Skip to main content

Patient-Specific Modeling of Scoliosis

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

Abstract

Current complication rates for adolescent spinal deformity surgery are unacceptably high and in order to improve patient outcomes, the development of a simulation tool which enables the surgical strategy for an individual patient to be optimized is necessary. In this chapter we will present our work to date in developing and validating patient-specific modeling techniques to simulate and predict patient outcomes for surgery to correct adolescent scoliosis deformity. While these simulation tools are currently being developed to simulate adolescent idiopathic scoliosis patients, they will have broader application in simulating spinal disorders and optimizing surgical planning for other types of spine surgery. Our studies to date have highlighted the need for not only patient-specific anatomical data, but also patient-specific tissue parameters and biomechanical loading data, in order to accurately predict the physiological behaviour of the spine. Even so, patient-specific computational models are the state-of-the-art in computational biomechanics and offer much potential as a pre-operative surgical planning tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The region of the spine with an intrinsic lateral curvature rather than a deformity related to a functional imbalance of the spinal soft tissues. The structural curve includes vertebrae which are within the extents of the spinal deformity measured by the Cobb angle.

  2. 2.

    The apex of the scoliotic curve is the most laterally deviated vertebra on a frontal radiograph.

References

  1. Andriacchi, T., Schultz, A., Belytschko, T., Galante, J.: A model for studies of mechanical interactions between the human spine and rib cage. J. Biomech. 7(6), 497–507 (1974)

    Article  Google Scholar 

  2. Aubin, C.E., Labelle, H., Chevrefils, C., Desroches, G., Clin, J., Eng, A.B.: Preoperative planning simulator for spinal deformity surgeries. Spine 33(20), 2143–2152 (2008)

    Article  Google Scholar 

  3. Aubin, C.E., Labelle, H., Ciolofan, O.C.: Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis. Eur. Spine J. 16(1), 57–64 (2007)

    Article  Google Scholar 

  4. Betz, R.R., Harms, J., Clements, D.H., 3rd, Lenke, L.G., Lowe, T.G., Shufflebarger, H.L., Jeszenszky, D., Beele, B.: Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24(3), 225-239 (1999)

    Article  Google Scholar 

  5. Chazal, J., Tanguy, A., Bourges, M., Gaurel, G., Escande, G., Guillot, M., Vanneuville, G.: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 18(3), 167–176 (1985)

    Article  Google Scholar 

  6. Cheung, K.M., Luk, K.D.: Prediction of correction of scoliosis with use of the fulcrum bending radiograph. J. Bone Joint Surg. 79(8), 1144–1150 (1997)

    Google Scholar 

  7. Cobb, R.J.: Outline for study of scoliosis. In: American Academy of Orthopaedic Surgeons, Instructional Course Lectures. CV Mosby, St Louis, pp. 261–275 (1948)

    Google Scholar 

  8. Cunningham, H., Little, J.P., Adam, C.J.: The measurement of applied forces during anterior single rod correction of adolescent idiopathic scoliosis. Paper presented at the ACSR annual meeting, Adelaide, August 2009

    Google Scholar 

  9. Cunningham, H., Little, J.P., Pearcy, M.J., Adam, C.J.: The effect of soft tissue properties on overall biomechanical response of a human lumbar motion segment: A preliminary finite element study. In: Brebbia, C.A. (ed.) Modelling in Medicine and Biology VII, WIT Transactions on Biomedicine and Health. WIT Press, Southampton, pp. 93–102 (2007)

    Chapter  Google Scholar 

  10. Erdmann, W.S.: Geometric and inertial data of the trunk in adult males. J. Biomech. 30(7), 679–688 (1997)

    Article  Google Scholar 

  11. Hasler, C.C., Hefti, F., Buchler, P.: Coronal plane segmental flexibility in thoracic adolescent idiopathic scoliosis assessed by fulcrum-bending radiographs. Eur. Spine J. 19(5), 732–738 (2010)

    Article  Google Scholar 

  12. Hay, D., Izatt, M.T., Adam, C.J., Labrom, R.D., Askin, G.N.: Radiographic outcomes over time after endoscopic anterior scoliosis correction: a prospective series of 106 patients. Spine 34(11), 1176–1184 (2009)

    Article  Google Scholar 

  13. Kamimura, M., Kinoshita, T., Itoh, H., Yuzawa, Y., Takahashi, J., Hirabayashi, H., Nakamura, I.: Preoperative CT examination for accurate and safe anterior spinal instrumentation surgery with endoscopic approach. J. Spinal Disord. Tech. 15(1), 47–51; discussion 51–42 (2002)

    Article  Google Scholar 

  14. Kimpara, H., Lee, J.B., Yang, K.H., King, A.I., Iwamoto, M., Watanabe, I., Miki, K.: development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49, 251–269 (2005)

    Google Scholar 

  15. Kumaresan, S., Yoganandan, N., Pintar, F.A.: Finite element analysis of the cervical spine: a material property sensitivity study. Clin. Biomech. (Bristol, Avon) 14(1), 41–53 (1999)

    Article  Google Scholar 

  16. Lafage, V., Dubousset, J., Lavaste, F., Skalli, W.: 3D finite element simulation of cotrel-dubousset correction. Comput. Aided Surg. 9 (1–2), 17–25 (2004)

    Article  Google Scholar 

  17. Lemosse, D., Le Rue, O., Diop, A., Skalli, W., Marec, P., Lavaste, F.: Characterization of the mechanical behaviour parameters of the costo-vertebral joint. Eur. Spine J. 7(1), 16–23 (1998)

    Article  Google Scholar 

  18. Little, J.P., Adam, C.J.: The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine 34(2), E76–E82 (2009)

    Article  Google Scholar 

  19. Little, J.P., Adam, C.J.: Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation. Clin. Biomech. (Bristol, Avon) (in press)

    Google Scholar 

  20. Little, J.P., Adam, C.J., Evans, J.H., Pettet, G.J., Pearcy, M.J.: Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J. Biomech. 40(12), 2744–2751 (2007a)

    Article  Google Scholar 

  21. Little, J.P., Pearcy, M.J., Pettet, G.J.: Parametric equations to represent the profile of the human intervertebral disc in the transverse plane. Med. Biol. Eng. Comput. 45(10), 939–945 (2007b)

    Article  Google Scholar 

  22. Lonner, B.S., Kondrachov, D., Siddiqi, F., Hayes, V., Scharf, C.: Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg. 88(5), 1022–1034

    Article  Google Scholar 

  23. Lu, Y.M., Hutton, W.C., Gharpuray, V.M.: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21(22), 2570–2579 (1996)

    Article  Google Scholar 

  24. Nachemson, A.: Lumbar Intradiscal Pressure: experimental studies on post-mortem material. Acta Orthopaedica Scandinavica 43, (1960)

    Google Scholar 

  25. Natali, A., Meroi, E. Nonlinear analysis of intervertebral disc under dynamic load. Trans. ASME J. 112, 358–362 (1990)

    Google Scholar 

  26. Nolte, L.P., Panjabi, M., Oxland, T.: Biomechanical properties of lumbar spinal ligaments. In: Heimke, G., Soltesz, U., Lee, A.J.C. (eds.) Clinical Implant Materials. Elsevier, Amsterdam, pp. 663–668 (1990)

    Google Scholar 

  27. Oda, I., Abumi, K., Cunningham, B.W., Kaneda, K., McAfee, P.C.: An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3), E64–E70 (2002)

    Article  Google Scholar 

  28. Panjabi, M.M., Brand, R.A., Jr., White, A.A., 3rd., Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. 58(5), 642–652

    Google Scholar 

  29. Papin, P., Arlet, V., Marchesi, D., Laberge, J.M., Aebi, M.: Treatment of scoliosis in the adolescent by anterior release and vertebral arthrodesis under thoracoscopy. Rev. Chir. Orthop. Reparatrice Appar. Mot. 84(3), 231–238 (1998)

    Google Scholar 

  30. Pearcy, M.J.: Stereo radiography of lumbar spine motion. Acta Orthopaedica Scandinavica Supplementum 56(212), 1–45 (1985)

    Article  MathSciNet  Google Scholar 

  31. Reddi, V., Clarke, D.V., Jr., Arlet, V.: Anterior thoracoscopic instrumentation in adolescent idiopathic scoliosis: a systematic review. Spine 33(18), 1986–1994 (2008)

    Article  Google Scholar 

  32. Rohlmann, A., Richter, M., Zander, T., Klockner, C., Bergmann, G.: Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur. Spine J. 15(4), 457–464 (2006)

    Article  Google Scholar 

  33. Sangole, A.P., Aubin, C.E., Labelle, H., Stokes, I.A., Lenke, L.G., Jackson, R., Newton, P.: Three-dimensional classification of thoracic scoliotic curves. Spine 34(1), 91–99 (2008)

    Article  Google Scholar 

  34. Shirazi-Adl, A., Ahmed, A.M., Shrivastava, S.C.: Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11(9), 914–927 (1986)

    Article  Google Scholar 

  35. Stokes, I.A., Gardner-Morse, M.: Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis. Spine 29(19), 2103–2107 (2004)

    Article  Google Scholar 

  36. Stokes, I.A., Laible, J.P.: Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J. Biomech. 23(6), 589–595 (1990)

    Article  Google Scholar 

  37. Torell, G., Nachemson, A., Haderspeck-Grib, K., Schultz, A.: Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine 10(5), 425–427 (1985)

    Article  Google Scholar 

  38. Ueno, K., Liu, Y.K.: A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J. Biomech. Eng. 109(3), 200–209 (1987)

    Article  Google Scholar 

  39. Vrtovec, T., Pernus, F., Likar, B.: A review of methods for quantitative evaluation of spinal curvature. Eur. Spine J. 18(5), 593–607 (2009)

    Article  Google Scholar 

  40. Watkins, R., 4th., Watkins, R., 3rd., Williams, L., Ahlbrand, S., Garcia, R., Karamanian, A., Sharp, L., Vo, C., Hedman, T.: Stability provided by the sternum and rib cage in the thoracic spine. Spine 30(11), 1283–1286 (2005)

    Article  Google Scholar 

  41. Wong, H.K., Hee, H.T., Yu, Z., Wong, D.: Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine 29(18), 2031–2038 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton J. Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Little, J.P., Adam, C.J. (2011). Patient-Specific Modeling of Scoliosis. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_97

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_97

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics