Skip to main content

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 3))

  • 915 Accesses

Abstract

Guanine nucleotide regulatory proteins (G-proteins) play a key role in the regulation of various signal transduction systems including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidylinositol turnover (PI) which are implicated in the modulation of a variety of physiological functions such as platelet functions, including platelet aggregation, secretion, and clot formation, and cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels, G-proteins, and PLC/PKC have been shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G-proteins (Giα-2 and Giα-3) and mRNA have been reported in different models of hypertension, whereas Gsα levels were shown to be unaltered. These changes in G-protein were associated with functions. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that overexpression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. The augmented levels of Giα proteins and associated adenylyl cyclase signaling in hypertension were shown to be attributed to the enhanced levels of vasoactive peptides. In addition, enhanced oxidative stress in hypertension may also be responsible for the enhanced expression of Giα proteins observed in hypertension. The levels of Gqα/11 and PLCβ have been shown to be upregulated in different models of hypertension. On the other hand, the levels of Gsα and not of Giα proteins were decreased in volume- or pressure-overload hypertrophy. The responsiveness of adenylyl cyclase to β-adrenergic agonists was also attenuated. In addition, the levels of Gqα were augmented in hypertrophy and the β-adrenergic receptor levels were decreased. Furthermore, the role of PKC in the development and progression of cardiac hypertrophy was also shown. Similarly, ischemia was shown to be associated with decreased, increased, or unaltered levels of Gsα, with decreased levels of Giα, and with decreased responsiveness of adenylyl cyclase to various stimuli such as β-adrenergic agonists, guanine nucleotides, forskolin, and others. Thus, the altered levels of G-proteins and associated signaling may be responsible for the impaired cardiovascular functions observed in hypertension, hypertrophy, and cardiac failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 1998. Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140-10145.

    CAS  PubMed  Google Scholar 

  • Akhtar SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ. 1997. Transgenic mice with cardiac overexpression of α1b-adrenergic receptors. J Biol Chem 272:21253-21259.

    Google Scholar 

  • Akhtar SA, Luttrell RM, Rockman HA, Iaccarino G, Lefkowitz RJ, Joch WJ. 1998. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280:574-577.

    Google Scholar 

  • Anand-Srivsatava MB. 1988. Altered responsiveness of adenylate cyclase to adenosine and other agents in the myocardial sarcolemma and aorta of spontaneously hypertensive rats. Biochem Pharmacol 37:3017-3022.

    Google Scholar 

  • Anand-Srivstava MB. 1992. Enhanced expression of inhibitory guanine nucleotide regulatory pro-teins (Giα) in spontaneously hypertensive rats: relationship to adenylate cyclase inhibition. Biochem J 288:79-85.

    Google Scholar 

  • Anand-Srivastava MB. 1993. Rat platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein: relationship with adenylate cy-clase activity. Circ Res 173:1032-1039.

    Google Scholar 

  • Anand-Srivastava MB. 1997. G-protein and membrane signalling in cardiovascular disease. Heart Failure Rev 2:85-94.

    Google Scholar 

  • Anand-Srivastava MB, Picard S, Thibault C. 1991. Altered expression of inhibitory guanine nu-cleotide regulatory proteins (Giα) in spontaneously hypertensive rats. Am J Hypertens 4:840-843.

    CAS  PubMed  Google Scholar 

  • Anand-Srivastava MB, et al. 1993. DOCA-salt hypertensive rat hearts exhibit altered expression of G-proteins. Am J Hypertens 6:72-75.

    CAS  PubMed  Google Scholar 

  • Arimoto T, Takeishi Y, Takashi H, Shishido T, Niizeki T, Koyama Y, Shiga R, Nozaki N, Nakajima O, Nishimaru K, Abe J-I, Endoh M, Walsh RA, Goto K, Kubota I. 2006. Cardiac specific overexpression of diacylglycerol kinase prevents Gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice. Circulation 113:60-66.

    CAS  PubMed  Google Scholar 

  • Asano M, Masuzawa K, Matsuda T, Asano T. 1988. Reduced function of the stimulatory GTP-binding protein in beta adrenoceptor-adenylate cyclase system of femoral arteries isolated from spontaneously hypertensive rats. J Pharmacol Exp Ther 246:709-718.

    CAS  PubMed  Google Scholar 

  • Bai H, Wu LP, Xing DG, Liu J, Zhao Ya-Li. 2004. Angiotensin II-induced upregulation of Gα q/11, phospholipase C β3 and extracellular signal regulated kinase 1/2 via aniotensin II type 1 receptor. Chinese Med J 117:88-93.

