Skip to main content

Chitosan-Derivative Based Hydrogels as Drug Delivery Platforms: Applications in Drug Delivery and Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

Chitosan is a biodegradable, biocompatible and non-irritant polymer that exhibits good mechanical strength and adhesion. These characteristics make it suitable for applications in controlled delivery systems and tissue engineering. Chitosan gels may be easily obtained by a cross-linking reaction. These hydrogels exhibit good swelling properties and are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine as well as controlled drug delivery matrices. Considerable advances have been made in this area throughout the past decade, including the development of novel formulations containing chitosan derivatives with improved properties. This area of research is providing the fundamental knowledge required to rationally develop new strategies for biomedical engineering to tackle problems related with regenerative therapy. This survey presents different biologically active chitosan systems designed for drug delivery and tissue engineering applications and assesses the parameters needed for these formulations to achieve improved properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M.: Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100(1), 5–28 (2004)

    Article  Google Scholar 

  2. Alves, N.M., Mano, J.F.: Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 43(5), 401–414 (2008)

    Article  Google Scholar 

  3. Amidi, M., Mastrobattista, E., Jiskoot, W., Hennink, W.E.: Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev. 62(1), 59–82 (2010)

    Article  Google Scholar 

  4. Amsden, B.G., Sukarto, A., Knight, D.K., Shapka, S.N.: Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 8(12), 3758–3766 (2007)

    Article  Google Scholar 

  5. Berger, J., Reist, M., Mayer, J.M., Felt, O., Gurny, R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 35–52 (2004)

    Article  Google Scholar 

  6. Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., Gurny, R.: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 19–34 (2004)

    Article  Google Scholar 

  7. Bernkop-Schnürch, A., Brandt, U.M., Clausen, A.E.: Synthesis and in vitro evaluation of chitosan-cysteine conjugates. Sci. Pharm. 67, 197–208 (1999)

    Google Scholar 

  8. Bernkop-Schnürch, A., Hornof, M., Zoidl, T.: Thiolated polymers–thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 260(2), 229–237 (2003)

    Article  Google Scholar 

  9. Bernkop-Schnürch, A., Kast, C.E.: Chemically modified chitosans as enzyme inhibitors. Adv. Drug Deliv. Rev. 52(2), 127–137 (2001)

    Article  Google Scholar 

  10. Bhattarai, N., Gunn, J., Zhang, M.: Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)

    Article  Google Scholar 

  11. Chang, Y., Xiao, L., Du, Y.: Preparation and properties of a novel thermosensitive n-trimethyl chitosan hydrogel. Polym. Bull. 63, 531–545 (2009)

    Article  Google Scholar 

  12. Chen, L., Tian, Z., Du, Y.: Synthesis and ph sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25(17), 3725–3732 (2004)

    Article  Google Scholar 

  13. Chen, S.-C., Wu, Y.-C., Mi, F.-L., Lin, Y.-H., Yu, L.-C., Sung, H.-W.: A novel ph-sensitive hydrogel composed of n, o-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 96(2), 285–300 (2004)

    Article  Google Scholar 

  14. Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F.: Polysaccharide hydrogels for modified release formulations. J. Control. Release 119(1), 5–24 (2007)

    Article  Google Scholar 

  15. Dai, Y.N., Li, P., Zhang, J.P., Wang, A.Q., Wei, Q.: A novel ph sensitive n-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm. Drug Dispos. 29, 173–184 (2008)

    Article  Google Scholar 

  16. Dev, A., Mohan, J.C., Sreeja, V., Tamura, H., Patzke, G.R., Hussain, F., Weyeneth, S., Nair, S.V., Jayakumar, R.: Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr. Polym. 79(4), 1073–1079 (2010)

    Article  Google Scholar 

  17. Ding, C., Zhao, L., Liu, F., Cheng, J., Gu, J., Dan, S., Liu, C., Qu, X., Yang, Z.: Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped peo-ppo-peo. Biomacromolecules 11(4), 1043–1051 (2010)

    Article  Google Scholar 

  18. Engel, J.: Laminins and other strange proteins. Biochemistry 31, 10643–10651 (1992)

    Article  Google Scholar 

  19. Fan, J., Chen, J., Yang, L., Lin, H., Cao, F.: Preparation of dual-sensitive graft copolymer hydrogel based on n-maleoyl-chitosan and poly(n-isopropylacrylamide) by electron beam radiation. Bull. Mater. Sci. 32, 521–526 (2009)

    Article  Google Scholar 

  20. Fei Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., De Yao, K.: Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79(7), 1324–1335 (2001)

    Article  Google Scholar 

  21. Graf, J., Ogle, R.C., Robey, F.A., Sasaki, M., Martin, G.R., Yamada, Y., Kleinman, H.K.: A pentapeptide from the laminin b1 chain mediates cell adhesion and binds to 67000 laminin receptor. Biochemistry 26(22), 6896–6900 (1987)

    Article  Google Scholar 

  22. Guggi, D., Krauland, A.H., Bernkop-Schnürch, A.: Systemic peptide delivery via the stomach: In vivo evaluation of an oral dosage form for salmon calcitonin. J. Control. Release 92(1–2), 125–135 (2003)

    Article  Google Scholar 

  23. Gupta, P., Vermani, K., Garg, S.: Hydrogels: from controlled release to ph-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)

    Article  Google Scholar 

  24. Hennink, W.E., van Nostrum, C.F.: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54(1), 13–36 (2002)

    Article  Google Scholar 

  25. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    Article  Google Scholar 

  26. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54(1), 3–12 (2002)

    Article  Google Scholar 

  27. Hong, Y., Song, H., Gong, Y., Mao, Z., Gao, C., Shen, J.: Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 3, 23–31 (2007)

    Article  Google Scholar 

  28. Hu, H., Yu, L., Tan, S., Tu, K., Wang, L.-Q.: Novel complex hydrogels based on n-carboxyethyl chitosan and quaternized chitosan and their controlled in vitro protein release property. Carbohydr. Res. 345(4), 462–468 (2010)

    Article  Google Scholar 

  29. Hu, R., Chen, Y.-Y., Zhang, L.-M.: Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery. Int. J. Pharm. 393(1–2), 97–104 (2010)

    Article  Google Scholar 

  30. Itoh, S., Matsuda, A., Kobayashi, H., Ichinose, S., Shinomiya, K., Tanaka, J.: Effects of a laminin peptide (yigsr) immobilized on crab-tendon chitosan tubes on nerve regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 73B(2), 375–382 (2005)

    Article  Google Scholar 

  31. Jayakumar, R., Prabaharan, M., Nair, S.V., Tamura, H.: Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28(1), 142–150 (2010)

    Article  Google Scholar 

  32. Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., Selvamurugan, N.: Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci. 55(7), 675–709 (2010)

    Article  Google Scholar 

  33. Ji, Q.X., Zhao, Q.S., Deng, J., Lu, R.: A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J. Mater. Sci. Mater. Medicine 21(8), 2435–2442 (2010)

    Article  Google Scholar 

  34. Jin, R., Moreira Teixeira, L.S., Dijkstra, P.J., Karperien, M., van Blitterswijk, C.A., Zhong, Z.Y., Feijen, J.: Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30, 2544–2551 (2009)

    Article  Google Scholar 

  35. Jintapattanakit, A., Junyaprasert, V.B., Kissel, T.: The role of mucoadhesion of trimethyl chitosan and pegylated trimethyl chitosan nanocomplexes in insulin uptake. J. Pharm. Sci. 98(12), 4818–4830 (2009). doi:10.1002/jps.21783

    Article  Google Scholar 

  36. Kast, C.E., Bernkop-Schnürch, A.: Thiolated polymers–thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22(17), 2345–2352 (2001)

    Article  Google Scholar 

  37. Kast, C.E., Frick, W., Losert, U., Bernkop-Schnürch, A.: Chitosan-thioglycolic acid conjugate: A new scaffold material for tissue engineering? Int. J. Pharm. 256(1–2), 183–189 (2003)

    Article  Google Scholar 

  38. Kato, Y., Onishi, H., Machida, Y.: Evaluation of n-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials 21, 1579–1585 (2000)

    Article  Google Scholar 

  39. Kato, Y., Onishi, H., Machida, Y.: N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials 25(5), 907–915 (2004)

    Article  Google Scholar 

  40. Kean, T., Thanou, M.: Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62(1), 3–11 (2010)

    Article  Google Scholar 

  41. Kim, B.S., Yeo, T.Y., Yun, Y.H., Lee, B.K., Cho, Y.W., Han, S.S.: Facile preparation of biodegradable glycol chitosan hydrogels using divinyladipate as a crosslinker. Macromol. Res. 17, 734–738 (2009)

    Google Scholar 

  42. Koutroumanis, K.P., Avgoustakis, K., Bikiaris, D.: Synthesis of cross-linked n-(2-carboxybenzyl)chitosan ph sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr. Polym. 82(1), 181–188 (2010)

    Article  Google Scholar 

  43. Krauland, A.H., Guggi, D., Bernkop-Schnürch, A.: Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J. Control. Release 95(3), 547–555 (2004)

    Article  Google Scholar 

  44. Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J.: Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104(12), 6017–6084 (2004)

    Article  Google Scholar 

  45. Lahiji, A., Sohrabi, A., Hungerford, D.S., Frondoza, C.G.: Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. A 51, 586–595 (2000)

    Article  Google Scholar 

  46. Li, Z., Cen, L., Zhao, L., Cui, L., Liu, W., Cao, Y.: Preparation and evaluation of thiolated chitosan scaffolds for tissue engineering. J. Biomed. Mater. Res. A 92A(3), 973–978 (2010)

    Google Scholar 

  47. Lin, Y., Chen, Q., Luo, H.: Preparation and characterization of n-(2-carboxybenzyl)chitosan as a potential ph-sensitive hydrogel for drug delivery. Carbohydr. Res. 342(1), 87–95 (2007)

    Article  Google Scholar 

  48. Liu, T.-Y., Lin, Y.-L.: Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomater. 6(4), 1423–1429 (2010)

    Article  Google Scholar 

  49. Liu, Z., Jiao, Y., Zhang, Z.: Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system. J. Appl. Polym. Sci. 103(5), 3164–3168 (2007)

    Article  Google Scholar 

  50. Lü, S., Liu, M., Ni, B.: An injectable oxidized carboxymethylcellulose/n-succinyl-chitosan hydrogel system for protein delivery. Chem. Eng. J. 160(2), 779–787 (2010)

    Article  Google Scholar 

  51. Luppi, B., Bigucci, F., Cerchiara, T., Zecchi, V.: Chitosan-based hydrogels for nasal drug delivery: Fron inserts to nanoparticles. Expert Opin. Drug Deliv. 7(7), 811–828 (2010)

    Article  Google Scholar 

  52. Mao, S., Bakowsky, U., Jintapattanakit, A., Kissel, T.: Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J. Pharm. Sci. 95(5), 1035–1048 (2006)

    Article  Google Scholar 

  53. Mao, S., Sun, W., Kissel, T.: Chitosan-based formulations for delivery of DNA and sirna. Adv. Drug Deliv. Rev. 62(1), 12–27 (2010)

    Article  Google Scholar 

  54. Mao, Z., Shi, H., Guo, R., Ma, L., Gao, C., Han, C., Shen, J.: Enhanced angiogenesis of porous collagen scaffolds by incorporation of tmc/DNA complexes encoding vascular endothelial growth factor. Acta Biomater. 5(8), 2983–2994 (2009)

    Article  Google Scholar 

  55. Mi, F.-L., Wu, Y.-Y., Lin, Y.-H., Sonaje, K., Ho, Y.-C., Chen, C.-T., Juang, J.-H., Sung, H.-W.: Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconj. Chem. 19(6), 1248–1255 (2008)

    Article  Google Scholar 

  56. Mourya, V.K., Inamdar, N.N.: Chitosan-modifications and applications: opportunities galore. React. Funct. Polym. 68(6), 1013–1051 (2008)

    Article  Google Scholar 

  57. Muzzarelli, R., Muzzarelli, C.: Chitosan chemistry: relevance to the biomedical sciences. In: Heinze, T. (ed.) Polysaccharides I, vol. 186. Advances in Polymer Sciencepp, pp. 151–209. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  58. Muzzarelli, R.A.A.: Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 77(1), 1–9 (2009)

    Article  Google Scholar 

  59. Muzzarelli, R.A.A., Tanfani, F., Emanuelli, M., Mariotti, S.: N-(carboxymethylidene)chitosans and n-(carboxymethyl)chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr. Res. 107(2), 199–214 (1982)

    Article  Google Scholar 

  60. Nazar, H., Fatouros, D., van der Merwe, S., Roldo, M.: Thermosensitive hydrogel formulations containing n-trimethylchitosan chloride (tmc) for nasal drug delivery. In: 36th Annual Meeting and Exposition of the Controlled Release Society, Copenhagen, Denmark (2009)

    Google Scholar 

  61. Nazar, H., Fatouros, D.G., van der Merwe, S.M., Bouropoulos, N., Avgouropoulos, G., Tsibouklis, J., Roldo, M.: Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on n-trimethyl chitosan chloride (Submitted for publication)

    Google Scholar 

  62. Park, J., Kim, D.: Release behavior of amoxicillin from glycol chitosan superporous hydrogels. J. Biomater. Sci. 20, 853–862 (2009)

    Article  Google Scholar 

  63. Park, J.H., Saravanakumar, G., Kim, K., Kwon, I.C.: Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev. 62(1), 28–41 (2010)

    Article  Google Scholar 

  64. Pierschbacher, M.D., Ruoslahti, E.: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)

    Article  Google Scholar 

  65. Roldo, M., Hornof, M., Caliceti, P., Bernkop-Schnurch, A.: Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57(1), 115–121 (2004)

    Article  Google Scholar 

  66. Sajomsang, W.: Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: a review. Carbohydr. Polym. 80(3), 631–647 (2010)

    Article  Google Scholar 

  67. Sakloetsakun, D., Hombach, J.M.R., Bernkop-Schnürch, A.: In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30(31), 6151–6157 (2009)

    Article  Google Scholar 

  68. Schwall, C.T., Banerjee, I.A.: Micro- and nanoscale hydrogel systems for drug delivery and tissue engineering. Materials 2(2), 577–612 (2009)

    Article  Google Scholar 

  69. Sieval, A.B., Thanou, M., Kotze, A.F., Verhoef, J.E., Brussee, J., Junginger, H.E.: Preparation and nmr characterization of highly substituted n-trimethyl chitosan chloride. Carbohydr. Polym. 36, 157–165 (1998)

    Article  Google Scholar 

  70. Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., Dhawan, S.: Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274(1–2), 1–33 (2004)

    Google Scholar 

  71. Song, Y., Onishi, H., Machida, Y., Nagai, T.: Drug release and antitumor characteristics of n-succynil-chitosan-mitomycin c as an implant. J. Control Release 42, 93–100 (1996)

    Article  Google Scholar 

  72. Song, Y., Onishi, H., Nagai, T.: Synthesis and drug-release characteristics of the conjugates of mitomycin c with n-succinyl-chitosan and carboxymethyl-chitin. Chem. Pharm. Bull. 40(10), 2822–2825 (1992)

    Google Scholar 

  73. Sun, W., Mao, S., Mei, D., Kissel, T.: Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur. J. Pharm. Biopharm. 69(2), 417–425 (2008)

    Article  Google Scholar 

  74. Sun, W., Mao, S., Wang, Y., Junyaprasert, V.B., Zhang, T., Na, L., Wang, J.: Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int. J. Pharm. 386(1–2), 275–281 (2010)

    Article  Google Scholar 

  75. Tan, H., Chu, C.R., Payne, K.A., Marra, K.G.: Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13), 2499–2506 (2009)

    Article  Google Scholar 

  76. Tashiro, K., Sephel, G.C., Weeks, B., Sasaki, M., Martin, G.R., Kleinman, H.K., Yamada, Y.A.: A synthetic peptide containing the ikvav sequence from the a chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264(27), 16174–16182 (1989)

    Google Scholar 

  77. Thanou, M., Kotze, A.F., Scharringhausen, T., Luessen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E.: Effect of degree of quaternization of n-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal caco-2 cell monolayers. J. Control. Release 64, 15–25 (2000)

    Article  Google Scholar 

  78. Thanou, M., Verhoef, J.C., Junginger, H.E.: Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv. Rev. 50(Supplement 1), S91–S101 (2001)

    Article  Google Scholar 

  79. Thanou, M., Verhoef, J.C., Junginger, H.E.: Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52(2), 117–126 (2001)

    Article  Google Scholar 

  80. Wang, W., Li, B., Li, Y., Jiang, Y., Ouyang, H., Gao, C.: In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31(23), 5953–5965 (2010)

    Article  Google Scholar 

  81. Weng, L., Romanov, A., Rooney, J,C.C.: Non-cytotoxic, in situ gelable hydrogels composed of n-carboxyethyl chitosan and oxidized dextran. Biomaterials 29, 3905–3913 (2008)

    Article  Google Scholar 

  82. Werle, M., Bernkop-Schnürch, A.: Thiolated chitosans: useful excipients for oral drug delivery. J. Pharm. Pharmacol. 60(3), 273–281 (2008)

    Article  Google Scholar 

  83. Wu, J., Su, Z.G., Ma, G.H.: A thermo- and ph-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 315, 1–11 (2006)

    Article  Google Scholar 

  84. Wu, J., Wei, W., Wang, L.-Y., Su, Z.-G., Ma, G.-H.: A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28(13), 2220–2232 (2007)

    Article  Google Scholar 

  85. Wu, Y.-C., Shaw, S.-Y., Lin, H.-R., Lee, T.-M., Yang, C.-Y.: Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified plga scaffolds. Biomaterials 27(6), 896–904 (2006)

    Article  MATH  Google Scholar 

  86. Wu, Z.M., Zhang, X.G., Zheng, C., Li, C.X., Zhang, S.M., Dong, R.N., Yu, D.M.: Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur. J. Pharm. Sci. 37(3–4), 198–206 (2009)

    Article  Google Scholar 

  87. Yan, C., Chen, D., Gu, J., Hu, H., Zhao, X., Qiao, M.: Preparation of n-succinyl chitosan and their physical-chemical propoerties as novel excipient. J. Pharm. Soc. Jpn. 126(9), 789–793 (2006)

    Google Scholar 

  88. Yu, L.M., Kazazian, K., Shoichet, M.S.: Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J. Biomed. Mater. Res. A 82(1), 243–255 (2007)

    Google Scholar 

  89. Zambito, Y., Uccello-Barretta, G., Zaino, C., Balzano, F., Di Colo, G.: Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan. Eur. J. Pharm. Sci. 29(5), 460–469 (2006)

    Article  Google Scholar 

  90. Zambito, Y., Zaino, C., Uccello-Barretta, G., Balzano, F., Di Colo, G.: Improved synthesis of quaternary ammonium-chitosan conjugates (n + −ch) for enhanced intestinal drug permeation. Eur. J. Pharm. Sci. 33(4–5), 343–350 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Roldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roldo, M., Fatouros, D.G. (2011). Chitosan-Derivative Based Hydrogels as Drug Delivery Platforms: Applications in Drug Delivery and Tissue Engineering. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_55

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics