Skip to main content

Bone Cell Mechanoresponsiveness

  • Chapter
  • First Online:
Skeletal Aging and Osteoporosis

Abstract

Improvements in health and nutrition have increased human longevity over the past centuries. Beneficial increases in lifespan, however, are met with novel degenerative and age-related diseases, including atherosclerosis and heart disease, sarcopenia, diabetes, and osteoporosis. The effects of aging upon the skeleton include anatomically heterogeneous involution, alterations in the composition of both the organic and mineral component of the matrix, and accumulation of microdamage. It has been suggested that the process of mechanotransduction within bone is also affected by aging. Within this chapter, we review the process of mechanotransduction in osteogenic cells, highlight those works that have examined age-related changes in mechanotransduction, and discuss mechanosensitive systems implicated in other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, transgenic mice that lost bone under tail suspension did not require osteocytes to regain bone mass, suggesting that osteocytes are indispensible for bone loss due to unloading, whereas reloading-induced increases in bone mass are osteocyte-independent. These data indicate that, in the absence of osteocytes, osteoblasts are sufficiently mechanosensitive and mechanoresponsive to initiate skeletal adaptation.

References

  1. Acconcia, F., Kumar, R.: Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett. 238(1), 1–14 (2006)

    Article  Google Scholar 

  2. Aguirre, J.I., Plotkin, L.I., et al.: A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J. Biol. Chem. 282(35), 25501--25508 (2007)

    Article  Google Scholar 

  3. Armstrong, V.J., Muzylak, M., et al.: Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J. Biol. Chem. 282(28), 20715–20727 (2007)

    Article  Google Scholar 

  4. Bakker, A.D., Klein-Nulend, J., et al.: Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos. Int. 16(8), 983–989 (2005)

    Article  Google Scholar 

  5. Bakker, A.D., Klein-Nulend, J., et al.: Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos. Int. 17(6), 827–833 (2006)

    Article  Google Scholar 

  6. Bassey, E.J., Rothwell, M.C., et al.: Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J. Bone Miner. Res. 13(12), 1805–1813 (1998)

    Article  Google Scholar 

  7. Batra, G.S., Hainey, L., et al.: Evidence for cell-specific changes with age in expression of oestrogen receptor (ER) alpha and beta in bone fractures from men and women. J. Pathol. 200(1), 65–73 (2003)

    Article  Google Scholar 

  8. Batra, N.N., Li, Y.J., et al.: Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J. Biomech. 38(9), 1909–1917 (2005)

    Article  Google Scholar 

  9. Berk, B.C., Abe, J.I., et al.: Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci. 947, 93–109 (2001). Discussion 109–111

    Article  Google Scholar 

  10. Bonivtch, A.R., Bonewald, L.F., et al.: Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J. Biomech. 40(10), 2199–2206 (2007)

    Article  Google Scholar 

  11. Braidman, I., Baris, C., et al.: Preliminary evidence for impaired estrogen receptor-alpha protein expression in osteoblasts and osteocytes from men with idiopathic osteoporosis. Bone 26(5), 423–427 (2000)

    Article  Google Scholar 

  12. Braidman, I.P., Baris, C., et al.: Preliminary report of impaired oestrogen receptor-alpha expression in bone, but no involvement of androgen receptor, in male idiopathic osteoporosis. J. Pathol. 192(1), 90–96 (2000)

    Article  Google Scholar 

  13. Brodt, M.D., Silva, M.J.: Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compression. J. Bone Miner. Res. 25(9), 2006–2015 (2010)

    Article  Google Scholar 

  14. Broulik, P.D.: Tamoxifen prevents bone loss in ovariectomized mice. Endocr. Regul. 25(4), 217–219 (1991)

    Google Scholar 

  15. Buhl, K.M., Jacobs, C.R., et al.: Aged bone displays an increased responsiveness to low-intensity resistance exercise. J. Appl. Physiol. 90(4), 1359–1364 (2001)

    Google Scholar 

  16. Burger, E.H., Klein-Nulend, J.: Mechanotransduction in bone–role of the lacuno-canalicular network. Faseb J. 13, S101–S112 (1999)

    Google Scholar 

  17. Cao, J.J., Kurimoto, P., et al.: Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J. Bone Miner. Res. 22(8), 1271–1279 (2007)