    CAS  Google Scholar 

  • Bassil M, Anand-Srivstava MB. 2006. Nitric oxide modulates Gi protein expression and adenylyl cyclase signalling in vascular smooth muscle cells. Free Radical Biol Med 41:1162-1173.

    CAS  Google Scholar 

  • Bassil M, Anand-Srivastava MB. 2007. Cyclic GMP modulates the expression of Gi protein and adenylyl cyclase signaling in vascular smooth muscle cells. Cell Biochem Biophys 47:99-108.

    CAS  PubMed  Google Scholar 

  • Bhalla RC, Sharma RV, Raamanathan S. 1980. Ontogenetic developement of isoproterenol sub-sensitivity of myocardial adenylate cyclase and beta-adrenergic receptors in spontaneously hy-pertensive rats. Biochim Biophys Acta 632:497-506.

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Andersson MB, Gillespie BJ, Clerk A, Glennon PE, Fuller SJ, Sugden PH. 1996. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochem J 314:115-121.

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Sugden PH. 1996. The role of protein kinases in adaptational growth of the heart. Int J Biochem Cell Biol 28:1-12.

    CAS  PubMed  Google Scholar 

  • Bohm M, Gierschik P, Jakos KH, Schnael P, Ungerer M, Erdmann E. 1990. Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249-1265.

    CAS  PubMed  Google Scholar 

  • Bohm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. 1992. Desensitization of adenylate cyclase and increase of G alpha in cardiac hypertrophy due to acquired hypertension. Hypertension 20:103-112.

    CAS  PubMed  Google Scholar 

  • Bohm M, Gierschik P, Knorr A, Schmidt U, Weismann K, Erdmann E. 1993. Cardiac adenylyl cyclase, beta-adrenergic receptors, and G proteins in salt-sensitive hypertension. Hypertension 22:715-727.

    CAS  PubMed  Google Scholar 

  • Bohm M, Kirchmayer R, Erdmann E. 1995. Myocardial Giα alpha-protein levels in patients with hypertensive cardiac hypertrophy, ischemic heart disease and cardiogenic shock. Cardiovasc Res 30:611-618.

    CAS  PubMed  Google Scholar 

  • Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ. 1999. Increased protein kinase C activity and expression of Ca2+ -sensitive isoforms in the failing human heart. Circulation 99:384-391.

    CAS  PubMed  Google Scholar 

  • Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M. 1986. Human cDNA clones for four species of G alpha’s signal transduct protein. Proc Natl Acad Sci USA 83:8893-8897.

    CAS  PubMed  Google Scholar 

  • Breiwieser GE, Szabo G. 1985. Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538-540. Brown AM, Birnbauemr L. 1988. Direct G protein gating of ion channels. Am J Physiol 254:H401-H410.

    Google Scholar 

  • Burgering BM, Pronk GJ,Weeren PC, Chardin P, Bos JL. 1993. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 12:4211-4220.

    Google Scholar 

  • Cai JJ, Yu H, Lee HC. 1993. Developmental changes of protein kinase C and Gs alpha in hyper-trophic cardiomyopathic hamster hearts. J Lab Clin Med 122:533-541.

    CAS  PubMed  Google Scholar 

  • Chen LA, Vatner DE, Vatner SF, Hiffinger L, Homcy CJ. 1991. Decreased Gs alpha mRNA levels accompany the fall in Gs and adenylyl cyclase activities in compensated left ventricular hyper-trophy. In heart failure, only the impairment in adenylyl cyclase activation progresses. J Clin Invest 87:293-298.

    CAS  PubMed  Google Scholar 

  • Chen NY, Hu SJ, Dong HT, Li DB, Chen ZK. 2005. Alterations of expression of G protein-inositol phosphates pathway related genes in essential hypertension: experiment with spontaneously hypertensive rats. Zhonghua Yi Za Shi 85:3481-3485.

    CAS  Google Scholar 

  • Clark CJ, Milligan G, Connell JM. 1993.Guanine nucleotide regulatory protein alterations in the Milan hypertensive rat strain. J Hypertens 11:1161-1169.

    CAS  PubMed  Google Scholar 

  • Cockroft S, Gomperts BD. 1985. Role of guanine nucleotide binding protein in the activation of phosphoinositide phosphodiesterase. Nature 315:534-536.

    Google Scholar 

  • Cook SJ, and McCormick F. 1993. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262:1069-1072.

    CAS  PubMed  Google Scholar 

  • Crespo P, Cachero TG, Xu N, Gutkind JS. 1995. J Biol Chem 270:25259-25265.

    CAS  PubMed  Google Scholar 

  • D’Angelo DD, et al. 1997. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94:8121-8126.

    PubMed  Google Scholar 

  • DiFusco F, Anand-Srivastava MB. 1997. Nitric oxide synthase inhibition by Nω-nitro-L-arginine methyl ester modulates G-protein expression and adenylyl cyclase activity in rat heart. Am J Hypertens 10:471-475.

    Article  CAS  Google Scholar 

  • DiFusco F, Anand-Srivastava MB. 2000. Enhanced expression of Gi proteins in non-hypertrophic hearts from rats with hypertension induced by L-NAME treatment. J Hypertens 8:1081-1091.

    Google Scholar 

  • DiFusco F, Hashim S, Anand-Srivastava MB. 2000. Volume overload cardiac hypertrophy exhibits decreased expression of Gsα and not of Giα in heart. Am J Physiol Cell Physiol 279:C990-C998.

    CAS  Google Scholar 

  • Dorn GW II, Force T. 2005. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527-537. doi :10.ll72/JCl200524178.

    Google Scholar 

  • Dorn II GW, Tepe NM, Guangyu WU, Atsuko Y, Liggett SB. 2000. Mechanisms of impaired β-adrenergic receptor signaling in Gq-mediated cardiac hypertrophy and ventricular dysfunc-tion. Mol Pharm 57:278-287.

    CAS  Google Scholar 

  • Eschenhagen TG. 1993. Proteins and the heart. Cell Biol Int 17:723-749.

    CAS  PubMed  Google Scholar 

  • Faure M, Voyno-Yasenetskaya TA, Bourne HR. 1994. AMP and beta gamma subunits of het-erotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 269:7851-7854.

    CAS  PubMed  Google Scholar 

  • Feldman AM, Cates AE, Beazey WB, Hershberger RE, Bristow MR, Baughman KL, Baugartner WA, Dop CV. 1988. Increase of the 40,000 mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82:189-197.

    CAS  PubMed  Google Scholar 

  • Feldman RD, Jan CM, Chorazyczewski J. 1995. G protein alterations in hypertension and aging. Hypertension 26:725-732.

    CAS  PubMed  Google Scholar 

  • Fleming JW, Wisler PL, Watanabe AM. 1992. Signal transduction by G proteins in cardiac tissues. Circulation 85:420-433.

    CAS  PubMed  Google Scholar 

  • Frodin M, Peraldi P, Van Obberghen E. 1994. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 269:6207-6214.

    CAS  PubMed  Google Scholar 

  • Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, Dalton N, Hammond HK. 1999. Adenylyl cy-clase increases responsiveness to cathecholamine stimulation in transgenomic mice. Circulation 99:1618-1622.

    CAS  PubMed  Google Scholar 

  • Ge C, Anand-Srivastava MB. 1998. Involvement of phosphatidyl inositol-3-kinase and mitogen-activted protein kinase in AII-mediated enhanced expression of Gi proteins in vascular smooth muscle cells. Biochem Biophys Res Commun 251:570-575.

    CAS  PubMed  Google Scholar 

  • Ge C, Garcia R, Anand-Srivastava MB. 1999. Altered expression of Gi protein and adeny-lyl cyclase activity in hearts from one kidney one clip hypertensive rats: effect of captopril. J Hypertens 17:1617-1625.

    CAS  PubMed  Google Scholar 

  • Ge C, Garcia R, Anand-Srivastava MB. 2006. Enhanced expression of Giα proteins and adenylyl cyclase signalling in aortas from 1 kidney 1 clip hypertensive rats. Can J Physiol Pharmacol 84:739-746.

    CAS  PubMed  Google Scholar 

  • Gilman A. 1984. G proteins and dual control of adenylyl cyclase. Cell 36:577-579.

    CAS  PubMed  Google Scholar 

  • Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, Krebs EG. 1993. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen activated pro-tein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA 90:10300-10304.

    CAS  PubMed  Google Scholar 

  • Hamet P, Franks DJ, Adnot S, Coquil JF. 1980. Cyclic nucleotides in hypertension. Adv Cyclic Nucleotide Res 12:11-23.

    CAS  PubMed  Google Scholar 

  • Hammond HK, Ransnas LA, White FC, Bloor CM, Insel PA. 1988. Myocardial β-receptor number, pharmacological responsiveness and Gs in volume overload hypertrophy in PAGE (abstract). Circulation 78(Suppl II):II-163.

    Google Scholar 

  • Hammond HK, Roth DA, Torsel PA, Ford CE, White FC, Maisel AS, Ziegler MG, Bloor CM, Insel PA. 1992. Myocardial beta-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion. Circulation 85:269-280.

    CAS  PubMed  Google Scholar 

  • Hammond HR, Roth DA, McKirnan MD, Ping P. 1993. Regional myocardial down regulation of the inhibitory guanosine triphosphate binding protein (Gi alpha 2) and beta-adrenergic receptos in a porcine model of chronic myocardial ischemia. J Clin Invest 92:2644-2652.

    CAS  PubMed  Google Scholar 

  • Harris DM, Heather I, Cohn BS, Pesant S, Zhou R-H, Eckhart A. 2007. Vascular smooth mus-cle Gq signaling is involved in high blood pressure in both induced renal and genetic vascu-lar smooth muscle-derived models of hypertension. Am J Physiol Heart Circ Physiol 1-35. doi:10.1152/ajpheart 00880.2007.

    Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G. 1998. Direct stimulation of the guanine nucleotide exchange activity of p114 RhoGEF by G α13 . Science 280:2112-2114.

    CAS  PubMed  Google Scholar 

  • Hashim S, Anand-Srivastava MB. 2004. Losartan-induced attenuation of blood pressure in L-NAME hypertensive rats is associated with reversal of the enhanced expression of Giα pro-tein. J Hypertens 22:181-190.

    CAS  PubMed  Google Scholar 

  • Heidemann SR, Joshi HC, Schechter A, Fletcher JR, Bothwell M. 1985. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J Cell Biol 100:915-927.

    Google Scholar 

  • Hein L, et al. 1997. Overexpression of angiotensin AT1 receptor transgene in the mouse my-ocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci USA 94:6391-6396.

    CAS  PubMed  Google Scholar 

  • Holmer SR, Bruckschlegl G, Schunkert H, Rataj DB, Krower EP, Riegger GA. 1996. Functional activity and expression of the myocardial post-receptor adenylyl cyclase system in pressure-overload hypertrophy in rat. Cardiovasc Res 31:719-728.

    CAS  PubMed  Google Scholar 

  • Hordijk PL, Verlaan I, Jalink K, van Corven EJ, Moolenaar WH. 1994. AMP abrogates the p21ras-mitogen-activated protein kinase pathway in fibroblasts. J Biol Chem 269:35334-35338.

    Google Scholar 

  • Iglarz M, Schiffrin EL. 2003. Role of endothelin-1 in hypertension. Curr Hypertens Rep 5:144-148.

    PubMed  Google Scholar 

  • Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Susuki K. 1986. Molecular cloning and sequence determination of cDNAs for alpha of the guanine nucleotide-binding proteins Gs, Gi and Go from rat brain. Proc Natl Acad Sci USA 83:3776-3786.

    CAS  PubMed  Google Scholar 

  • Itoh H, Toyama RI, Kozasa TI, Tsukamoto TI, Matsuoka M, Kaziro Y. 1988. Presence of three distinct molecular species of G protein: a subunit structure of rat cDNA and human genomic DNAs. J Biol Chem 263:6656-6664.

    CAS  PubMed  Google Scholar 

  • Jaw SP, Su DD, Matsumoto RR, Truong DD. 1995. Alteration of brain levels of phosphoinositidase C-linked Gq alpha/G11 alpha proteins and motor function in rats after cardiac arrest. Stroke 26:1067-1070.

    CAS  PubMed  Google Scholar 

  • Jesnum S, Zaedi S, Maeda S, Togashi H, Yamaguchi I, Goto K, Niyauchi T. 2006. Endothelin antagonism suppresses plasma and cardiac endothelin-1 levels in SHR SPs at the typical hyper-tensive stage. Exp Biol Med 231:919-924.

    Google Scholar 

  • Jones DT, Reed RR. 1987. Molecualr cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262:14241-14249.

    CAS  PubMed  Google Scholar 

  • Kagiyama S, Eguchi S, Frank GD, Inagani T, Zhang YC, Philipps MI. 2002. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 106:909-912.

    CAS  PubMed  Google Scholar 

  • Kagiyama S, Qian K, Kagiyama T, Philipps MI. 2003. Antisense to epidermal growth factor re-ceptors prevents the development of left ventricular hypertrophy. Hypertension 41:824-829.

    CAS  PubMed  Google Scholar 

  • Kanagy NL, Webb RC. 1996. Increased responsiveness and decreased expression of G-proteins in deoxycorticosterone-salt hypertension. Hypertension 27:740-745.

    CAS  PubMed  Google Scholar 

  • Karliner JS, Kagiya T, Simpson PC. 1990. Effects of pertussis toxin on alpha 1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy I neonatal rat ventricular my-ocytes. Experientia (Basel) 46:81-84.

    CAS  Google Scholar 

  • Katoh Y, Komuro I, Yamaguchi H, Yazaki Y. 1992. Molecular mechanism of hypertrophied failing heart abnormalities of the diastolic properties and contractility. Jpn Circ J 56:694-700.

    CAS  PubMed  Google Scholar 

  • Keys JR, Greene EA, Koch WJ, Eckhart AD. 2002. Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature. Hypertension 40:660-666.

    CAS  PubMed  Google Scholar 

  • Kinoshita S, Ghidhu A, Felder RA. 1989. Defective dopamine-1 receptor adenylate cyclase cou-pling in the proximal convoluted tubule from the spontaneously hypertensive rat. J Clin Invest 84:1849-1856.

    CAS  PubMed  Google Scholar 

  • Kirchengast M, Witte K, Stolpe K, Schilling L, Nedvetsky PI, Schmidt HH, Lemmer B. 2005. Effects of chronic endothelin ET(A) receptor blockade on blood pressure and vascular forma-tion of cyclic guanosine 3 5 monophosphate in spontaneously hypertensive rats. Arzneimit-telforschung 55:498-504.

    CAS  Google Scholar 

  • Kouchi I, Zolk O, Jockenhovel F, Itter G, Linz W, Cremers B, Bohm M. 2000. Increase in Giα pro-tein accompanies progression of post-infarction remodelling in hypertensive cardiomyopathy. Hypertension 36:42-47.

    CAS  PubMed  Google Scholar 

  • Laks MM, Morady F, Swan HJC. 1973. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest 64:75-78.

    CAS  PubMed  Google Scholar 

  • Li P, Zou AP, Al-kayed NJ, Rusch NJ, Harder DR. 1994. Guanine nucleotide-binding proteins in aortic smooth mucle from hypertensive rats. Hypertension 23:914-918.

    CAS  PubMed  Google Scholar 

  • Li Y, Anand-Srivastava MB. 2002. Inactivation of Gi proteins by pertussis toxin attenuated the development of hypertension in spontaneously hypertensive rats. Circ Res 91:247-254.

    CAS  PubMed  Google Scholar 

  • Li Y, Lappas G, Anand-Srivastava MB. 2007. Role of oxidative stress in angiotensin II-induced en-hanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 292:H1922-H1930.

    CAS  PubMed  Google Scholar 

  • Limas CJ, Limas C. 1978. Reduced number of β-adrenergic receptors in the myocardium of spon-taneously hypertensive rats. Biochem Biophys Res Commun 83:710-714.

    CAS  PubMed  Google Scholar 

  • Litosch I, Wallis C, Fain JN. 1985. Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J Biol Chem 260:5464-5471.

    CAS  PubMed  Google Scholar 

  • Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ. 1988. Decreased stimulatory guanosine triphos-phate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 81:420-424.

    CAS  PubMed  Google Scholar 

  • Maisel AS, Ransnas LA, Insel PA. 1990. Beta-adrenergic receptors and the Gs protein in myocar-dial ischemia and injury. Basic Res Cardiol 85:47-56.

    PubMed  Google Scholar 

  • Marcil J, Anand-Srivastava MB. 2001. G protein alterations in lymphocytes from spontaneously hypertensive rats: correlation with adenylyl cyclase. Cardiovasc Res 49:234-243.

    CAS  PubMed  Google Scholar 

  • Marcil J, Schiffrin EL, Anand-Srivastava MB. 1996. Aberrant adenylyl cyclase/cAMP signal trans-duction and G protein levels in platelet from hypertensive patients improve with antihyperten-sive drug therapy. Hypertension 28:83-90.

    CAS  PubMed  Google Scholar 

  • Marcil J, Thibault C, Anand-Srivastava MB. 1997. Enhanced expression of Gi protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 29:1008-1022.

    Google Scholar 

  • Marcil J, de Champlain J, Anand-Srivastava MB. 1998. Overexpression precedes the develop-ment of DOCA-salt-induced hypertension: relationship with adenylyl cyclase. Cardiovasc Rev 39:492-505.

    CAS  Google Scholar 

  • McLellan AR, Milligan G, Houslay MD, Connell JM. 1993. G-proteins in essential hypertension: a study of human platelet plasma membranes. J Hypertens 11:543-549.

    CAS  PubMed  Google Scholar 

  • Michel MC, Farke W, Erdlbrugger W, Philipps T, Broddle OE. 1994. Ontogenesis of sympathetic responsiveness in spontaneously hypertensive rats. II. Renal G proteins in male and female rats. Hypertension 23:653-658.

    CAS  Google Scholar 

  • Milano CA, Dolber PC, Rockman HA, Bond RA, Venable MED, Allen LF, Lefkowitz RJ. 1994. Proc Natl Acad Sci USA 91:10109-10113.

    CAS  PubMed  Google Scholar 

  • Moalic JM, Bourgeois F, Mainser P, Machida CA, Carre F, Chevalier B, Pilarque P, Swynghedauw B. 1993. Beta-1 adrenergic receptor and G alpha s mRNA in rat heart as a function of mechanical load and thyrosine intoxication. Cardiovasc Res 27:231-237.

    CAS  PubMed  Google Scholar 

  • Mondry A, Bourgeois F, Carre F, Swynghedauw B, Moalic JM. 1995. Decrease in beta-1-adrenergic and M2 muscarinic receptor mRNA levels and unchanged accumulation of mRNAs coding for G-alpha i-2 and G alpha s proteins in rat cardiac hypertrophy. J Mol Cell Cardiol 27:2287-2294.

    CAS  PubMed  Google Scholar 

  • Morgan HE, Baker KM. 1991. Cardiac hypertrophy. Mechanical, neural and endocrine depen-dence. Circulation 83:13-25.

    CAS  PubMed  Google Scholar 

  • Morishiuta KH, Migaki J, Miyazaki, Ogiharan T. 1992. Possible role of vascular rennin angiotensin system in hypertension and vascular hypertrophy. Hypertension 19:62-67.

    Google Scholar 

  • Murakami T, Yasuda H. 1988. Rat heart cell membranes contain three substrates for cholera toxin-catalyzed ADP-ribosylation and a single substrate for pertussis toxin-catalyzed ADP-ribosylation. Biochem Biophys Res Commun 138:1355-1361.

    Google Scholar 

  • Nieto JL, Diaz-Laviade I, Gnillen A, Garcia-Barreno P, Haro A. 1993. Cardiac beta-adrenoceptors, G-proteins and adenylate cyclase regulation during myocardial hypertrophy. Cell Signal 5:169-179.

    CAS  PubMed  Google Scholar 

  • Ohyanagi M, Yamamoto J, Nakamura K, Shibuyen J, Morita M, Masutani M, Arii T, Iwasaki T. 1995. Messenger RNA for the guanine nucleotide-binding regulatory protein (G-protein) is reduced in the acute ischemic myocardium. J Mol Cell Cardiol 27:1131-1139.

    CAS  PubMed  Google Scholar 

  • Pandey S, Anand-Srivastava MB. 1996. Modulation of G-protein expression by the angiotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive rats: relation-ship with adenylyl cyclase. Am J Hypertens 9:833-837.

    CAS  PubMed  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. 1985. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536-538.

    CAS  PubMed  Google Scholar 

  • Robishaw JD, Smigel MD, Gilman AG. 1986. Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem 261:9587-9590.

    CAS  PubMed  Google Scholar 

  • Rodbell M, Krans HM, Pohl SL, Birnbaumer L. 1971. The glucagon-sensitive adenylyl cyclase system in plasma membranes of rat liver: effects of guanylyl nucleotides on binding of 125 I-glucagon. J Biol Chem 246:1872-1876.

    CAS  PubMed  Google Scholar 

  • Sexl V, Mancusi G, Holler C, Gloria-Maercker E, Schutz W, Freissmuth M. 1997. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human en-dothelial cells. J Biol Chem 272:5792-5799.

    CAS  PubMed  Google Scholar 

  • Shermuly RT, Dony E, Ghofrani HA, Pullamcetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F. 2005. Reversal of experimental pulmonary hyper-tension by PDGF inhibition. J Clin Invest 115:2811-2821.

    Google Scholar 

  • Shi CS, Sinnarajah S, Cho H, Kozasa T, Kehri JH. 2000. G11 α-mediated PYK2 activation. PYK2 is a mediator of G11 α-induced serum response element-dependent transcription. J Biol Chem 275:24470-24476.

