Skip to main content

Making the White Matter Matters: Progress in Understanding Canavan’s Disease and Therapeutic Interventions Through Eight Decades

  • Research Report
  • Chapter
  • First Online:

Part of the book series: JIMD Reports ((JIMD,volume 19))

Abstract

Canavan’s disease (CD) is a fatal autosomal recessive pediatric leukodystrophy in which patients show severe neurodegeneration and typically die by the age of 10, though life expectancy in patients can be highly variable. Currently, there is no effective treatment for CD; however, gene therapy seems to be a feasible approach to combat the disease. Being a monogenic defect, the disease provides an excellent model system to develop gene therapy approaches that can be extended to other monogenic leukodystrophies and neurodegenerative diseases. CD results from mutations in a single gene aspartoacylase which hydrolyses N-acetyl aspartic acid (NAA) which accumulates in its absences. Since CD is one of the few diseases that show high NAA levels, it can also be used to study the enigmatic biological role of NAA. The disease was first described in 1931, and this review traces the progress made in the past 8 decades to understand the disease by enumerating current hypotheses and ongoing palliative measures to alleviate patient symptoms in the context of the latest advances in the field.

Competing interests: None declared

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan’s disease). A review. Hum Pathol 4(3):331–347

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SS, Li H, Cao CSE, Denninger AR, Su Q, Eaton S, Liso Navarro AA, Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, Gao G (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol Ther 12:2136–2147

    Article  Google Scholar 

  • Akimitsu TKK, Hanaya R, Iida K, Kiura Y, Arita K, Matsubayashi H, Ishihara K, Kitada K, Serikawa T, Sasa M (2000) Epileptic seizures induced by N-acetyl-L-aspartate in rats: in vivo and in vitro studies. Brain Res 861(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Al-Dirbashi OY, Kurdi W, Imtiaz F et al (2009) Reliable prenatal diagnosis of Canavan disease by measuring N-acetylaspartate in amniotic fluid using liquid chromatography tandem mass spectrometry. Prenat Diagn 29(5):477–480

    Article  CAS  PubMed  Google Scholar 

  • Ariyannur PS, Moffett JR, Manickam P et al (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13

    Article  CAS  PubMed  Google Scholar 

  • Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Assadi M, Janson C, Wang DJ et al (2010) Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol 14(4):354–359

    Article  PubMed  Google Scholar 

  • Baslow M (1997) A review of phylogenetic and metabolic relationships between the acylamino acids, N-acetyl-L-aspartic acid and N-acetyl-L-histidine, in the vertebrate nervous system. J Neurochem 68(4):1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Baslow MH (1999) Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer’s apprentice. J Inherit Metab Dis 22(2):99–101

    Article  CAS  PubMed  Google Scholar 

  • Baslow MH, Resnik TR (1997) Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J Mol Neurosci 9(2):109–125

    Article  CAS  PubMed  Google Scholar 

  • Baslow MH, Kitada K, Suckow RF, Hungund BL, Serikawa T (2002) The effects of lithium chloride and other substances on levels of brain N-acetyl-L-aspartic acid in Canavan disease-like rats. Neurochem Res 27(5):403–406

    Article  CAS  PubMed  Google Scholar 

  • Beaudet A (2001) Aspartoacylase deficiency (Canavan disease) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Publishers, pp 5799–5805

    Google Scholar 

  • Bennett MJ, Gibson KM, Sherwood WG et al (1993) Reliable prenatal diagnosis of Canavan disease (aspartoacylase deficiency): comparison of enzymatic and metabolite analysis. J Inherit Metab Dis 16(5):831–836

    Article  CAS  PubMed  Google Scholar 

  • Bhakoo KK, Craig TJ, Styles P (2001) Developmental and regional distribution of aspartoacylase in rat brain tissue. J Neurochem 79(1):211–220

    Article  CAS  PubMed  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum SM, Levinton L, Kingsley RB, Greenstein JP (1952) Specificity of amino acid acylases. J Biol Chem 194:455–462

    CAS  PubMed  Google Scholar 

  • Bluml S, Seymour K, Philippart M, Matalon R, Ross B (1998) Elevated brain water in Canavan disease: impact of a diuretic therapy. In: Book elevated brain water in Canavan disease: impact of a diuretic therapy. p 171

    Google Scholar 

  • Bruce AJBM (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18(6):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Burger C, Gorbatyuk OS, Velardo MJ et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    Article  CAS  PubMed  Google Scholar 

  • Canavan MM (1931) Schilder’s encephalitis periaxialis diffusa. Arch Neurol Psychiat 25:299–308

    Google Scholar 

  • Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13(3):528–537

    Article  CAS  PubMed  Google Scholar 

  • Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16(10):1710–1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78(4):736–745

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Rapoport SI, Rao J (2009) Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res 34(3): 536–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen RWCD (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274(10):6039–6042

    Article  CAS  PubMed  Google Scholar 

  • Copray SHJ, Sher F, Casaccia-Bonnefil P, Boddeke E (2009) Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 57(15):1579–1587

    Article  PubMed Central  PubMed  Google Scholar 

  • D'Adamo AF Jr, Gidez LI, Yatsu FM (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 5(4):267–273

    Google Scholar 

  • Duque S, Joussemet B, Riviere C et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17(7):1187–1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elpeleg ON, Shaag A (1999) The spectrum of mutations of the aspartoacylase gene in Canavan disease in non-Jewish patients. J Inherit Metab Dis 22(4):531–534

    Article  CAS  PubMed  Google Scholar 

  • Escolar MLPM, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M, Morse R, Krivit W, Kurtzberg J (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352(20):2069–2081

    Article  CAS  PubMed  Google Scholar 

  • Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Francis J, Markov V, Leone P (2013) Dietary triheptanoin rescues oligodendrocyte loss, dysmyelination and motor function in the nur7 mouse model of Canavan disease. J Inherit Metab Dis 37(3):369–381

    Article  PubMed  Google Scholar 

  • Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Samulski RJ (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20(4):450–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hermonat PLMN (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81(20):6466–6470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MA (2007) Mutational analysis of aspartoacylase: implications for Canavan disease. Brain Res 1148:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirano A (1981) Structure of normal central myelinated fibers. Adv Neurol 31:51–68

    Article  CAS  PubMed  Google Scholar 

  • Hunt A, Burne R (1995) Medical and nursing problems of children with neurodegenerative disease. Palliative Med 9(1):19–26

    Article  CAS  Google Scholar 

  • Hwu WL, Muramatsu S, Tseng SH et al (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134–161

    Article  Google Scholar 

  • Jakobs C, ten Brink HJ, Langelaar SA et al (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J Inherit Metab Dis 14(5):653–660

    Article  CAS  PubMed  Google Scholar 

  • Janson C, McPhee S, Bilaniuk L et al (2002) Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 13(11):1391–1412

    Article  CAS  PubMed  Google Scholar 

  • Janson CG, McPhee SW, Francis J et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37(4):209–221

    Article  CAS  PubMed  Google Scholar 

  • Kaul R, Casanova J, Johnson AB, Tang P, Matalon R (1991) Purification, characterization, and localization of aspartoacylase from bovine brain. J Neurochem 56(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5(2):118–123

    Article  CAS  PubMed  Google Scholar 

  • Kaul R, Gao GP, Aloya M et al (1994) Canavan disease: mutations among Jewish and non-Jewish patients. Am J Hum Genet 55(1):34–41

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kessing LVSL, Forman JL, Andersen PK (2008) Lithium treatment and risk of dementia. Arch Gen Psychiatry 65(11):1331–1335

    Article  PubMed  Google Scholar 

  • Kitada K, Akimitsu T, Shigematsu Y et al (2000) Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74(6):2512–2519

    Article  CAS  PubMed  Google Scholar 

  • Klugmann M, Symes CW, Klaussner BK et al (2003) Identification and distribution of aspartoacylase in the postnatal rat brain. Neuroreport 14(14):1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 87(15):3415–3427

