukemia virus-induced tumors. II. Altered gp70 display and production of noninfectious virus particles by an insusceptible variant tumor. Eur. J. Immunol. 13:871–877.

    CAS  Google Scholar 

  • Green, W. R., Crassi, K. M., Schwarz, D. A., et al. 1994a. Cytotoxic T lymphocytes directed against MAIDS-associated tumors and cells from mice infected by the LP-BM5 MAIDS defective retrovirus. Virology 200:292–296.

    PubMed  CAS  Google Scholar 

  • Green, W. R., and Graziano, R. F. 1986. Cytolytic T lymphocyte-defined retroviral antigens on normal cells: encoding by the Akv-1 proviral locus. Immunogenetics 23:106–110.

    PubMed  CAS  Google Scholar 

  • Green, W. R., Green, K. A., Crassi, K. M. 1994b. Adoptive transfer of polyclonal and cloned cytolytic T lymphocytes (CTL) specific for mouse AIDS-associated tumors is effective in preserving CTL responses: a measure of protection against LP-BM5 retrovirus-induced immunodeficiency. J. Virol. 68:4679–4684.

    PubMed  CAS  Google Scholar 

  • Green, W. R., Nowinski, R. C., Henney, C. S. 1979. The generation and specificity of cytotoxic T cells raised against syngeneic tumor cells bearing AKR/Gross murine leukemia virus antigens. J. Exp. Med. 150:51–66.

    PubMed  CAS  Google Scholar 

  • Green, W. R., Nowinski, R. C., Henney, C. S. 1980. Specificity of cytolytic T cells directed against AKR/Gross virus-induced syngeneic leukemias: antibodies directed against H-2K, but not against viral proteins, inhibit lysis. J. Immunol. 125:647–655.

    PubMed  CAS  Google Scholar 

  • Green, W. R., and Rich, R. F. 1988. Genetic control of CTL responses to AKR/Gross virus: effect of inheritance of Akv proviruses. Immunogenetics 27:304–312.

    PubMed  CAS  Google Scholar 

  • Gross, L. 1951. “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embrvos. Proc. Soc. Exp. Biol. Med. 76:27–32.

    PubMed  CAS  Google Scholar 

  • Hanon, E., Hall, S., Taylor, G. P., et al. 2000. Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood 95:1386–1392.

    PubMed  CAS  Google Scholar 

  • Harhaj, N. S., Janic, B., Ramos, J. C., et al. 2007. Deregulated expression of CD40 ligand in HTLV-I infection: distinct mechanisms of downregulation in HTLV-I-transformed cell lines and ATL patients. Virology 362:99–108.

    PubMed  CAS  Google Scholar 

  • Hartley, J. W., Fredrickson, T. N., Yetter, R. A., et al. 1989. Retrovirus-induced murine acquired immunodeficiency syndrome: natural history of infection and differing susceptibility of inbred mouse strains. J. Virol. 63:1223–1231.

    PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J. 1999. Lymphocyte deficiencies increase susceptibility to friend virus-induced erythroleukemia in Fv-2 genetically resistant mice. J. Virol. 73:6468–6473.

    PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J., Brooks, D. M., Dittmer, U. 1998. Critical role for CD4(+) T cells in controlling retrovirus replication and spread in persistently infected mice. J. Virol. 72:6559–6564.

    PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J., Brooks, D. M., Nishio, J., et al. 1996. Differing T-cell requirements for recombinant retrovirus vaccines. J. Virol. 70:368–372.

    PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J., and Chesebro, B. 1997. Immunity to retroviral infection: the Friend virus model. Proc. Natl. Acad. Sci. U S A 94:7811–7816.

    PubMed  CAS  Google Scholar 

  • Herr, W. 1984. Nucleotide sequence of AKV murine leukemia virus. J. Virol. 49:471–478.

    PubMed  CAS  Google Scholar 

  • Himes, S. R., Coles, L. S., Katsikeros, R., et al. 1993. HTLV-1 tax activation of the GM-CSF and G-CSF promoters requires the interaction of NF-kB with other transcription factor families. Oncogene 8:3189–3197.

    PubMed  CAS  Google Scholar 

  • Ho, O., and Green, W. R. 2006a. Alternative translational products and cryptic T cell epitopes: expecting the unexpected. J. Immunol. 177:8283–8289.

    PubMed  CAS  Google Scholar 

  • Ho, O., and Green, W. R. 2006b. Cytolytic CD8+ T cells directed against a cryptic epitope derived from a retroviral alternative reading frame confer disease protection. J. Immunol. 176:2470–2475.

    PubMed  CAS  Google Scholar 

  • Huang, M., Simard, C., Kay, D. G., et al. 1991. The majority of cells infected with the defective murine AIDS virus belong to the B-cell lineage. J. Virol. 65:6562–6571.

    PubMed  CAS  Google Scholar 

  • Ishida, T., Iida, S., Akatsuka, Y., et al. 2004. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-Cell leukemia/lymphoma. Clin. Cancer Res. 10:7529–7539.

    PubMed  CAS  Google Scholar 

  • Iwanaga, Y., Tsukahara, T., Ohashi, T., et al. 1999. Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. J. Virol. 73:1271–1277.

    PubMed  CAS  Google Scholar 

  • Iwashiro, M., Kondo, T., Shimizu, T., et al. 1993. Multiplicity of virus-encoded helper T-cell epitopes expressed on FBL-3 tumor cells. J. Virol. 67:4533–4542.

    PubMed  CAS  Google Scholar 

  • Iwashiro, M., Peterson, K., Messer, R. J., et al. 2001. CD4(+) T cells and gamma interferon in the long-term control of persistent friend retrovirus infection. J. Virol. 75:52–60.

    PubMed  CAS  Google Scholar 

  • Jenkins, N. A., Copeland, N. G., Taylor, B. A., et al. 1982. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43:26–36.

    PubMed  CAS  Google Scholar 

  • Jolicoeur, P. 1991. Murine acquired immunodeficiency syndrome (MAIDS): an animal model to study the AIDS pathogenesis. Faseb J 5:2398–2405.

    PubMed  CAS  Google Scholar 

  • Jones, K. S., Petrow-Sadowski, C., Huang, Y. K., et al. 2008. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med. 14:429–436.

    PubMed  CAS  Google Scholar 

  • Kannagi, M., Harada, S., Maruyama, I., et al. 1991. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int. Immunol. 3:761–767.

    PubMed  CAS  Google Scholar 

  • Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436.

    PubMed  CAS  Google Scholar 

  • Karin, M., and Greten, F. R. 2005. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5:749–759.

    PubMed  CAS  Google Scholar 

  • Khan, A. S. 1984. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses. J. Virol. 50:864–871.

    PubMed  CAS  Google Scholar 

  • Kim, V., and Green, W. R. 1997. The role of proximal and distal sequence variations in the presentation of an immunodominant CTL epitope encoded by the ecotropic AK7 MuLV. Virology 236:221–233.

    PubMed  CAS  Google Scholar 

  • Kim, V., and Green, W. R. 1998. A single amino acid variation within an immunodominant AKR/Gross MuLV cytotoxic T-lymphocyte epitope leads to a loss in immunogenicity. Viral. Immunol. 11:197–213.

    PubMed  Google Scholar 

  • Kim, V., Yewdell, J. W., Green, W. R. 2000. Naturally occurring TAP-dependent specific T-cell tolerance for a variant of an immunodominant retroviral cytotoxic T-lymphocyte epitope. J. Virol. 74:3924–3928.

    PubMed  CAS  Google Scholar 

  • Kim, W. K., Tang, Y., Kenny, J. J., et al. 1994. In murine AIDS, B cells are early targets of defective virus and are required for efficient infection and expression of defective virus in T cells and macrophages. J. Virol. 68:6767–6769.

    PubMed  CAS  Google Scholar 

  • Klinken, S. P., Fredrickson, T. N., Hartley, J. W., et al. 1988. Evolution of B cell lineage lymphomas in mice with a retrovirus-induced immunodeficiency syndrome, MAIDS. J. Immunol. 140:1123–1131.

    CAS  Google Scholar 

  • Kondo, T., Uenishi, H., Shimizu, T., et al. 1995. A single retroviral gag precursor signal peptide recognized by FBL-3 tumor-specific cytotoxic T lymphocytes. J. Virol. 69:6735–6741.

    PubMed  CAS  Google Scholar 

  • Koyanagi, Y., Itoyama, Y., Nakamura, N., et al. 1993. In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 196:25–33.

    PubMed  CAS  Google Scholar 

  • Kozako, T., Arima, N., Toji, S., et al. 2006. Reduced frequency, diversity, and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients. J. Immunol. 177:5718–5726.

    PubMed  CAS  Google Scholar 

  • Latarjet, R., and Duplan, J. F. 1962. Experiment and discussion on leukaemogenesis by cell-free extracts of radiation-induced leukaemia in mice. Int. J. Radiat. Biol. 5:339–344.

    PubMed  CAS  Google Scholar 

  • Lee, H. C., and Wei, Y. H. 2007. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. (Maywood) 232:592–606.

    CAS  Google Scholar 

  • Li, M., Huang, X., Zhu, Z., et al. 1999. Sequence and insertion sites of murine melanoma-associated retrovirus. J. Virol. 73:9178–9186.

    PubMed  CAS  Google Scholar 

  • Lilly, F. 1966. The histocompatibility-2 locus and susceptibility to tumor induction Natl. Cancer Inst. Monogr. 22:631–642.

    CAS  Google Scholar 

  • Lilly, F. 1968. The effect of histocompatibility-2 type on response to friend leukemia virus in mice. J. Exp. Med. 127:465–473.

    PubMed  CAS  Google Scholar 

  • Lilly, F. 1970a. Fv-2: identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J. Natl. Cancer Inst. 45:163–169.

    PubMed  CAS  Google Scholar 

  • Lilly, F. 1970b. The role of genetics in Gross virus leukemogenesis. Bibl. Haematol.:213–220.

    Google Scholar 

  • Lin, W. W., and Karin, M. 2007. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117:1175–1183.

    PubMed  CAS  Google Scholar 

  • Lowy, D. R., Rands, E., Chattopadhyay, S. K., et al. 1980. Molecular cloning of infectious integrated murine leukemia virus DNA from infected mouse cells. Proc. Natl. Acad. Sci. U S A 77:614–618.

    PubMed  CAS  Google Scholar 

  • Makino, M., Chattopadhyay, S. K., Hartley, J. W., et al. 1992. Analysis of role of CD8+ T cells in resistance to murine AIDS in A/J mice. J. Immunol. 149:1702–1706.

    PubMed  CAS  Google Scholar 

  • Makino, M., Morse, H. C., 3rd, Fredrickson, T. N., et al. 1990. H-2-associated and background genes influence the development of a murine retrovirus-induced immunodeficiency syndrome. J. Immunol. 144:4347–4355.

    PubMed  CAS  Google Scholar 

  • Manjunath, R., Graziano, R. F., Green, W. R. 1986. The specificity of H-2-restricted cytotoxic T lymphocytes directed to AKR/Gross leukemia virus-induced tumors. III. Coordinate alterations in viral gp70 antigen expression and restoration of CTL-susceptibility to insusceptible variant tumors. J. Immunol. 136:2271–2279.

    PubMed  CAS  Google Scholar 

  • Mascarenhas, R. E., Brodskyn, C., Barbosa, G., et al. 2006. Peripheral blood mononuclear cells from individuals infected with human T-cell lymphotropic virus type 1 have a reduced capacity to respond to recall antigens. Clin. Vaccine Immunol. 13:547–552.

    PubMed  CAS  Google Scholar 

  • Matsumura, M., Fremont, D. H., Peterson, P. A., et al. 1992. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934.

    PubMed  CAS  Google Scholar 

  • Mayrand, S. M., and Green, W. R. 1998. Non-traditionally derived CTL epitopes: exceptions that prove the rules?. Immunol. Today 19:551–556.

    PubMed  CAS  Google Scholar 

  • Mayrand, S. M., Healy, P. A., Torbett, B. E., et al. 2000. Anti-Gag cytolytic T lymphocytes specific for an alternative translational reading frame-derived epitope and resistance versus susceptibility to retrovirus-induced murine AIDS in F(1) mice. Virology 272:438–449.

    PubMed  CAS  Google Scholar 

  • Mayrand, S. M., Schwarz, D. A., Green, W. R. 1998. An alternative translational reading frame encodes an immunodominant retroviral CTL determinant expressed by an immunodeficiency-causing retrovirus. J. Immunol. 160:39–50.

    PubMed  CAS  Google Scholar 

  • Mirsaliotis, A., Nurkiyanova, K., Lamb, D., et al. 2007. Conformation-specific antibodies targeting the trimer-of-hairpins motif of the human T-cell leukemia virus type 1 transmembrane glycoprotein recognize the viral envelope but fail to neutralize viral entry. J. Virol. 81:6019–6031.

    PubMed  CAS  Google Scholar 

  • Mitsuya, H., Matis, L. A., Megson, M., et al. 1983. Generation of an HLA-restricted cytotoxic T cell line reactive against cultured tumor cells from a patient infected with human T cell leukemia/lymphoma virus. J. Exp. Med. 158:994–999.

    PubMed  CAS  Google Scholar 

  • Miyazawa, M., Fujisawa, R., Ishihara, C., et al. 1995. Immunization with a single T helper cell epitope abrogates Friend virus-induced early erythroid proliferation and prevents late leukemia development. J. Immunol. 155:748–758.

    PubMed  CAS  Google Scholar 

  • Miyazawa, M., Nishio, J., Chesebro, B. 1992. Protection against Friend retrovirus-induced leukemia by recombinant vaccinia viruses expressing the gag gene. J. Virol. 66:4497–4507.

    PubMed  CAS  Google Scholar 

  • Mori, N., Gill, P. S., Mougdil, T., et al. 1996. Interleukin-10 gene expression in adult T-cell leukemia. Blood 88:1035–1045.

    PubMed  CAS  Google Scholar 

  • Morrison, R. P., Earl, P. L., Nishio, J., et al. 1987. Different H-2 subregions influence immunization against retrovirus and immunosuppression. Nature 329:729–732.

    PubMed  CAS  Google Scholar 

  • Morrison, R. P., Nishio, J., Chesebro, B. 1986. Influence of the murine MHC (H-2) on Friend leukemia virus-induced immunosuppression. J. Exp. Med. 163:301–314.

    PubMed  CAS  Google Scholar 

  • Morse, H. C., 3rd, Chattopadhyay, S. K., Makino, M., et al. 1992. Retrovirus-induced immunodeficiency in the mouse: MAIDS as a model for AIDS. Aids 6:607–621.

    PubMed  CAS  Google Scholar 

  • Mosier, D. E., Yetter, R. A., Morse, H. C. 3rd 1985. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice. J. Exp. Med. 161:766–784.

    PubMed  CAS  Google Scholar 

  • Nagai, M., Brennan, M. B., Sakai, J. A., et al. 2001. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 98:1858–1861.

    PubMed  CAS  Google Scholar 

  • Neisig, A., Roelse, J., Sijts, A. J., et al. 1995. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J. Immunol. 154:1273–1279.

    PubMed  CAS  Google Scholar 

  • Nishigaki, K., Thompson, D., Hanson, C., et al. 2001. The envelope glycoprotein of friend spleen focus-forming virus covalently interacts with and constitutively activates a truncated form of the receptor tyrosine kinase Stk. J. Virol. 75:7893–7903.

    PubMed  CAS  Google Scholar 

  • Ossendorp, F., Eggers, M., Neisig, A., et al. 1996. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115–124.

    PubMed  CAS  Google Scholar 

  • Pattengale, P. K., Taylor, C. R., Twomey, P., et al. 1982. Immunopathology of B-cell lymphomas induced in C57BL/6 mice by dualtropic murine leukemia virus (MuLV). Am. J. Pathol. 107:362–377.

    PubMed  CAS  Google Scholar 

  • Peloponese, J. M., Yeung, M. L., Jeang, K. T. 2006. Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol. Res. 34:1–12.

    PubMed  CAS  Google Scholar 

  • Persons, D. A., Paulson, R. F., Loyd, M. R., et al. 1999. Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nat. Genet. 23:159–165.

    PubMed  CAS  Google Scholar 

  • Pique, C., Tursz, T., Dokhelar, M. C. 1990. Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation?. Embo. J. 9:4243–4248.

    PubMed  CAS  Google Scholar 

  • Plata, F., Kalil, J., Zilber, M. T., et al. 1983. Identification of a viral antigen recognized by H-2-restricted cytolytic T lymphocytes on a murine leukemia virus-induced tumor. J. Immunol. 131:2551–2556.

    PubMed  CAS  Google Scholar 

  • Plata, F., Langlade-Demoyen, P., Abastado, J. P., et al. 1986. Molecular definition of retrovirus-induced antigens recognized by tumour-specific H-2-restricted cytolytic T lymphocytes. J. Immunogenet. 13:263–268.

    PubMed  CAS  Google Scholar 

  • Plata, F., Langlade-Demoyen, P., Abastado, J. P., Berbar, T., and Kourilsky, P. 1987. Retrovirus antigens recognized by cytolytic T lymphocytes activate tumor rejection in vivo. Cell 48, 231–240.

    PubMed  CAS  Google Scholar 

  • Plata, F. and Lilly, F. 1979. Viral specificity of H-2-restricted T killer cells directed against syngeneic tumors induced by Gross, Friend, or Rauscher leukemia virus. J. Exp. Med. 150:1174–1186.

    PubMed  CAS  Google Scholar 

  • Rammensee, H. G., Falk, K., Rotzschke, O. 1993. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11:213–244.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., Cook, W. J., Green, W. R. 2006. Spontaneous in vivo retrovirus-infected T and B cells, but not dendritic cells, mediate antigen-specific Fas ligand/Fas-dependent apoptosis of anti-retroviral CTL. Virology 346:287–300.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., Fujii, T., Green, W. R. 1992. CD4-CD8+ T lymphocytes mediate AKR/gross murine leukemia virus nonresponsiveness in moderately aged AKR.H-2b:Fv-1b mice. J. Immunol. 148:2961–2967.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 1995. Nonresponsiveness of AKR.H-2b congenic mice for anti-AKR/Gross MuLV CTL responses: involvement of inhibitory cells as defined by adoptive transfer experiments. Cell. Immunol. 160:139–151.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 1996. AKR.H-2b lymphocytes inhibit the secondary in vitro cytotoxic T-lymphocyte response of primed responder cells to AKR/Gross murine leukemia virus-induced tumor cell stimulation. J. Virol. 70:402–414.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 1999. Antiretroviral cytolytic T-lymphocyte nonresponsiveness: FasL/Fas-mediated inhibition of CD4(+) and CD8(+) antiviral T cells by viral antigen-positive veto cells. J. Virol. 73:3826–3834.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 2000. Inhibition of antiviral CTL responses by virus-infected cells: line item veto (cells) revisited. Virology 272:237–243.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 2002. Characterization of the Fas ligand/Fas-dependent apoptosis of antiretroviral, class I MHC tetramer-defined, CD8+ CTL by in vivo retrovirus-infected cells. J. Immunol. 168:2751–2758.

    PubMed  CAS  Google Scholar 

  • Rich, R. F., and Green, W. R. 2006. Apoptosis of epitope-specific antiretroviral cytotoxic T lymphocytes via Fas ligand-Fas interactions. Viral. Immunol. 19:424–433.

    PubMed  CAS  Google Scholar 

  • Richardson, J. H., Edwards, A. J., Cruickshank, J. K., et al. 1990. In vivo cellular tropism of human T-cell leukemia virus type 1. J. Virol. 64:5682–5687.

    PubMed  CAS  Google Scholar 

  • Robertson, M. N., Miyazawa, M., Mori, S., et al. 1991. Production of monoclonal antibodies reactive with a denatured form of the Friend murine leukemia virus gp70 envelope protein: use in a focal infectivity assay, immunohistochemical studies, electron microscopy and western blotting. J. Virol. Methods 34:255–271.

    PubMed  CAS  Google Scholar 

  • Robertson, M. N., Spangrude, G. J., Hasenkrug, K., et al. 1992. Role and specificity of T-cell subsets in spontaneous recovery from Friend virus-induced leukemia in mice. J. Virol. 66:3271–3277.

    PubMed  CAS  Google Scholar 

  • Ruan, K. S., and Lilly, F. 1991. Identification of an epitope encoded in the env gene of Friend murine leukemia virus recognized by anti-Friend virus cytotoxic T lymphocytes. Virology 181:91–100.

    PubMed  CAS  Google Scholar 

  • Rutkowski, M. R., Ho, O., Green, W. R. 2009. Defining the mechanism(s) of protection by cytolytic CD8 T cells against a cryptic epitope derived from a retroviral alternative reading frame. Virology 390:228–238.

    PubMed  CAS  Google Scholar 

  • Schwarz, D. A., and Green, W. R. 1994. CTL responses to the gag polyprotein encoded by the murine AIDS defective retrovirus are strain dependent. J. Immunol. 153:436–441.

    PubMed  CAS  Google Scholar 

  • Shankaran, V., Ikeda, H., Bruce, A. T., et al. 2001. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111.

    PubMed  CAS  Google Scholar 

  • Sijts, A. J., Ossendorp, F., Mengede, E. A., et al. 1994. Immunodominant mink cell focus-inducing murine leukemia virus (MuLV)-encoded CTL epitope, identified by its MHC class I-binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J. Immunol. 152:106–116.

    PubMed  CAS  Google Scholar 

  • Smyth, M. J., Taniguchi, M., Street, S. E. 2000a. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165:2665–2670.

    PubMed  CAS  Google Scholar 

  • Smyth, M. J., Thia, K. Y., Street, S. E., et al. 2000b. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191:661–668.

    PubMed  CAS  Google Scholar 

  • Smyth, M. J., Thia, K. Y., Street, S. E., et al. 2000c. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192:755–760.

    PubMed  CAS  Google Scholar 

  • Sogn, J. A. 1998. Tumor immunology: the glass is half full. Immunity 9:757–763.

    PubMed  CAS  Google Scholar 

  • Steffen, D. L., Taylor, B. A., Weinberg, R. A. 1982. Continuing germ line integration of AKV proviruses during the breeding of AKR mice and derivative recombinant inbred strains. J. Virol. 42:165–175.

    PubMed  CAS  Google Scholar 

  • Street, S. E., Cretney, E., Smyth, M. J. 2001. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197.

    PubMed  CAS  Google Scholar 

  • Strestik, B. D., Olbrich, A. R., Hasenkrug, K. J., et al. 2001. The role of IL-5, IL-6 and IL-10 in primary and vaccine-primed immune responses to infection with Friend retrovirus (Murine leukaemia virus). J. Gen. Virol. 82:1349–1354.

    PubMed  CAS  Google Scholar 

  • Stromnes, I. M., Dittmer, U., Schumacher, T. N., et al. 2002. Temporal effects of gamma interferon deficiency on the course of Friend retrovirus infection in mice. J. Virol. 76:2225–2232.

    PubMed  CAS  Google Scholar 

  • Sugahara, D., Tsuji-Kawahara, S., Miyazawa, M. 2004. Identification of a protective CD4+ T-cell epitope in p15gag of Friend murine leukemia virus and role of the MA protein targeting the plasma membrane in immunogenicity. J. Virol. 78:6322–6334.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Zeng, L., Shiraki, H., et al. 1991. Identification of a neutralization epitope on the envelope gp46 antigen of human T cell leukemia virus type I and induction of neutralizing antibody by peptide immunization. J. Immunol. 147:354–360.

    PubMed  CAS  Google Scholar 

  • Tang, Y., Chattopadhyay, S. K., Hartley, J. W., Fredrickson, T. N., et al. 1994. Clonal outgrowths of T and B cells in SCID mice reconstituted with cells from mice with MAIDS. In Vivo 8:953–959.

    PubMed  CAS  Google Scholar 

  • Twizere, J. C., Springael, J. Y., Boxus, M., et al. 2007. Human T-cell leukemia virus type-1 Tax oncoprotein regulates G-protein signaling. Blood 109:1051–1060.

    PubMed  CAS  Google Scholar 

  • Usuku, K., Sonoda, S., Osame, M., et al. 1988. HLA haplotype-linked high immune responsiveness against HTLV-I in HTLV-I-associated myelopathy: comparison with adult T-cell leukemia/lymphoma. Ann. Neurol. 23 Suppl:S143–150.

    PubMed  Google Scholar 

  • Walsh, P. T., Benoit, B. M., Wysocka, M., et al. 2006. A role for regulatory T cells in cutaneous T-Cell lymphoma; induction of a CD4 + CD25 + Foxp3+ T-cell phenotype associated with HTLV-1 infection. J. Invest. Dermatol. 126:690–692.

    PubMed  CAS  Google Scholar 

  • Wang, R. F., Parkhurst, M. R., Kawakami, Y., et al. 1996. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J. Exp. Med. 183:1131–1140.

    PubMed  CAS  Google Scholar 

  • Wegmann, K. W., Blank, K. J., Green, W. R. 1988. Induction of anti-MuLV cytotoxic T lymphocytes in the AKR.H-2b and AKR.H-2b:Fv-1b mouse strains. Cell. Immunol. 113:308–319.

    PubMed  CAS  Google Scholar 

  • Wegmann, K. W., McMaster, J. S., Green, W. R. 1991. Mechanism of nonresponsiveness to AKR/Gross leukemia virus in AKR.H-2b:Fv-1b mice. An analysis of precursor cytotoxic T lymphocyte frequencies in young versus moderately aged mice. J. Immunol. 146:2469–2477.

    PubMed  CAS  Google Scholar 

  • Wegmann, K. W., Rich, R. F., Green, W. R. 1992. Generation of anti-AKR/gross murine leukemia virus cytotoxic T lymphocytes (CTL). An analysis of precursor CTL frequencies in the AKR.H-2b and C57BL/6 mouse strains. J. Immunol. 149:1593–1598.

    PubMed  CAS  Google Scholar 

  • White, H. D., Green, W. R., Gine, N. R. 1993. Molecular cloning of infectious ecotropic murine leukemia virus AK7 from an emv-14-positive AKXL-5 mouse and the resistance of AK7 to recognition by cytotoxic T lymphocytes. J. Virol. 67:5045–5050.

    PubMed  CAS  Google Scholar 

  • White, H. D., Robbins, M. D., Green, W. R. 1990. Mechanism of escape of endogenous murine leukemia virus emv-14 from recognition by anti-AKR/Gross virus cytolytic T lymphocytes. J. Virol.64:2608–2619.

    PubMed  CAS  Google Scholar 

  • White, H. D., Roeder, D. A., Green, W. R. 1994a. An immunodominant Kb-restricted peptide from the p15E transmembrane protein of endogenous ecotropic murine leukemia virus (MuLV) AKR623 that restores susceptibility of a tumor line to anti-AKR/Gross MuLV cytotoxic T lymphocytes. J. Virol. 68:897–904.

    PubMed  CAS  Google Scholar 

  • White, H. D., Roeder, D. A., Lam, T., et al. 1994b. Major and minor Kb-restricted epitopes encoded by the endogenous ecotropic murine leukemia virus AKR623 that are recognized by anti-AKR/Gross MuLV CTL. Viral. Immunol. 7:51–59.

    PubMed  CAS  Google Scholar 

  • Yamano, Y., Cohen, C. J., Takenouchi, N., et al. 2004. Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J. Exp. Med. 199:1367–1377.

    PubMed  CAS  Google Scholar 

  • Yano, H., Ishida, T., Inagaki, A., et al. 2007. Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int. J. Cancer 120:2052–2057.

    PubMed  CAS  Google Scholar 

  • Yashiki, S., Fujiyoshi, T., Arima, N., et al. 2001. HLA-A*26, HLA-B*4002, HLA-B*4006, and HLA-B*4801 alleles predispose to adult T cell leukemia: the limited recognition of HTLV type 1 tax peptide anchor motifs and epitopes to generate anti-HTLV type 1 tax CD8(+) cytotoxic T lymphocytes. AIDS Res. Hum. Retroviruses 17:1047–1061.

    CAS  Google Scholar 

  • Yetter, R. A., Buller, R. M., Lee, J. Set al. 1988. CD4+ T cells are required for development of a murine retrovirus-induced immunodeficiency syndrome (MAIDS). J. Exp. Med. 168:623–635.

    PubMed  CAS  Google Scholar 

  • Zelinskyy, G., Balkow, S., Schimmer, Set al. 2004. Independent roles of perforin, granzymes, and Fas in the control of Friend retrovirus infection. Virology 330:365–374.

    PubMed  CAS  Google Scholar 

  • Zelinskyy, G., Balkow, S., Schimmer, S., et al. 2007. The Level of Friend Retrovirus Replication Determines the Cytolytic Pathway of CD8+ T-Cell-Mediated Pathogen Control. J. Virol. 81:11881–11890.

    PubMed  CAS  Google Scholar 

  • Zelinskyy, G., Kraft, A. R., Schimmer, Set al. 2006. Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infection. Eur. J. Immunol. 36:2658–2670.

    PubMed  CAS  Google Scholar 

  • Zelinskyy, G., Robertson, S. J., Schimmer. Set al. 2005. CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J. Virol. 79:10619–10626.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rutkowski, M.R., Green, W.R. (2010). The Immune Response to Oncogenic Retroviruses. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_8

Download citation

Publish with us

Policies and ethics