Skip to main content

Cooperative Interaction Within RNA Virus Mutant Spectra

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

RNA viruses usually consist of mutant spectra because of high error rates of viral RNA polymerases. Growth competition occurs among different viral variants, and the fittest clones predominate under given conditions. Individual variants, however, may not be entirely independent of each other, and internal interactions within mutant spectra can occur. Examples of cooperative and interfering interactions that exert enhancing and suppressing effects on replication of the wild-type virus, respectively, have been described, but their underlying mechanisms have not been well defined. It was recently found that the cooperation between wild-type and variant measles virus genomes produces a new phenotype through the heterooligomer formation of a viral protein. This observation provides a molecular mechanism underlying cooperative interactions within mutant spectra. Careful attention to individual sequences, in addition to consensus sequences, may disclose further examples of internal interactions within mutant spectra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaskov J, Buzacott K, Thu HM et al (2006) Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236–238

    Article  CAS  PubMed  Google Scholar 

  • Arbiza J, Mirazo S, Fort H (2010) Viral quasispecies profiles as the result of the interplay of competition and cooperation. BMC Evol Biol 10:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulay F, Doms RW, Webster RG et al (1988) Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J Cell Biol 106:629–639

    Article  CAS  PubMed  Google Scholar 

  • Ciota AT, Ehrbar DJ, Van Slyke GA et al (2012) Cooperative interactions in the West Nile virus mutant swarm. BMC Evol Biol 12:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciota AT, Ngo KA, Lovelace AO et al (2007) Role of the mutant spectrum in adaptation and replication of West Nile virus. J Gen Virol 88:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlberg JE, Simon EH (1969) Physical and genetic studies of Newcastle disease virus: evidence for multiploid particles. Virology 38:666–678

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (1993) Viral quasispecies. Sci Am 269:42–49

    Article  CAS  PubMed  Google Scholar 

  • Hashiguchi T, Ose T, Kubota M et al (2011) Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol 18:135–141

    Article  CAS  PubMed  Google Scholar 

  • Holland J, Spindler K, Horodyski F et al (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Hosaka Y, Kitano H, Ikeguchi S (1966) Studies on the pleomorphism of HVJ virions. Virology 29:205–221

    Article  CAS  PubMed  Google Scholar 

  • Ke R, Aaskov J, Holmes EC et al (2013) Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses. PLoS Pathog 9:e1003193

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields Virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496

    Google Scholar 

  • Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e1001005

    Article  PubMed  PubMed Central  Google Scholar 

  • Luque D, Rivas G, Alfonso C et al (2009) Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. Proc Nat Acad Sci USA 106:2148–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlebach MD, Mateo M, Sinn PL et al (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480:530–533

    PubMed  PubMed Central  Google Scholar 

  • Nakashima M, Shirogane Y, Hashiguchi T et al (2013) Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. J Biol Chem 288:8085–8091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonacs P, Kapheim KM (2012) Modeling disease evolution with multilevel selection: HIV as a quasispecies social genome. J Evol Med 1:235553

    Article  Google Scholar 

  • Noyce RS, Bondre DG, Ha MN et al (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7:e1002240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perales C, Iranzo J, Manrubia SC et al (2012) The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 20:595–603

    Article  CAS  PubMed  Google Scholar 

  • Perales C, Mateo R, Mateu MG et al (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Plattet P, Plemper RK (2013) Envelope protein dynamics in paramyxovirus entry. MBio 4:e00413-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Rager M, Vongpunsawad S, Duprex WP et al (2002) Polyploid measles virus with hexameric genome length. EMBO J 21:2364–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirogane Y, Watanabe S, Yanagi Y (2012) Cooperation between different RNA virus genomes produces a new phenotype. Nat Commun 3:1235

    Article  PubMed  Google Scholar 

  • Shirogane Y, Watanabe S, Yanagi Y (2013) Cooperation: another mechanism of viral evolution. Trends Microbiol 21:320–324

    Article  CAS  PubMed  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K et al (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  CAS  PubMed  Google Scholar 

  • Vignuzzi M, Stone JK, Arnold JJ et al (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal LP, Witzany G (2013) Rethinking quasispecies theory: From fittest type to cooperative consoria. World J Biol Chem 4:79–90

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shirogane, Y., Watanabe, S., Yanagi, Y. (2015). Cooperative Interaction Within RNA Virus Mutant Spectra. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_461

Download citation

Publish with us

Policies and ethics