    CAS  PubMed  Google Scholar 

  • Simon MI, Srathmann MP, Gantam N. 1991. Diversity of G proteins in signal transduction. Science 252:802-808.

    CAS  PubMed  Google Scholar 

  • Simpson PJ. 1983. Norepinephrine stimulated hypertrophy of cultured rat myocardial cells is an alpha-1 adrenergic response. Clin Invest 72:732-738.

    CAS  Google Scholar 

  • Sims C, Ashby K, Douglas JG. 1992. Angiotensin II-induced changes in guanine nucleotide bind-ing and regulatory proteins. Hypertension 19:146-152.

    CAS  PubMed  Google Scholar 

  • Siri FM. 1988. Sympathetic change during development of cardiac hypertrophy in aortic con-stricted rats. Am J Physiol 255:H452-H457.

    CAS  PubMed  Google Scholar 

  • Spiegel AM. 1987. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol 49:1-16.

    CAS  PubMed  Google Scholar 

  • Spiegel AM, Shenker A, Weinstein LS. 1992. Receptor-effector coupling by G-proteins: implica-tions for normal and abnormal signal transduction. Endocrinol Rev 13:536-565.

    CAS  Google Scholar 

  • Strasser RH, Krimmer J, Braun-Dullaeus R, Marguentant R, Kubler W. 1990. Dual sensitization of the adrenergic system in early myocardial ischemia: independent regulation of the beta-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 22:1405-1423.

    CAS  PubMed  Google Scholar 

  • Strathmann MP, Simon MI. 1991. G alpha 12 and alpha 13 subunits define a fourth class of G protein alpha subunits. Proc Natl Acad Sci USA 88:5582-5586.

    CAS  PubMed  Google Scholar 

  • Stryer L, Bourne HR. 1986. G-proteins: a family of signal transducers. Annu Rev Cell Biol 2:391-419.

    CAS  PubMed  Google Scholar 

  • Susani EE, Manders WT, Knight DR, Vatner DE, Vatner SF, Homcy CJ. 1989. One hour of my-ocardial ischemia decreases the activity of the stimulatory guanine-nucleotide regulatory protein Gs. Circ Res 65:1145-1150.

    Google Scholar 

  • Suyama K, Saito K, Chen G, Pan PS, Manji HK, Potter WZ. 1995. Alterations in cyclic AMP generation and G-protein subunits following transient ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 15:877-885.

    CAS  PubMed  Google Scholar 

  • Takahashi, T, Tang T, Lai NC, Roth DV, Rebolledo B, Saito M, Lew WYW, Clopton P, Hammond HK. 2006. Increased cardiac adenylylcyclase expression is associated with increased survival after myocardial infarction. Circulation 114:388-396.

    CAS  PubMed  Google Scholar 

  • Takeishi Y, Chu G, Kirkpatrick DL, Wakasaki H, Li Z, Kranias EG, King GL, Walsh RA. 1998. In vivo phosphorylation of cardiac troponin I by PKCβ2 decreases cardiomyocyte calcium re-sponsiveness and contractility in transgenic mouse heart. J Clin Invest 102:72-78.

    CAS  PubMed  Google Scholar 

  • Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. 2000. Transgenic overexpres-sion of constitutely active protein kinase C-E causes concentric cardiac hypertrophy. Circ Res 86:1218-1223.

    CAS  PubMed  Google Scholar 

  • Takenaka K, Kanaho Y, Nagata K, Sakai N, Yamada H, Nozawa Y. 1991. Ischemia of rat brain decreases pertussis toxin-catalyzed [32 P]ADP-ribosylation of GTP-binding proteins (Gil and Go) in membranes. J Cereb Blood Flow Metab II:155-160.

    Google Scholar 

  • Tang WJ, Gilman G. 1991. Type-specific regulation of adenylyl cyclase by G protein beta gamma submits. Science 254:1500-1503.

    CAS  PubMed  Google Scholar 

  • Taussig R, Iniguez-Lluhi JA, Gilman AG. 1993. Inhibition of adenylyl cyclase by Gi alpha. Science 261:218-221.

    CAS  PubMed  Google Scholar 

  • Terzic A, Puceart M, Vassort G, Vogel SM. 1993. Cardiac alpha 1-adrenoceptors: an overview. Pharmacol Rev 45:147-175.

    CAS  PubMed  Google Scholar 

  • Thibault C, Anand-Srivastava MB. 1992. Altered expression of G-protein mRNA in spontaneously hypertensive rat hearts exhibit altered expression of G-proteins. FEBS Lett 313:160-164.

    CAS  PubMed  Google Scholar 

  • Thorburn A. 1994. Ras activity is required for phenylephrine-induced activation of mitogen-activated protein kinase in cardiac muscle cells. Biochem Biophys Res Commun 205:1417-1422.

    CAS  PubMed  Google Scholar 

  • Tobise K, Abe M, Onodera S. 1991. Prolonged period of global ischemia causes no change in the GTP-binding proteins in the isolated perfused heart. Eur J Pharmacol 208:183-187.

    CAS  PubMed  Google Scholar 

  • Triggle R, Tabrizchi R. 1993. Changes in vascular smooth muscle function in hypertension. Clin Med J 106:250-257.

    CAS  Google Scholar 

  • Trimder D, Philipps RA, Risvani J, Stephenson JM Johnston CI. 1992. Regulation of vasopressin receptor in deoxycorticosterone acetate salt hypertension. Hypertension 20:569-574.

    Google Scholar 

  • Van den Ende R, Balink HD, ichel MC, VanZwieten PA. 1994. Influence of ischemia and reper-fusion on cardiac signal transduction G protein content, adenylyl cyclase activity, cyclic AMP content and forskolin and dibutyryl cyclic AMP-induced inotropy in the rat Langendorff heart. Fundam Clin Pharmacol 8:408-416.

    Google Scholar 

  • Wahlander H, Wickman A, Isgaard J, Friberg P. 1999. Interaction between renin-angiotensin sys-tem and insulin-like growth factor-1 in aorta-caval fistula. Acta Physiol Scand 165:143-154.

    CAS  PubMed  Google Scholar 

  • Wankerl M, Schwartz K. 1005. Calcium transport proteins in the nonfailing and failing heart: gene expression and function. J Mol Med 73:487-493.

    Google Scholar 

  • Wedegaertner PB, Wilson PT, Bourne HR. 1995. Lipid modifications of trimeric G proteins. J Biol Chem 270:503-506.

    CAS  PubMed  Google Scholar 

  • Wickman KD, Iniguez Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE. 1994. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255-257.

    CAS  PubMed  Google Scholar 

  • Woodcock EA, Farder JW, Johnston CI. 1979. Decreased cardiac beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 45:560-565.

    CAS  PubMed  Google Scholar 

  • Wolff AA, Hines DK, Karliner JS. 1994. Preserved beta-adrenoceptor-mediated adenylyl cyclase activity despite receptor and post-receptor dysfunction in acute myocardial ischemia. Am Heart J 128:542-550.

    CAS  PubMed  Google Scholar 

  • Wong YH, Conklin BB, Bourne HR. 1992. Gz-mediated hormonal inhibition of cyclic AMP accu-mulation. Science 255:339-342.

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Aikawa R, Takano H, Yasaki Y. 1997. Norepinephrine induces the raf-1 kinase/mitogen-activated protein kinase cas-cade through both alpha 1- and beta-adrenoceptors. Circulation 95:1260-1268.

    CAS  PubMed  Google Scholar 

  • Yao H, Labudda K, Rim C, Capodieci P, Loda M, Stork PJS. 1995. Cyclic adenosine monophos-phate can convert epidermal growth factor into a differentiating factor in neuronal cells. J Biol Chem 270:20748-20753.

    CAS  PubMed  Google Scholar 

  • Yatani A, Brown AM. 1989. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245: 71-74.

    CAS  PubMed  Google Scholar 

  • Zeng YY, Benishin CG, Pank PKT. 1991. Increased responsiveness of the adenylate cyclase (AC) signalling system in splenocyte membranes from spontaneously hypertensive rats (SHR) (ab-stract). FASEB J 5:A1597.

    Google Scholar 

  • Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle E, Yu, X, Kupershmidt S, Roden DM, Wagner T, Yatani A, Vatner DE, Vatner SF, Sadoshima J. 2005. Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gα I coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 115:3045-3056.

    CAS  PubMed  Google Scholar 

  • Zierhut W, Zimmer HG. 1989. Significance of myocardial α- and β-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65:1417-1425.

    CAS  PubMed  Google Scholar 

  • Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y. 1999. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 274:9760-9770.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anand-Srivastava, M.B. (2008). Implication of G-proteins in Cardiovascular Disease. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_1

Download citation

Publish with us

Policies and ethics