    Article  CAS  PubMed  Google Scholar 

  • Lee DHPG (2007) Mutagenesis induced by the nitric oxide donor sodium nitroprusside in mouse cells. Mutagenesis 22(1):63–67

    Article  CAS  PubMed  Google Scholar 

  • Leone P, Janson CG, Bilaniuk L et al (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Leone P, Shera D, McPhee SW et al (2012) Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med 4(165):165ra163

    Google Scholar 

  • Lin WPB (2009) Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci 12(4):379–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86(4):824–835

    Article  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol 472(3):318–329

    Article  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Arun P, Moffett JR et al (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci U S A 102:5221–5226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Arun P, Anikster Y et al (2009) Glyceryl triacetate for Canavan disease: a low-dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model. J Inherit Metab Dis 32(5):640–650

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals-Matalon K (1999a) Biochemistry and molecular biology of Canavan disease. Neurochem Res 24(4):507–513

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals-Matalon K (1999b) Prenatal diagnosis of Canavan disease. Prenat Diagn 19(7):669–670

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29(2):463–471

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Kaul R, Michals K (1993) Canavan disease: biochemical and molecular studies. J Inherit Metab Dis 16(4):744–752

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Rady PL, Platt KA et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2(3):165–175

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Surendran S, Rady PL et al (2003) Adeno-associated virus-mediated aspartoacylase gene transfer to the brain of knockout mouse for Canavan disease. Mol Ther 7(5 Pt 1):580–587

    Article  CAS  PubMed  Google Scholar 

  • McCown T (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5(3):333–338

    Article  CAS  PubMed  Google Scholar 

  • McPhee SW, Francis J, Janson CG et al (2005) Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease. Brain Res Mol Brain Res 135(1–2):112–121

    Article  CAS  PubMed  Google Scholar 

  • Mersmann N, Tkachev D, Jelinek R et al (2011) Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS One 6(5):e2033

    Article  Google Scholar 

  • Mondino M BJ, Saoud M. (2013) N-acetyl-aspartate level is decreased in the prefrontal cortex in subjects at-risk for schizophrenia. Front Psychiatry 4:Article 99

    Google Scholar 

  • Muramatsu S, Fujimoto K, Kato S et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novotny EJ Jr, Hyder J, Rothman Dl (1999) Cerebral amino acids and metabolites in aminoacylase II deficiencies. J Mol Neurosci 12(3):174–175

    Google Scholar 

  • O'Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (2000) Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 880(1–2):84–91

    Google Scholar 

  • Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

    Article  CAS  PubMed  Google Scholar 

  • Pederzolli CDMC, Scapin F, Rockenbach FJ, Sgaravatti AM, Sgarbi MB, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2007) N-acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 25(5):317–324

    Article  CAS  PubMed  Google Scholar 

  • Sager TNF-JA, Hansen AJ (1997) Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J Neurochem 68(2):675–682

    Article  CAS  PubMed  Google Scholar 

  • Samuel SKR, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of DL-a-lipoic acid. Toxicol Lett 155:27–34

    Article  CAS  PubMed  Google Scholar 

  • Samulski RJ, Sally M, Muzyczka N, TF eds (1999) Adeno associated viral vectors: the development of human gene therapy. Cold Spring Harbor Press, New York, pp 131–172

    Google Scholar 

  • Segel RAY, Zevin S, Steinberg A, Gahl WA, Fisher D, Staretz-Chacham O, Zimran A, Altarescu G (2011) A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 103(3):203–206

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Matsubayashi H, Amano T et al (2002) Adenoviral gene transfer of aspartoacylase into the tremor rat, a genetic model of epilepsy, as a trial of gene therapy for inherited epileptic disorder. Neurosci Lett 328(3):249–252

    Article  CAS  PubMed  Google Scholar 

  • Solsona MDFL, Boquet EM, Andrés JL (2012) Lithium citrate as treatment of Canavan disease. Clin Neuropharmacol 35(3):150–151

    Article  PubMed  Google Scholar 

  • Sommer A, Sass JO (2012) Expression of aspartoacylase (ASPA) and Canavan disease. Gene 505(2):206–210

    Article  CAS  PubMed  Google Scholar 

  • Spange SWT, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198

    Article  CAS  PubMed  Google Scholar 

  • Steen RGOR (2005) Abnormally high levels of brain N-acetylaspartate in children with sickle cell disease. AJNR Am J Neuroradiol 26(3):463–468

    PubMed  Google Scholar 

  • Surendran S (2009) Upregulation of N-acetylaspartic acid alters inflammation, transcription and contractile associated protein levels in the stomach and smooth muscle contractility. Mol Biol Rep 36(1):201–206

    Article  CAS  PubMed  Google Scholar 

  • Swain GP, Prociuk M, Bagel JH et al (2013) Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain. Gene Ther 21(1):28–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor DLDS, Obrenovitch TP, Doheny MH, Patsalos PN, Clark JB, Symon L (1995) Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 65(1):275–281

    Article  CAS  PubMed  Google Scholar 

  • Tortorella C, Ruggieri M, Di Monte E et al (2011) Serum and CSF N-acetyl aspartate levels differ in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 82:1355–1359

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28(45):11537–11549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsacopoulos MMP (1996) Metabolic coupling between glia and neurons. J Neurosci 16(3):877–885

    CAS  PubMed  Google Scholar 

  • Tsai G, Coyle J (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46(5):531–540

    Article  CAS  PubMed  Google Scholar 

  • Tsai GGD, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155(9):1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Waksman B (1999) Demyelinating disease: evolution of a paradigm. Neurochem Res 24(4):491–495

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Leone P, Wu G et al (2009) Myelin lipid abnormalities in the aspartoacylase-deficient tremor rat. Neurochem Res 34(1):138–148

    Article  PubMed  Google Scholar 

  • Yang B, Li S, Wang H et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zano S, Malik R, Szucs S, Matalon R, Viola RE (2011) Modification of aspartoacylase for potential use in enzyme replacement therapy for the treatment of Canavan disease. Mol Genet Metab 102(2):176–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Yang B, Mu X et al (2011) Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 8(19):1440–1448

    Google Scholar 

  • Zlokovic B (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the grant support from Jacob’s Cure, NTSAD Foundation, Canavan Foundation, and Public Health Service grants 1R01NS076991, P01 HL59407-11, P01 AI100263-01 from National Institutes of Health to GG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Gao .

Editor information

Editors and Affiliations

Additional information

Communicated by: Ivo Barić, M.D., PhD, Professor of Pediatrics

Appendices

One Sentence Synopsis

In this review, we follow the evolution of research on Canavan’s disease and discuss current understanding of molecular pathogenesis as well as developing potential therapeutics for the disease.

Compliance with Ethics Guidelines

Conflict of Interest

Seemin Seher Ahmed declares that she has no conflict of interest.

Guangping Gao is a founder of Voyager Therapeutics and holds equity in the company. He is also an inventor on patents with potential royalties licensed to Voyager Therapeutics. Voyager Therapeutics is a newly launched gene therapy company that focuses on using the recombinant adeno-associated virus platform technology for the development of gene therapeutics to treat a wide range of CNS disorders.

Informed Consent

This article directly does not contain any studies with human subjects performed by the authors.

Animal Rights

All institutional and national guidelines for the care and use of laboratory animals were followed in the work done in the authors’ laboratory.

Details of the Contributions of Individual Authors

Seemin Seher Ahmed planned and drafted the review.

Guangping Gao reviewed the drafts and provided critical inputs.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahmed, S.S., Gao, G. (2014). Making the White Matter Matters: Progress in Understanding Canavan’s Disease and Therapeutic Interventions Through Eight Decades. In: Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V. (eds) JIMD Reports, Volume 19. JIMD Reports, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2014_356

Download citation

  • DOI: https://doi.org/10.1007/8904_2014_356

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46189-1

  • Online ISBN: 978-3-662-46190-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics