Skip to main content

Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 406))

Abstract

Bacterial ADP-ribosylating toxins are the causative agents for several severe human and animal diseases such as diphtheria, cholera, or enteric diseases. They display an AB-type structure: The enzymatically active A-domain attaches to the binding/translocation B-domain which then binds to a receptor on the cell surface. After receptor-mediated endocytosis, the B-domain facilitates the membrane translocation of the unfolded A-domain into the host cell cytosol. Here, the A-domain transfers an ADP-ribose moiety onto its specific substrate which leads to characteristic cellular effects and thus to severe clinical symptoms. Since the A-domain has to reach the cytosol to achieve a cytotoxic effect, the membrane translocation represents a crucial step during toxin uptake. Host cell chaperones including Hsp90 and protein-folding helper enzymes of the peptidyl-prolyl cis/trans isomerase (PPIase) type facilitate this membrane translocation of the unfolded A-domain for ADP-ribosylating toxins but not for toxins with a different enzyme activity. This review summarizes the uptake mechanisms of the ADP-ribosylating clostridial binary toxins, diphtheria toxin (DT) and cholera toxin (CT), with a special focus on the interaction of these toxins with the chaperones Hsp90 and Hsp70 and PPIases of the cyclophilin and FK506-binding protein families during the membrane translocation of their ADP-ribosyltransferase domains into the host cell cytosol. Moreover, the medical implications of host cell chaperones and PPIases as new drug targets for the development of novel therapeutic strategies against diseases caused by bacterial ADP-ribosylating toxins are discussed.

Katharina Ernst and Leonie Schnell contributed equally to this work

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADP-RT:

ADP-ribosyltransferase

CsA:

Cyclosporine A, inhibitor of cyclophilins

CT:

Cholera toxin

Cyp:

Cyclophilin

DT:

Diphtheria toxin

FK506:

Inhibitor of FK506-binding proteins

FKBP:

FK506-binding protein

GA:

Geldanamycin, inhibitor of Hsp90

PPIase:

Peptidyl-prolyl cis/trans isomerase

Rad:

Radicicol, inhibitor of Hsp90

References

  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrami L, Lindsay M, Parton RG, Leppla SH, van der Goot FG (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG (2010) Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 6:e1000792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aktories K, Wegner A (1992) Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins. Mol Microbiol 6:2905–2908

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  ADS  CAS  PubMed  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    Article  CAS  PubMed  Google Scholar 

  • Ampapathi RS, Creath AL, Lou DI, Craft JW, Blanke SR, Legge GB (2008) Order-disorder-order transitions mediate the activation of cholera toxin. J Mol Biol 377:748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariansen S, Afanasiev BN, Moskaug JO, Stenmark H, Madshus IH, Olsnes S (1993) Membrane translocation of diphtheria toxin A-fragment: role of carboxy-terminal region. Biochemistry (Mosc) 32:83–90

    Article  CAS  Google Scholar 

  • Arndt V, Rogon C, Höhfeld J (2007) To be, or not to be–molecular chaperones in protein degradation. Cell Mol Life Sci CMLS 64:2525–2541

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Leppla SH (1994) Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun 62:4955–4961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson W, Hamborsky J, McIntyre L, Wolfe S (2007) Diphtheria. In: Epidemiology and prevention of vaccine-preventable diseases (the pink book). Public Health Foundation, Washington DC, pp 59–70

    Google Scholar 

  • Bacha P, Williams DP, Waters C, Williams JM, Murphy JR, Strom TB (1988) Interleukin 2 receptor-targeted cytotoxicity. Interleukin 2 receptor-mediated action of a diphtheria toxin-related interleukin 2 fusion protein. J Exp Med 167:612–622

    Article  CAS  PubMed  Google Scholar 

  • Bade S, Rummel A, Alves J, Bigalke H, Binz T (2002) New insights into the translocation process of botulinum neurotoxins. Naunyn Schmiedebergs Arch Pharmacol 365(Sup 2):R13

    Google Scholar 

  • Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808:925–936

    Article  CAS  PubMed  Google Scholar 

  • Banerjee T, Pande A, Jobling MG, Taylor M, Massey S, Holmes RK, Tatulian SA, Teter K (2010) Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochemistry (Mosc) 49:8839–8846

    Article  CAS  Google Scholar 

  • Banerjee T, Taylor M, Jobling MG, Burress H, Yang Z, Serrano A, Holmes RK, Tatulian SA, Teter K (2014) ADP-ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin A1 polypeptide. Mol Microbiol 94:898–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri JT, Collier RJ (1987) Expression of a mutant, full-length form of diphtheria toxin in Escherichia coli. Infect Immun 55:1647–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H (2011) Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn Schmiedebergs Arch Pharmacol 383:237–245

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90:944–950

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Stiles BG (2008) Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr Med Chem 15:459–469

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998a) The n-terminal part of the enzyme component (C2I) of the binary clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998b) Characterization of the catalytic site of the ADP-ribosyltransferase clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Blocker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Roebling R, Fritz M, Aktories K (2002) The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. J Biol Chem 277:5074–5081

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev MMBR 68:373–402, table of contents

    Google Scholar 

  • Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R (2012) Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS ONE 7:e46964

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA (1998) Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66:4531–4536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci USA 93:8437–8442

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86:2209–2213

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K (2000) The C terminus of component C2II of clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun 68:4566–4573

    Article  PubMed  PubMed Central  Google Scholar 

  • Boquet P, Silverman MS, Pappenheimer AM, Vernon WB (1976) Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc Natl Acad Sci USA 73:4449–4453

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Borel JF, Feurer C, Gubler HU, Stähelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6:468–475

    Article  CAS  PubMed  Google Scholar 

  • Brown JG, Almond BD, Naglich JG, Eidels L (1993) Hypersensitivity to diphtheria toxin by mouse cells expressing both diphtheria toxin receptor and CD9 antigen. Proc Natl Acad Sci USA 90:8184–8188

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Burress H, Taylor M, Banerjee T, Tatulian SA, Teter K (2014) Co- and post-translocation roles for HSP90 in cholera intoxication. J Biol Chem 289:33644–33654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll KC, Bartlett JG (2011) Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 65:501–521

    Article  CAS  PubMed  Google Scholar 

  • Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci USA 81:3307–3311

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19:1654–1666

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    Article  ADS  CAS  PubMed  Google Scholar 

  • Clemens J, Shin S, Sur D, Nair GB, Holmgren J (2011) New-generation vaccines against cholera. Nat Rev Gastroenterol Hepatol 8:701–710

    Article  CAS  PubMed  Google Scholar 

  • Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697

    Article  ADS  CAS  PubMed  Google Scholar 

  • Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39:54–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39:1793–1803

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ (2009) Membrane translocation by anthrax toxin. Mol Aspects Med 30:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179–1181

    Article  ADS  CAS  PubMed  Google Scholar 

  • Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem 246:1496–1503

    CAS  PubMed  Google Scholar 

  • Davis TL, Walker JR, Campagna-Slater V, Finerty PJ Jr, Paramanathan R, Bernstein G, MacKenzie F, Tempel W, Ouyang H, Lee WH et al (2010) Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 8:e1000439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 21:77–92

    Article  PubMed  CAS  Google Scholar 

  • Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141:4107–4113

    Article  CAS  PubMed  Google Scholar 

  • Dmochewitz L, Lillich M, Kaiser E, Jennings LD, Lang AE, Buchner J, Fischer G, Aktories K, Collier RJ, Barth H (2011) Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol 13:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan JJ, Simon MI, Draper RK, Montal M (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc Natl Acad Sci USA 78:172–176

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M et al (2015) Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 427:1224–1238

    Article  CAS  PubMed  Google Scholar 

  • Ernst K, Liebscher M, Mathea S, Granzhan A, Schmid J, Popoff MR, Ihmels H, Barth H, Schiene-Fischer C (2016) A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin. Sci Rep 6

    Google Scholar 

  • Falnes PO, Olsnes S (1995) Cell-mediated reduction and incomplete membrane translocation of diphtheria toxin mutants with internal disulfides in the A fragment. J Biol Chem 270:20787–20793

    Article  CAS  PubMed  Google Scholar 

  • Falnes PO, Choe S, Madshus IH, Wilson BA, Olsnes S (1994) Inhibition of membrane translocation of diphtheria toxin A-fragment by internal disulfide bridges. J Biol Chem 269:8402–8407

    CAS  PubMed  Google Scholar 

  • Finka A, Sharma SK, Goloubinoff P (2015) Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol, Biosci 2

    Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    CAS  PubMed  Google Scholar 

  • Fruman DA, Burakoff SJ, Bierer BE (1994) Immunophilins in protein folding and immunosuppression. FASEB. J Off Publ Fed Am Soc Exp Biol 8:391–400

    CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr Top Med Chem 3:1315–1347

    Article  CAS  PubMed  Google Scholar 

  • Galigniana MD, Radanyi C, Renoir J-M, Housley PR, Pratt WB (2001) Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 276:14884–14889

    Article  CAS  PubMed  Google Scholar 

  • Galigniana MD, Harrell JM, Murphy PJM, Chinkers M, Radanyi C, Renoir J-M, Zhang M, Pratt WB (2002) Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain†. Biochemistry (Mosc) 41:13602–13610

    Article  CAS  Google Scholar 

  • Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G (2010) The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 30:1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem FEBS 179:229–232

    Article  CAS  Google Scholar 

  • Gibert M, Marvaud JC, Pereira Y, Hale ML, Stiles BG, Boquet P, Lamaze C, Popoff MR (2007) Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient. FEBS Lett 581:1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Gill DM, Pappenheimer AM (1971) Structure-activity relationships in diphtheria toxin. J Biol Chem 246:1492–1495

    CAS  PubMed  Google Scholar 

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci CMLS 55:423–436

    Article  PubMed  Google Scholar 

  • Greenfield L, Bjorn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci USA 80:6853–6857

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    Article  CAS  PubMed  Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale ML, Marvaud J-C, Popoff MR, Stiles BG (2004) Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin. Infect Immun 72:2186–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature 341:758–760

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB (2012) Cholera. Lancet Lond Engl 379:2466–2476

    Article  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003a) Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry (Mosc) 42:15284–15291

    Article  CAS  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003b) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274

    Article  CAS  PubMed  Google Scholar 

  • Haug G, Aktories K, Barth H (2004) The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infect Immun 72:3066–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry (Mosc) 36:11051–11054

    Article  CAS  Google Scholar 

  • Hirst TR, Holmgren J (1987) Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci USA 84:7418–7422

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann H, Schiene-Fischer C (2014) Functional aspects of extracellular cyclophilins. Biol Chem 395:721–735

    CAS  PubMed  Google Scholar 

  • Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczorek M, Delpeyroux F, Chenciner N, Streeck RE, Murphy JR, Boquet P, Tiollais P (1983) Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science 221:855–858

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kagan BL, Finkelstein A, Colombini M (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78:4950–4954

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259:6228–6234

    CAS  PubMed  Google Scholar 

  • Kaiser E, Haug G, Hliscs M, Aktories K, Barth H (2006) Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Biochemistry (Mosc) 45:13361–13368

    Article  CAS  Google Scholar 

  • Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11:780–795

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Kroll C, Ernst K, Schwan C, Popoff M, Fischer G, Buchner J, Aktories K, Barth H (2011) Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect Immun 79:3913–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 14:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ (2004) Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol 344:739–756

    Article  CAS  PubMed  Google Scholar 

  • Kurazono H, Hosokawa M, Matsuda H, Sakaguchi G (1987) Fluid accumulation in the ligated intestinal loop and histopathological changes of the intestinal mucosa caused by Clostridium botulinum C2 toxin in the pheasant and chicken. Res Vet Sci 42:349–353

    CAS  PubMed  Google Scholar 

  • Laing S, Unger M, Koch-Nolte F, Haag F (2011) ADP-ribosylation of arginine. Amino Acids 41:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lang AE, Ernst K, Lee H, Papatheodorou P, Schwan C, Barth H, Aktories K (2014) The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of Photorhabdus luminescens ADP-ribosyltransferases. Cell Microbiol 16:490–503

    Article  CAS  PubMed  Google Scholar 

  • Lemichez E, Bomsel M, Devilliers G, van der Spek J, Murphy JR, Lukianov EV, Olsnes S, Boquet P (1997) Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol 23:445–457

    Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppla SH (1991) Purification and characterization of adenylyl cyclase from Bacillus anthracis. Methods Enzymol 195:153–168

    Article  CAS  PubMed  Google Scholar 

  • Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834

    Article  CAS  PubMed  Google Scholar 

  • Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36:106–117

    Article  PubMed  Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  CAS  PubMed  Google Scholar 

  • Love JF, Murphy JR (2006) Corynebacterium diphtheriae: iron-mediated activation of DtxR and regulation of diphtheria toxin expression. 726–737

    Google Scholar 

  • Madshus IH (1994) The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells. J Biol Chem 269:17723–17729

    CAS  PubMed  Google Scholar 

  • Majoul I, Ferrari D, Söling H-D (1997) Reduction of protein disulfide bonds in an oxidizing environment: The disulfide bridge of cholera toxin A-subunit is reduced in the endoplasmic reticulum. FEBS Lett 401:104–108

    Article  CAS  PubMed  Google Scholar 

  • Malesevic M, Gutknecht D, Prell E, Klein C, Schumann M, Nowak RA, Simon JC, Schiene-Fischer C, Saalbach A (2013) Anti-inflammatory effects of extracellular cyclosporins are exclusively mediated by CD147. J Med Chem 56:7302–7311

    Article  CAS  PubMed  Google Scholar 

  • Mamane Y, Sharma S, Petropoulos L, Lin R, Hiscott J (2000) Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 12:129–140

    Article  CAS  PubMed  Google Scholar 

  • Mandel R, Ryser HJ, Ghani F, Wu M, Peak D (1993) Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci USA 90:4112–4116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Massey S, Banerjee T, Pande AH, Taylor M, Tatulian SA, Teter K (2009) Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J Mol Biol 393:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CJ, Elliott JL, Collier RJ (1999) Anthrax protective antigen: prepore-to-pore conversion. Biochemistry (Mosc) 38:10432–10441

    Article  CAS  Google Scholar 

  • Mitamura T, Iwamoto R, Umata T, Yomo T, Urabe I, Tsuneoka M, Mekada E (1992) The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol 118:1389–1399

    Article  CAS  PubMed  Google Scholar 

  • Moskaug JO, Sandvig K, Olsnes S (1987) Cell-mediated reduction of the interfragment disulfide in nicked diphtheria toxin. A new system to study toxin entry at low pH. J Biol Chem 262:10339–10345

    CAS  PubMed  Google Scholar 

  • Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 101:548–559

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J (2004) Binding and internalization of clostridium perfringens iota-toxin in lipid rafts. Infect Immun 72:3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M, Sakaguchi Y, Oguma K, Sakurai J (2009) Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun 77:5139–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Nakatsukasa K, Brodsky JL (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic Cph Den 9:861–870

    Article  CAS  Google Scholar 

  • Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neal CJ, Jobling MG, Holmes RK, Hol WGJ (2005) Structural basis for the activation of cholera toxin by human ARF6-GTP. Science 309:1093–1096

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ohishi I (1983a) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injections of the two toxin components. Infect Immun 40:336–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I (1983b) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Miyake M, Ogura H, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue-culture cells. FEMS Microbiol Lett 23:281–284

    Article  CAS  Google Scholar 

  • Orlandi PA (1997) Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J Biol Chem 272:4591–4599

    CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415:1–5

    Article  CAS  PubMed  Google Scholar 

  • Owens-Grillo JK, Hoffmann K, Hutchison KA, Yem AW, Deibel MR, Handschumacher RE, Pratt WB (1995) The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J Biol Chem 270:20479–20484

    Article  CAS  PubMed  Google Scholar 

  • Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K (2007) Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 374:1114–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci USA 108:16422–16427

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Hornuss D, Nölke T, Hemmasi S, Castonguay J, Picchianti M, Aktories K (2013) Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio 4:e00244–00213

    Google Scholar 

  • Papini E, Cabrini G, Montecucco C (1993a) The sensitivity of cystic fibrosis cells to diphtheria toxin. Toxicon Off J Int Soc Toxinol 31:359–362

    Article  CAS  Google Scholar 

  • Papini E, Rappuoli R, Murgia M, Montecucco C (1993b) Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 268:1567–1574

    CAS  PubMed  Google Scholar 

  • Pappenheimer AM (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    Article  CAS  PubMed  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med Maywood NJ 228:111–133

    Article  CAS  Google Scholar 

  • Prell E, Kahlert V, Rücknagel KP, Malešević M, Fischer G (2013) Fine tuning the inhibition profile of cyclosporine A by derivatization of the MeBmt residue. Chem Bio Chem 14:63–65

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pust S, Hochmann H, Kaiser E, von Figura G, Heine K, Aktories K, Barth H (2007) A cell-permeable fusion toxin as a tool to study the consequences of actin-ADP-ribosylation caused by the salmonella enterica virulence factor SpvB in intact cells. J Biol Chem 282:10272–10282

    Article  CAS  PubMed  Google Scholar 

  • Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12:1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak T, Carrello A (1996) Cyclophilin 40 (CyP-40), mapping of its hsp90 binding domain and evidence that FKBP52 competes with CyP-40 for hsp90 binding. J Biol Chem 271:2961–2965

    Article  CAS  PubMed  Google Scholar 

  • Ratts R, van der Spek J (2002) DT: structure, function and its clinical applications. In: Lorberboum-Galski H, Lazarovici P (eds) Chimeric toxins. Taylor and Francis, London, pp 14–36

    Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, van der Spek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratts R, Trujillo C, Bharti A, van der Spek J, Harrison R, Murphy JR (2005) A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc Natl Acad Sci USA 102:15635–15640

    Google Scholar 

  • Ray S, Taylor M, Banerjee T, Tatulian SA, Teter K (2012) Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 287:30395–30405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  • Roux E, Yersin A (1888) Contribution a l’etude de la diphtheria. Ann Inst Pasteur 629–661

    Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet Lond Engl 363:223–233

    Article  CAS  Google Scholar 

  • Sakurai J, Nagahama M, Hisatsune J, Katunuma N, Tsuge H (2003) Clostridium perfringens iota-toxin, ADP-ribosyltransferase: structure and mechanism of action. Adv Enzyme Regul 43:361–377

    Article  CAS  PubMed  Google Scholar 

  • Sánchez J, Holmgren J (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci CMLS 65:1347–1360

    Article  PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem FEBS 171:225–229

    Article  CAS  Google Scholar 

  • Schiene-Fischer C (2014) Multidomain peptidyl prolyl cis/trans Isomerases. Biochim Biophys, Acta

    Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schnell L, Dmochewitz-Kück L, Feigl P, Montecucco C, Barth H (2015) Thioredoxin reductase inhibitor auranofin prevents membrane transport of diphtheria toxin into the cytosol and protects human cells from intoxication. Toxicon Off J Int Soc, Toxinology

    Google Scholar 

  • Schreiber SL, Liu J, Albers MW, Karmacharya R, Koh E, Martin PK, Rosen MK, Standaert RF, Wandless TJ (1991) Immunophilin-ligand complexes as probes of intracellular signaling pathways. Transplant Proc 23:2839–2844

    CAS  PubMed  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt W-D, Wehland J, Aktories K (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwan C, Nölke T, Kruppke AS, Schubert DM, Lang AE, Aktories K (2011) Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT). J Biol Chem 286:29356–29365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther 223:695–701

    CAS  PubMed  Google Scholar 

  • Smith WP, Tai PC, Murphy JR, Davis BD (1980) Precursor in cotranslational secretion of diphtheria toxin. J Bacteriol 141:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wigelsworth DJ, Popoff MR, Barth H (2011) Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect, Microbiol 1

    Google Scholar 

  • Tamayo AG, Bharti A, Trujillo C, Harrison R, Murphy JR (2008) COPI coatomer complex proteins facilitate the translocation of anthrax lethal factor across vesicular membranes in vitro. Proc Natl Acad Sci USA 105:5254–5259

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Navarro-Garcia F, Huerta J, Burress H, Massey S, Ireton K, Teter K (2010) Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 285:31261–31267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Banerjee T, Ray S, Tatulian SA, Teter K (2011a) Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit. J Biol Chem 286:22090–22100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Banerjee T, Navarro-Garcia F, Huerta J, Massey S, Burlingame M, Pande AH, Tatulian SA, Teter K (2011b) A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit. PLoS ONE 6:e18825

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Burress H, Banerjee T, Ray S, Curtis D, Tatulian SA, Teter K (2014) Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin. PLoS Pathog 10:e1003925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teter K, Holmes RK (2002) Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 70:6172–6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teter K, Jobling MG, Holmes RK (2003) A class of mutant CHO cells resistant to cholera toxin rapidly degrades the catalytic polypeptide of cholera toxin and exhibits increased endoplasmic reticulum-associated degradation. Traffic Cph Den 4:232–242

    Article  CAS  Google Scholar 

  • Tonello F, Montecucco C (2009) The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Mol Aspects Med 30:431–438

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  CAS  PubMed  Google Scholar 

  • Tsuge H, Nagahama M, Oda M, Iwamoto S, Utsunomiya H, Marquez VE, Katunuma N, Nishizawa M, Sakurai J (2008) Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin. Proc Natl Acad Sci USA 105:7399–7404

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E (1993) Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem 268:26461–26465

    CAS  PubMed  Google Scholar 

  • Uchida T, Gill DM, Pappenheimer AM (1971) Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat New Biol 233:8–11

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    Article  CAS  PubMed  Google Scholar 

  • Waters CA, Schimke PA, Snider CE, Itoh K, Smith KA, Nichols JC, Strom TB, Murphy JR (1990) Interleukin 2 receptor-targeted cytotoxicity. Receptor binding requirements for entry of a diphtheria toxin-related interleukin 2 fusion protein into cells. Eur J Immunol 20:785–791

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Welsh CF, Moss J, Vaughan M (1994) ADP-ribosylation factors: a family of ∼20-kDa guanine nucleotide-binding proteins that activate cholera toxin. Mol Cell Biochem 138:157–166

    Article  CAS  PubMed  Google Scholar 

  • Wernick NLB, Chinnapen DJ-F, Cho JA, Lencer WI (2010) Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2:310–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry (Mosc) 37:15737–15746

    Article  CAS  Google Scholar 

  • WHO position paper (2006) Diphtheria vaccine: WHO position paper. Wkly Epidemiol Rec 24–31

    Google Scholar 

  • WHO position paper (2010) Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 117–128

    Google Scholar 

  • Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S et al (2012) CD44 promotes intoxication by the clostridial iota-family Toxins. PLoS ONE 7

    Google Scholar 

  • Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616

    Article  CAS  PubMed  Google Scholar 

  • Young JAT, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563–573

    Article  CAS  PubMed  Google Scholar 

  • Zornetta I, Brandi L, Janowiak B, Dal Molin F, Tonello F, Collier RJ, Montecucco C (2010) Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cell Microbiol 12:1435–1445

    Article  CAS  PubMed  Google Scholar 

Cross References

  • Stiles BG, Clostridial binary toxins: basic understandings that include cell-surface binding and an internal “coup de grace”

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ernst, K., Schnell, L., Barth, H. (2016). Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins. In: Barth, H. (eds) Uptake and Trafficking of Protein Toxins. Current Topics in Microbiology and Immunology, vol 406. Springer, Cham. https://doi.org/10.1007/82_2016_14

Download citation

Publish with us

Policies and ethics