Skip to main content

Retroviruses as Tools to Identify Oncogenes and Tumor Suppressor Genes

  • Chapter
  • First Online:
  • 662 Accesses

Abstract

The ability of retroviruses to disrupt host-gene expression is a significant factor in their oncogenic potential and this property has been harnessed in the use of retroviral insertional-mutagenesis (RIM) screens for the discovery of cancer genes. Targets for RIM include proto-oncogenes and tumor suppressors and, in some instances, microRNA (miRNA) loci. The mechanisms by which insertion can disrupt gene regulation are diverse, and the clustering of viral insertions at common insertion sites (CISs) can help to pinpoint regulatory elements in cellular gene loci. In the mouse, germline manipulation can be combined powerfully with RIM to identify collaborating and complementing gene sets and to favor the targeting of tumor-suppressor genes. The potential of RIM is far from exhausted, and the advent of improved methods for cloning insertion sites together with next generation sequencing technology promises to expand applications still further. With enlarged data sets, statistical analysis will become increasingly important to demonstrate significant clustering and avoid false discovery of CISs. While experimental systems are still largely confined to mouse models, the relevance of RIM to human leukaemia induced as a side effect of gene therapy trials is clear, highlighting the need for a better understanding of the risks presented by insertion elements, such as retroviral vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akagi, K., Suzuki, T., Stephens, R. M., et al. 2004. RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res. 32:D523–D527.

    PubMed  CAS  Google Scholar 

  2. Ball, J. K., Diggelmann, H., Dekaban, G. A., et al. 1988. Alterations in the U-3 Region of the Long Terminal Repeat of An Infectious Thymotropic Type-B Retrovirus. J. Virol. 62:2985–2993.

    PubMed  CAS  Google Scholar 

  3. Bartholomew, C., and Ihle, J. N. 1991. Retroviral insertions 90kb proximal to the evi-1 myeloid transforming gene activate transcription from the normal promoter. Mol. Cell Biol. 11:1820–1828.

    PubMed  CAS  Google Scholar 

  4. Baum, C., Dullmann, J., Li, Z., et al. 2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114.

    PubMed  CAS  Google Scholar 

  5. Baum, C., Kustikova, O., Modlich, U., et al. 2006. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther. 17:253–263.

    PubMed  CAS  Google Scholar 

  6. Baxter, E., Blyth, K., Cameron, E. R., et al. 2001. Selection for loss of p53 function in T-cell lymphomagenesis is alleviated by Moloney MLV infection in MYC transgenic mice. J. Virol. 75:9790–9798.

    PubMed  CAS  Google Scholar 

  7. Baxter, E. W., Blyth, K., Donehower, L. A., et al. 1996. Moloney murine leukemia virus induced lymphomas in p53 deficient mice: overlapping pathways in tumor development? J. Virol. 70:2095–2100.

    PubMed  CAS  Google Scholar 

  8. Belli, B., Wolff, L., Nazarov, V., et al. 1995. Proviral Activation of the C-Myb Protooncogene Is Detectable in Preleukemic Mice Infected Neonatally with Moloney Murine Leukemia-Virus But Not in Resulting End-Stage T-Lymphomas. J. Virol. 69:5138–5141.

    PubMed  CAS  Google Scholar 

  9. Ben-David, Y., Prideaux, V. R., Chow, V., et al. 1988. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemia cell lines induced by Friend murine leukemia virus. Oncogene 3:179–185.

    PubMed  CAS  Google Scholar 

  10. Bennett, S. T., Barnes, C., Cox, A., et al. 2005. Toward the $1000 human genome. Pharmacogenomics 6:373–382.

    PubMed  CAS  Google Scholar 

  11. BenYehuda, D., Tam, W., Caroll, M., et al. 1993. Identification of A Novel Gene at the Bic Locus - A Locus Implicated in Tumor Progression in Alv-Induced Lymphomas. Blood 82:A45.

    Google Scholar 

  12. Bergeron, D., Houde, J., Poliquin, L., et al. 1993. Expression and DNA rearrangement of proto-oncogenes in Cas-Br-E-induced non-T, non-B cell leukemias. Leukemia 7:954–962.

    PubMed  CAS  Google Scholar 

  13. Blyth, K., Terry, A., Mackay, N., et al. 2001. Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene 20:295–302.

    PubMed  CAS  Google Scholar 

  14. Blyth, K., Vaillant, F., Mackay, N., et al. 2006. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res. 66:2195–2201.

    PubMed  CAS  Google Scholar 

  15. Bokhoven, M., Stephen, S. L., Knight, S., et al. 2008. Insertional Gene Activation by Lentiviral and Gammaretroviral Vectors. J. Virol. 83:283–294.

    PubMed  Google Scholar 

  16. Brown, D. W., and Robinson, H. L. 1988. Influence of env and long terminal repeat sequences on the tissue tropism of Avian Leukosis Viruses. J. Virol. 62(12):4828–4831.

    PubMed  CAS  Google Scholar 

  17. Bushman, F. D. 2007. Retroviral integration and human gene therapy. J. Clin. Invest. 117:2083–2086.

    PubMed  CAS  Google Scholar 

  18. Chatis, P. A., Holland, C. A., Hartley, J. W., et al. 1983. Role for the 3’ end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses. Proc. Natl. Acad. Sci. USA 80:4408–4411.

    PubMed  CAS  Google Scholar 

  19. Ciuffi, A., Diamond, T. L., Hwang, Y., et al. 2006. Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum. Gene Ther. 17:960–967.

    PubMed  CAS  Google Scholar 

  20. Clausse, N., Baines, D., Moore, R., et al. 1993. Activation of Both Wnt-1 and Fgf-3 by Insertion of Mouse Mammary-Tumor Virus Downstream in the Reverse Orientation - A Reappraisal of the Enhancer Insertion Model. Virology 194:157–165.

    PubMed  CAS  Google Scholar 

  21. Costinean, S., Zanesi, N., Pekarsky, Y., et al. 2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E mu-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA 103:7024–7029.

    PubMed  CAS  Google Scholar 

  22. Cullen, B. R., Lomedico, P. T., and Ju, G. 1984. Transcriptional Interference in Avian Retroviruses – Implications for the Promoter Insertion Model of Leukemogenesis. Nature 307:241–245.

    PubMed  CAS  Google Scholar 

  23. Dabrowska, M. J., Dybkaer, K., Johnsen, H. E., et al. 2009. Loss of MicroRNA Targets in the 3 Untranslated Region as a Mechanism of Retroviral Insertional Activation of Growth Factor Independence 1. J. Virol. 83:8051–8061.

    PubMed  CAS  Google Scholar 

  24. Dave, U. P., Jenkins, N. A., and Copeland, N. G. 2004. Gene therapy insertional mutagenesis insights. Science 303:333.

    PubMed  Google Scholar 

  25. de Ridder, J., Uren, A., Kool, J., et al. 2006. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput. Biol. 2:1530–1542.

    CAS  Google Scholar 

  26. Deichmann, A., Hacein-Bey-Abina, S., Schmidt, M., et al. 2007. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 117:2225–2232.

    PubMed  CAS  Google Scholar 

  27. Dickson, C., Smith, R., Brookes, S., et al. 1984. Tumorigenesis by Mouse Mammary-Tumor Virus - Proviral Activation of A Cellular Gene in the Common Integration Region Int-2. Cell 37:529–536.

    PubMed  CAS  Google Scholar 

  28. Dupuy, A. J., Akagi, K., Largaespada, D. A., et al. 2005. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226.

    PubMed  CAS  Google Scholar 

  29. Eldridge, A. G., Loktev, A. V., Hansen, D. V., et al. 2006. The Evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor Emi1. Cell 124:367–380.

    PubMed  CAS  Google Scholar 

  30. Fulton, R., Plumb, M., Shield, L., et al. 1990. Structural diversity and nuclear protein binding sites in the long terminal repeats of feline leukaemia virus. J. Virol. 64:1675–1682.

    PubMed  CAS  Google Scholar 

  31. Fung, Y. K. T., Lewis, W. G., Grittenden, L. B., et al. 1983. Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblatosis by avian leukosis virus. Cell 33:357–368.

    PubMed  CAS  Google Scholar 

  32. Fung, Y. K. T., Shackleford, G. M., Brown, A. M. C., et al. 1985. Nucleotide-Sequence and Expression Invitro of Cdna Derived from Messenger-Rna of Int-1, A Provirally Activated Mouse Mammary Oncogene. Mol. Cell Biol. 5:3337–3344.

    PubMed  CAS  Google Scholar 

  33. Garzon, R., and Croce, C. M. 2008. MicroRNAs in normal and malignant hematopoiesis. Current Opinion in Hematology 15:352–358.

    PubMed  CAS  Google Scholar 

  34. Gilks, C. B., Bear, S. E., Grimes, H. L., et al. 1993. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth follwoing activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol. Cell Biol. 13:1759–1768.

    PubMed  CAS  Google Scholar 

  35. Girard, L., Hanna, Z., Beaulieu, N., Hoemann, C. D., Simard, C., Kozak, C. A., and Jolicoeur, P. 1996. Frequent provirus insertional mutagenesis of Notch1 in thymomoas of MMTVd/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev 10:1930–1944.

    PubMed  CAS  Google Scholar 

  36. Glon, C. W. A. D., Monks, J., and Proudfoot, N. J. 1991. Occlusion of the Hiv Poly(A) Site. Genes & Development 5:244–253.

    Google Scholar 

  37. Grimes, H. L., Chan, T. O., and Zweidler-McKay, P. A., et al. 1996. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol. Cell Biol. 16:6263–6272.

    PubMed  CAS  Google Scholar 

  38. Habets, G. G., Scholtes, E. H., Zuydgeest, D., et al. 1994. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:537–549.

    PubMed  CAS  Google Scholar 

  39. Hacein-Bey-Abina, S., Garrigue, A., Wang, G. P., et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142.

    PubMed  CAS  Google Scholar 

  40. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., et al. 2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256.

    PubMed  Google Scholar 

  41. Hanlon, L., Barr, N. I., Blyth, K., et al. 2003. Long-range effects of retroviral activation on c-myb over-expression may be obscured by silencing during tumor growth in vitro. J. Virol. 77:1059–1068.

    PubMed  CAS  Google Scholar 

  42. Hayward, W. S., Neel, B. G., and Astrin, S. M. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480.

    PubMed  CAS  Google Scholar 

  43. Howe, S. J., Mansour, M. R., Schwarzwaelder, K., et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150.

    PubMed  CAS  Google Scholar 

  44. Hui, E. K. W., Wang, P. C., and Lo, S. J. 1998. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cellular and Molecular Life Sciences 54:1403–1411.

    PubMed  CAS  Google Scholar 

  45. Hwang, H. C., Martins, C. P., Bronkhorst, Y., et al. 2002. Identification of oncogenes collaborating with p27(Kip1) loss by insertional mutagenesis and high-throughput insertion site analysis. Proc. Natl. Acad. Sci. U S A 99:11293–11298.

    PubMed  CAS  Google Scholar 

  46. Jiang, W. P., Kanter, M. R., Dunkel, I., et al. 1997. Minimal truncation of the c-myb gene product in rapid-onset B-cell lymphoma. J. Virol. 71:6526–6533.

    PubMed  CAS  Google Scholar 

  47. Jiang, X., Villeneuve, L., Turmel, C., et al. 1994. The Myb and Ahi-1 genes are physically very closely linked on mouse chromosome 10. Mamm Genome 5:142–148.

    PubMed  CAS  Google Scholar 

  48. Johnson, C., Lobelle-Rich, P. A., Puetter, A., et al. 2005. Substitution of feline leukemia virus long terminal repeat sequences into murine leukemia virus alters the pattern of insertional activation and identifies new common insertion sites. J. Virol. 79:57–66.

    PubMed  CAS  Google Scholar 

  49. Jonkers, J., Korswagen, H. C., Acton, D., et al. 1997. Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas. EMBO J 16:441–450.

    PubMed  CAS  Google Scholar 

  50. Landais, S., Landry, S., Legault, P., et al. 2007. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 67:5699–5707.

    PubMed  CAS  Google Scholar 

  51. Landais, S., Quantin, R., and Rassart, E. 2005. Radiation leukemia virus common integration at the Kis2 locus: Simultaneous overexpression of a novel noncoding RNA and of the proximal Phf6 gene. J. Virol. 79:11443–11456.

    PubMed  CAS  Google Scholar 

  52. Lander, J. K., and Fan, H. 1997. Low-frequency loss of heterozygosity in Moloney murine leukemia virus-induced tumors. J. Virol. 71:3940–3952.

    PubMed  CAS  Google Scholar 

  53. Largaespada, D. A., Shaughnessy, J. D. Jr., Jenkins, N. A., et al. 1995. Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady-state Ras-GTP levels. J. Virol. 69:5095–5102.

    PubMed  CAS  Google Scholar 

  54. Lazo, P. A., Lee, J. S., and Tsichlis, P. N. 1990. Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc. Natl. Acad. Sci. USA 87:170–173.

    PubMed  CAS  Google Scholar 

  55. Lewinski, M. K., Yamashita, M., Emerman, M., et al. 2006. Retroviral DNA integration: Viral and cellular determinants of target-site selection. PLoS Pathog. 2:611–622.

    CAS  Google Scholar 

  56. Li, J. Y., Shen, H., Himmel, K. L., et al. 1999. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat. Genet. 23:348–353.

    PubMed  CAS  Google Scholar 

  57. Li, Y., Holland, C. A., Hartley, J. W., et al. 1984. Viral integration near c-myc in 10–20% of MCF 247-induced AKR lymphomas. Proc. Natl. Acad. Sci. USA 81:6808–6811.

    PubMed  CAS  Google Scholar 

  58. Liao, X., Morse, H. C. I., Jenkins, N. A., et al. 1997. Proviral integrations at the Evi5 locus disrupt a novel 90 kDa protein with homology to the Tre2 oncogene and cell-cycle regulatory proteins. Oncogene 14:1023–1029.

    PubMed  CAS  Google Scholar 

  59. Lund, A. H., Turner, G., Trubetskoy, A., et al. 2002. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat. Genet. 32:160–165.

    PubMed  CAS  Google Scholar 

  60. MacArthur, C. A., Shankar, D. B., and Shackleford, G. M. 1995. Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J. Virol. 69:2501–2507.

    PubMed  CAS  Google Scholar 

  61. Margulies, M., Egholm, M., Altman, W. E., et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.

    PubMed  CAS  Google Scholar 

  62. Mertz, J. A., Mustafa, F., Meyers, S., et al. 2001. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J. Virol. 75:2174–2184.

    PubMed  CAS  Google Scholar 

  63. Mikkers, H., Allen, J., Knipscheer, P., et al. 2002. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat. Genet. 32:153–159.

    PubMed  CAS  Google Scholar 

  64. Miller 1997. Development and application of retroviral vectors. In Retroviruses, eds. J. M. Coffin, S. H. Hughes, and H. E. Varmus, pp. 437–586. New York, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  65. Mitchell, R. S., Beitzel, B. F., Schroder, A. R. W., et al. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2:1127–1137.

    CAS  Google Scholar 

  66. Morris, D. W., Barry, P. A., Bradshaw, H. D., et al. 1990. Insertion Mutation of the Int-1 and Int-2 Loci by Mouse Mammary-Tumor Virus in Premalignant and Malignant Neoplasms from the Gr Mouse Strain. J. Virol. 64:1794–1802.

    PubMed  CAS  Google Scholar 

  67. Neel, B., Hayward, W. S., Robinson, H. L., et al. 1981. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discreet new RNAs: oncogenesis by promoter insertion. Cell 23:323–334.

    PubMed  CAS  Google Scholar 

  68. Neil, J. C., and Cameron, E. R. 2002. Retroviral insertion sites and cancer: Fountain of all knowledge? Cancer Cell 2:253–255.

    PubMed  CAS  Google Scholar 

  69. Ott, M. G., Schmidt, M., Schwarzwaelder, K., et al. 2006. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1–EVI1, PRDM16 or SETBP1. Nature Med. 12:401–409.

    PubMed  CAS  Google Scholar 

  70. Pantginis, J., Beaty, R. M., Levy, L. S., et al. 1997. The feline leukemia virus long terminal repeat contains a potent genetic determinant of T-cell lymphomagenicity. J. Virol. 71:9786–9791.

    PubMed  CAS  Google Scholar 

  71. Pike-Overzet, K., de Ridder, D., Weerkamp, F., et al. 2007. Ectopic retroviral expression of LMO2, but not IL2R gamma, blocks human T-cell development from CD34+cells: implications for leukemogenesis in gene therapy. Leukemia 21:754–763.

    PubMed  CAS  Google Scholar 

  72. Rabbitts, T. H., Bucher, K., Chung, G., et al. 1999. The effect of chromosomal translocations in acute leukemias: the LMO2 paradigm in transcription and development. Cancer Res. 59:1794s-1798s.

    PubMed  CAS  Google Scholar 

  73. Rohdewohld, H., Weiher, H., Reik, W., et al. 1987. Retrovirus Integration and Chromatin Structure - Moloney Murine Leukemia Proviral Integration Sites Map Near Dnase I-Hypersensitive Sites. J. Virol. 61:336–343.

    PubMed  CAS  Google Scholar 

  74. Rosenberg, and Jolicoeur, P. 1997. Retroviral Pathogenesis. In Retroviruses, eds. J. M. Coffin, Hughes S. H., and H. E. Varmus, pp. 475–586. New York, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  75. Saiki, R. K., Gelfand, D. H., Stoffel, B., et al. 1988. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science 239:487–491.

    PubMed  CAS  Google Scholar 

  76. Santarosa, M., and Ashworth, A. 2004. Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochimica et Biophysica Acta-Reviews on Cancer 1654:105–122.

    CAS  Google Scholar 

  77. Scheijen, B., Jonkers, J., Acton, D., et al. 1997. Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 mice. J. Virol. 71:9–16.

    PubMed  CAS  Google Scholar 

  78. Schmidt, M., Schwartwaelder, K., Bartholomae, C. C., et al. 2009. Detection of retroviral integration sites by linear amplification-mediated PCR and tracking of individual integration clones in different samples. Methods Mol. Biol. 506:363–372.

    PubMed  CAS  Google Scholar 

  79. Schmidt, M., Schwarzwaelder, K., Bartholomae, C., et al. 2007. High-resolution insertion-site analysis by linear amplification mediated PCR (LAM-PCR). Nat. Methods 4:1051–1057.

    PubMed  CAS  Google Scholar 

  80. Schmidt, T., Karsunky, H., Gau, E., et al. 1998. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 17:2661–2667.

    PubMed  CAS  Google Scholar 

  81. Schmidt, T., Zornig, M., Beneke, R., et al. 1996. MoMuLV proviral integrations identified by sup-F selection in tumours from infected myc-pim bitrasgenic mice correlate with activation of the gfi-1 gene. Nucleic Acids Res. 24:2528–2534.

    PubMed  CAS  Google Scholar 

  82. Schroder, A., Shinn, P., Chen, H., et al. 2002. HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots. Cell 110:521.

    PubMed  CAS  Google Scholar 

  83. Schwarzwaelder, K., Howe, S. J., Schmidt, M., et al. 2007. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J. Clin. Invest. 117:2241–2249.

    PubMed  CAS  Google Scholar 

  84. Scobie, L., Hector, R. D., Grant, L., et al. 2009. A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Mol. Ther. 17:1031–1038.

    PubMed  CAS  Google Scholar 

  85. Selten, G., Cuypers, H. T., and Berns, A. 1985. Proviral Activation of the Putative Oncogene Pim-1 in Mulv Induced T-Cell Lymphomas. EMBO J. 4:1793–1798.

    PubMed  CAS  Google Scholar 

  86. Selten, G., Cuypers, H. T., Zijlstra, M., et al. 1984. Involvement of c-myc in MuLV-induced T-cell lymphomas in mice: frequency and mechanisms of activation. EMBO J. 3:3215–3222.

    PubMed  CAS  Google Scholar 

  87. Silver, J., and Keerikatte, V. 1989. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63:1924–1928.

    PubMed  CAS  Google Scholar 

  88. Stewart, M., Mackay, N., Cameron, E. R., et al. 2002. The common retroviral insertion locus Dsi1 maps 30kb upstream of the P1 promoter of the murine Runx3/Cbfa3/Aml2 gene. J. Virol. 76:4364–4369.

    PubMed  CAS  Google Scholar 

  89. Stewart, M., Mackay, N., Hanlon, L., et al. 2007. Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res. 67:5126–5133.

    PubMed  CAS  Google Scholar 

  90. Stewart, M., Terry, A., Hu, M., et al. 1997. Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. USA 94:8646–8651.

    PubMed  CAS  Google Scholar 

  91. Stewart, M. A., Terry, A., O’Hara, M., et al. 1996. Til-1, a novel insertion locus for Moloney murine leukaemia virus in lymphomas of CD2-myc transgenic mice. J. Gen. Virol. 77:443–446.

    PubMed  CAS  Google Scholar 

  92. Stoye, J. P., Moroni, C., and Coffin, J. M. 1991. Virological events leading to spontaneous AKR thymomas. J. Virol. 65:1273–1285.

    PubMed  CAS  Google Scholar 

  93. Su, Q., Prosser, H. M., Campos, L. S., et al. 2008. A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proc. Natl. Acad. Sci. USA 105:19904–19909.

    PubMed  CAS  Google Scholar 

  94. Suzuki, T., Minehata, K., Akagi, K., et al. 2006. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J. 25:3422–3431.

    PubMed  CAS  Google Scholar 

  95. Suzuki, T., Shen, H., Akagi, K., et al. 2002. New genes involved in cancer identified by retroviral tagging. Nat. Genet. 32:166–174.

    PubMed  CAS  Google Scholar 

  96. Tam, W., Hughes, S. H., Hayward, W. S., et al. 2002. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J. Virol. 76:4275–4286.

    PubMed  CAS  Google Scholar 

  97. Temin, H. M. 1964. The participation of DNA in Rous sarcoma virus production. Virology 23:486–494.

    PubMed  CAS  Google Scholar 

  98. Tsatsanis, C., Fulton, R., Nishigaki, K., et al. 1994. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement. J. Virol. 68:8294–8303.

    Google Scholar 

  99. Uren, A. G., Kool, J., Berns, A., et al. 2005. Retroviral insertional mutagenesis: past, present and future. Oncogene 24:7656–7672.

    PubMed  CAS  Google Scholar 

  100. Uren, A. G., Kool, J., Matentzoglu, K., et al. 2008. Large-scale mutagenesis in p19(ARF)- and p53- Deficient mice identifies cancer genes and their collaborative networks. Cell 133:727–741.

    PubMed  CAS  Google Scholar 

  101. Vaillant, F., Blyth, K., Terry, A., et al. 1999. A full length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with MYC. Oncogene 18:7124–7134.

    PubMed  CAS  Google Scholar 

  102. van der Lugt, N. M. T., Domen, J., Verhoeven, E., et al. 1995. Proviral tagging in Emu-myc mice lacking the pim-1 proto-oncogene leads to compensatory activation of pim-2. EMBO J. 14:2536–2544.

    PubMed  CAS  Google Scholar 

  103. van Lohuizen, M., Verbeek, S., Krimpenfort, P., et al. 1989. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56:673–682.

    PubMed  CAS  Google Scholar 

  104. van Lohuizen, M., Verbeek, S., Scheijen, B., et al. 1991. Identification of cooperating oncogenes in E-mu-myc transgenic mice by provirus tagging. Cell 65:737–752.

    PubMed  CAS  Google Scholar 

  105. Verbeek, S., van Lohuizen, M., van der Valk, M., et al. 1991. Mice bearing the E-mu-myc and E-mu-pim-1 transgenes develop pre-B cell leukemia prenatally. Mol. Cell Biol. 11:1176–1179.

    PubMed  CAS  Google Scholar 

  106. Vijaya, S., Steffen, D. L., and Robinson, H. L. 1986. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J. Virol. 60:683–692.

    PubMed  CAS  Google Scholar 

  107. Villeneuve, L., Jiang, X., Turmel, C., et al. 1993. Long-range mapping of mis-2, a common provirus integration site identified in murine leukemia virus-induced thymomas and located 160 kilobase pairs downstream of Myb. J. Virol. 67:5733–5739.

    PubMed  CAS  Google Scholar 

  108. Wang, G. P., Garrigue, A., Ciuffi, A., et al. 2008. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res. 36:XX.

    Google Scholar 

  109. Weisinger, G., Remmers, E. F., Hearing, P., et al. 1988. Multiple Negative Elements Upstream of the Murine C-Myc Gene Share Nuclear Factor Binding-Sites with Sv40 and Polyoma Enhancers. Oncogene 3:635–646.

    PubMed  CAS  Google Scholar 

  110. Weston, K. 1999. Reassessing the role of C-MYB in tumorigenesis. Oncogene 19:3034–3038.

    Google Scholar 

  111. Withers-Ward, E. S., Kitamura, Y., Barnes, J. P., et al. 1994. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8:1473–1487.

    PubMed  CAS  Google Scholar 

  112. Woods, N. B., Bottero, V., Schmidt, M., et al. 2006. Therapeutic gene causing lymphoma. Nature 440:1123.

    PubMed  CAS  Google Scholar 

  113. Wotton, S., Stewart, M., Blyth, K., et al. 2002. Proviral insertion indicates a dominant oncogenic role for Runx1/AML1 in T-cell lymphoma. Cancer Res. 62:7181–7185.

    PubMed  CAS  Google Scholar 

  114. Wu, X., Li, Y., Crise, B., et al. 2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751.

    PubMed  CAS  Google Scholar 

  115. Wu, X. L., Luke, B. T., and Burgess, S. M. 2006. Redefining the common insertion site. Virology 344:292–295.

    PubMed  CAS  Google Scholar 

  116. Zhou, L. L., Zhao, Y., Ringrose, A., et al. 2009. AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J. Exp. Med. 205:2657–2671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Neil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neil, J.C., Stewart, M.A. (2010). Retroviruses as Tools to Identify Oncogenes and Tumor Suppressor Genes. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_10

Download citation

Publish with us

Policies and ethics