    Article  Google Scholar 

  18. Carlen, B., Stenram, U.: Primary ciliary dyskinesia: a review. Ultrastruct. Pathol. 29(3–4), 217–220 (2005)

    Article  Google Scholar 

  19. Chen, J.R., Plotkin, L.I., et al.: Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J. Biol. Chem. 280(6), 4632–4638 (2005)

    Article  Google Scholar 

  20. Cheng, M.Z., Zaman, G., et al.: Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J. Bone Miner. Res. 11(4), 502–511 (1996)

    Article  Google Scholar 

  21. Chow, J.W., Fox, S., et al.: Role for parathyroid hormone in mechanical responsiveness of rat bone. Am. J. Physiol. 274(1 Pt 1), E146–E154 (1998)

    Google Scholar 

  22. Donahue, H.J., Zhou, Z., et al.: Age-related decreases in stimulatory G protein-coupled adenylate cyclase activity in osteoblastic cells. Am. J. Physiol. 273(4 pt 1), E776–E781 (1997)

    Google Scholar 

  23. Donahue, S.W., Donahue, H.J., et al.: Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech. 36(1), 35–43 (2003)

    Article  MathSciNet  Google Scholar 

  24. Donahue, S.W., Jacobs, C.R., et al.: Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell Physiol. 281(5), C1635–C1641 (2001)

    Google Scholar 

  25. Duncan, R.L., Turner, C.H.: Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57, 344–358 (1995)

    Article  Google Scholar 

  26. Dunstan, C.R., Somers, N.M., et al.: Osteocyte death and hip fracture. Calcif. Tissue Int. 53(1), S113–S116 (1993). Discussion S116–S117

    Article  Google Scholar 

  27. Emerton, K.B., Hu, B., et al.: Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone 46(3), 577–583 (2010)

    Article  Google Scholar 

  28. Frost, H.M.: Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif. Tissue Int. 42(3), 145–156 (1988)

    Article  Google Scholar 

  29. Frost, H.M.: Why do bone strength and “mass” in aging adults become unresponsive to vigorous exercise? Insights of the Utah paradigm. J. Bone Miner. Metab. 17(2), 90–97 (1999)

    Article  MathSciNet  Google Scholar 

  30. Genetos, D.C., Geist, D.J., et al.: Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3–E1 osteoblasts. J. Bone Miner. Res. 20(1), 41–49 (2005)

    Article  Google Scholar 

  31. Gong, Y., Slee, R.B., et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4), 513–523 (2001)

    Article  Google Scholar 

  32. Gunness-Hey, M., Hock, J.M.: Increased trabecular bone mass in rats treated with human synthetic parathyroid hormone. Metab. Bone Dis. Relat. Res. 5(4), 177–181 (1984)

    Article  Google Scholar 

  33. Haberland, M., Montgomery, R.L., et al.: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10(1), 32–42 (2009)

    Article  Google Scholar 

  34. Han, Z., Kokkonen, G.C., et al.: Effect of aging on populations of estrogen receptor-containing cells in the rat uterus. Exp. Cell Res. 180(1), 234–242 (1989)

    Article  Google Scholar 

  35. Hoshi, A., Watanabe, H., et al.: Effects of exercise at different ages on bone density and mechanical properties of femoral bone of aged mice. Tohoku J. Exp. Med. 185(1), 15–24 (1998)

    Article  Google Scholar 

  36. Hove, J.R., Koster, R.W., et al.: Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919), 172–177 (2003)

    Article  Google Scholar 

  37. Hung, C.T., Allen, F.D., et al.: Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J. Biomech. 29(11), 1411–1417 (1996)

    Article  Google Scholar 

  38. Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006)

    Article  Google Scholar 

  39. Jaalouk, D.E., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009)

    Article  Google Scholar 

  40. Jarvinen, T.L., Pajamaki, I., et al.: Femoral neck response to exercise and subsequent deconditioning in young and adult rats. J. Bone Miner. Res. 18(7), 1292–1299 (2003)

    Article  Google Scholar 

  41. Jee, W.S., Tian, X.Y.: The benefit of combining non-mechanical agents with mechanical loading: a perspective based on the Utah Paradigm of Skeletal Physiology. J. Musculoskelet. Neuronal Interact. 5(2), 110–118 (2005)

    Google Scholar 

  42. Jessop, H.L., Rawlinson, S.C., et al.: Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31(1), 186–194 (2002)

    Article  Google Scholar 

  43. Joldersma, M., Klein-Nulend, J., et al.: Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women. Am. J. Physiol. Endocrinol. Metab. 280(3), E436–E442 (2001)

    Google Scholar 

  44. Kamioka, H., Sugawara, Y., et al.: Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J. Bone Miner. Res. 21(7), 1012–1021 (2006)

    Article  Google Scholar 

  45. Kato, M., Patel, M.S., et al.: Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157(2), 303–314 (2002)

    Article  Google Scholar 

  46. Kawai, M., Rosen, C.J.: Insulin-like growth factor-I and bone: lessons from mice and men. Pediatr. Nephrol. 24(7), 1277–1285 (2009)

    Article  Google Scholar 

  47. Kawata, A., Mikuni-Takagaki, Y.: Mechanotransduction in stretched osteocytes–temporal expression of immediate early and other genes. Biochem. Biophys. Res. Commun. 246(2), 404–408 (1998)

    Article  Google Scholar 

  48. Klein-Nulend, J., Sterck, J.G., et al.: Donor age and mechanosensitivity of human bone cells. Osteoporos. Int. 13(2), 137–146 (2002)

    Article  Google Scholar 

  49. Kostenuik, P.J., Halloran, B.P., et al.: Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am. J. Physiol. 273(6 Pt 1), E1133–E1139 (1997)

    Google Scholar 

  50. Kousteni, S., Chen, J.R., et al.: Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298(5594), 843–846 (2002)

    Article  Google Scholar 

  51. Kousteni, S., Han, L., et al.: Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J. Clin. Invest. 111(11), 1651–1664 (2003)

    Google Scholar 

  52. Kveiborg, M., Flyvbjerg, A., et al.: Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions. Exp. Gerontol. 35(8), 1061–1074 (2000)

    Article  Google Scholar 

  53. Leigh, M.W., Pittman, J.E., et al.: Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet. Med. 11(7), 473–487 (2009)

    Article  Google Scholar 

  54. Leppanen, O.V., Sievanen, H., et al.: Pathogenesis of age-related osteoporosis: impaired mechano-responsiveness of bone is not the culprit. PLoS One 3(7), e2540 (2008)

    Article  Google Scholar 

  55. Li, J., Duncan, R.L., et al.: Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144(4), 1226–1233 (2003)

    Article  Google Scholar 

  56. Little, R.D., Carulli, J.P., et al.: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70(1), 11–19 (2002)

    Article  Google Scholar 

  57. Loots, G.G., Kneissel, M., et al.: Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 15(7), 928–935 (2005)

    Article  Google Scholar 

  58. Marino, M., Galluzzo, P., et al.: Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics 7(8), 497–508 (2006)

    Article  Google Scholar 

  59. McAllister, T.N., Frangos, J.A.: Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14(6), 930–936 (1999)

    Article  Google Scholar 

  60. McDonald, F., Somasundaram, B., et al.: Calcium waves in fluid flow stimulated osteoblasts are G protein mediated. Arch. Biochem. Biophys. 326(1), 31–38 (1996)

    Article  Google Scholar 

  61. Miyauchi, A., Notoya, K., et al.: Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes. J. Biol. Chem. 275(5), 3335–3342 (2000)

    Article  Google Scholar 

  62. Mullender, M.G., van der Meer, D.D., et al.: Osteocyte density changes in aging and osteoporosis. Bone 18(2), 109–113 (1996)

    Article  Google Scholar 

  63. Neidlinger-Wilke, C., Stalla, I., et al.: Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain. J. Biomech. 28(12), 1411–1418 (1995)

    Article  Google Scholar 

  64. Nicolella, D.P., Feng, J.Q., et al.: Effects of nanomechanical bone tissue properties on bone tissue strain: implications for osteocyte mechanotransduction. J. Musculoskelet. Neuronal Interact. 8(4), 330–331 (2008)

    Google Scholar 

  65. Nishida, S., Endo, N., Yamagiwa, H., et al.: Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone Miner. Metab. 17(3), 171–177 (1999)

    Article  Google Scholar 

  66. O’Brien, C.A., Plotkin, L., et al.: Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 3(8), e2942 (2008)

    Article  Google Scholar 

  67. Ogita, M., Rached, M.T., et al.: Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 149(11), 5713–5723 (2008)

    Article  Google Scholar 

  68. Orr, A.W., Helmke, B.P., et al.: Mechanisms of mechanotransduction. Dev. Cell 10(1), 11–20 (2006)

    Article  Google Scholar 

  69. Ortner, D.J.: Aging effects on osteon remodeling. Calcif. Tissue Res. 18(1), 27–36 (1975)

    Article  Google Scholar 

  70. Owan, I., Burr, D.B., et al.: Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273(3 p2 1), C810–C815 (1997)

    Google Scholar 

  71. Parfitt, A.M.: The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part III of IV parts; PTH and osteoblasts, the relationship between bone turnover and bone loss, and the state of the bones in primary hyperparathyroidism. Metabolism 25(9), 1033–1069 (1976)

    Article  Google Scholar 

  72. Parfitt, A.M.: The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption–bone flow theory. Clin. Orthop. Relat. Res. (127), 236–247 (1977)

    Google Scholar 

  73. Passerini, A.G., Polacek, D.C., et al.: Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. USA 101(8), 2482–2487 (2004)

    Article  Google Scholar 

  74. Pittenger, M.F., Mackay, A.M., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    Article  Google Scholar 

  75. Plotkin, L.I., Aguirre, J.I., et al.: Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J. Biol. Chem. 280(8), 7317–7325 (2005)

    Article  Google Scholar 

  76. Quarto, R., Thomas, D., et al.: Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif. Tissue Int. 56(2), 123–129 (1995)

    Article  Google Scholar 

  77. Raab, D.M., Smith, E.L., et al.: Bone mechanical properties after exercise training in young and old rats. J. Appl. Physiol. 68(1), 130–134 (1990)

    Google Scholar 

  78. Rath, A.L., Bonewald, L.F., et al.: Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. J. Biomech. 43(8), 1560--1564 (2010)

    Article  Google Scholar 

  79. Rawlinson, S.C., Pitsillides, A.A., et al.: Involvement of different ion channels in osteoblasts’ and osteocytes’ early response to mechanical strain. Bone 19(6), 609–614 (1996)

    Article  Google Scholar 

  80. Rickard, D., Harris, S.A., et al.: Estrogens and progestins. In: Bilezikian, J.P., Raisz, L.G., Rodan, G.A. (eds.) Principles of Bone Biology, vol. 1, pp. 655–676. Academic Press, San Diego (2002)

    Google Scholar 

  81. Robling, A.G., Niziolek, P.J., et al.: Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283(9), 5866–5875 (2008)

    Article  Google Scholar 

  82. Robling, A.G., Turner, C.H.: Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 19(4), 319–338 (2009)

    Article  Google Scholar 

  83. Rosen, C.J.: Growth hormone, insulin-like growth factors, and the senescent skeleton: Ponce de Leon’s Fountain revisited? J. Cell. Biochem. 56(3), 348–356 (1994)

    Article  Google Scholar 

  84. Rubin, C.T., Bain, S.D., et al.: Suppression of the osteogenic response in the aging skeleton. Calcif. Tissue Int. 50(4), 306–313 (1992)

    Article  Google Scholar 

  85. Rubin, J., Rubin, C., et al.: Molecular pathways mediating mechanical signaling in bone. Gene 367, 1–16 (2006)

    Article  Google Scholar 

  86. Rubin, J., Rubin, H., et al.: Constraints of experimental paradigms used to model the aging skeleton. In: Rosen, C.J., Glowacki, J., Bilezikian, J.P. (eds.) The Aging Skeleton, pp. 27–36. Academic Press, San Diego, (1999)

    Google Scholar 

  87. Ryder, K.D., Duncan, R.L.: Parathyroid hormone enhances fluid shear-induced [Ca2+ i] signaling in osteoblastic cells through activation of mechanosensitive and voltage- sensitive Ca2+ channels. J. Bone Miner. Res. 16(2), 240–248 (2001)

    Article  Google Scholar 

  88. Sakai, K., Mohtai, M., et al.: Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif. Tiss. Intl. 63(6), 515–520 (1998)

    Article  Google Scholar 

  89. Sako, Y.: Effects of turbulent blood flow and hypertension on experimental atherosclerosis. JAMA 179, 36–40 (1962)

    Article  Google Scholar 

  90. Sawakami, K., Robling, A.G., et al.: The Wnt Co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281(33), 23698–23711 (2006)

    Article  Google Scholar 

  91. Semenov, M., Tamai, K., et al.: SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280(29), 26770–26775 (2005)

    Article  Google Scholar 

  92. Silbermann, M., Bar-Shira-Maymon, B., et al.: Long-term physical exercise retards trabecular bone loss in lumbar vertebrae of aging female mice. Calcif. Tissue Int. 46(2), 80–93 (1990)

    Article  Google Scholar 

  93. Speder, P., Noselli, S.: Left-right asymmetry: class I myosins show the direction. Curr. Opin. Cell Biol. 19(1), 82–87 (2007)

    Article  Google Scholar 

  94. Sterck, J.G., Klein-Nulend, J., et al.: Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am. J. Physiol. 274(6 Pt 1), E1113–E1120 (1998)

    Google Scholar 

  95. Sutherland, M.J., Ware, S.M.: Disorders of left-right asymmetry: heterotaxy and situs inversus. Am. J. Med. Genet. C Semin. Med. Genet. 151C(4), 307–317 (2009)

    Article  Google Scholar 

  96. Tatsumi, S., Ishii, K., et al.: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 5(6), 464–475 (2007)

    Article  Google Scholar 

  97. Triplett, J.W., O’Riley, R., et al.: Mechanical loading by fluid shear stress enhances IGF-1 receptor signaling in osteoblasts in a PKCzeta-dependent manner. Mol. Cell Biomech. 4(1), 13–25 (2007)

    Google Scholar 

  98. Tsuji, T., Hughes, F.J., et al.: Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech. Ageing Dev. 51(2), 121–132 (1990)

    Article  Google Scholar 

  99. Turner, C.H., Forwood, M.R., et al.: Mechanical loading thresholds for lamellar and woven bone formation. J. Bone Miner. Res. 9(1), 87–97 (1994)

    Article  Google Scholar 

  100. Turner, C.H., Takano, Y., et al.: Aging changes mechanical loading thresholds for bone formation in rats. J. Bone Miner. Res. 10(10), 1544–1549 (1995)

    Article  Google Scholar 

  101. Turner, C.H., Warden, S.J., et al.: Mechanobiology of the skeleton. Sci. Signal. 2(68), pt3 (2009)

    Article  Google Scholar 

  102. Umemura, Y., Ishiko, T., et al.: Effects of jump training on bone hypertrophy in young and old rats. Int. J. Sports Med. 16(6), 364–367 (1995)

    Article  Google Scholar 

  103. Vashishth, D., Gibson, G.J., et al.: Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 282(2), 157–162 (2005)

    Google Scholar 

  104. Villanueva, A.R., Sedlin, E.D., et al.: Variations in osteoblastic activity with age by the osteoid seam index. Anat. Rec. 146, 209–213 (1963)

    Article  Google Scholar 

  105. Wang, G.J., Sweet, D.E., et al.: Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J. Bone Joint Surg. Am. 59(6), 729–735 (1977)

    Google Scholar 

  106. Watson, C.S.: The Identities of Membrane Steroid Receptors: And Other Proteins Mediating Nongenomic Steroid Action. Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  107. Weinbaum, S., Cowin, S.C., et al.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3), 339–360 (1994)

    Article  Google Scholar 

  108. Weinbaum, S., Guo, P., et al.: A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology 38(2–3), 119–142 (2001)

    Google Scholar 

  109. Yoshida, Y., Sue, W., et al.: The effects of augmented hemodynamic forces on the progression and topography of atherosclerotic plaques. Ann. N. Y. Acad. Sci. 598, 256–273 (1990)

    Article  Google Scholar 

  110. You, J., Jacobs, C.R., et al.: P2Y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J. Biol. Chem. 277(50), 48724–48729 (2002)

    Article  Google Scholar 

  111. You, J., Reilly, G.C., et al.: Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3–E1 osteoblasts. J. Biol. Chem. 276(16), 13365–13371 (2001)

    Article  Google Scholar 

  112. You, L., Cowin, S.C., et al.: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34(11), 1375–1386 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NIAMS R03 AR57547 (DCG) and NIH NIAMS R01 AR45989, NIAMS R21 AR45156, and New York Stem Cell Grant N06G-210 (CRJ). The authors are grateful to Dr. C.E. Yellowley for suggestions to Fig. 1, and to Dr. R.Y. Kwon for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Genetos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genetos, D.C., Jacobs, C.R. (2012). Bone Cell Mechanoresponsiveness. In: Silva, M. (eds) Skeletal Aging and Osteoporosis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_109

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18052-1

  • Online ISBN: 978-3-642-18053-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics