Skip to main content

Computational Challenges of Structure-Based Approaches Applied to HIV

  • Chapter
  • First Online:
Book cover The Future of HIV-1 Therapeutics

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 389))

Abstract

Three-dimensional model of mature HIV. A cutaway view of mature HIV includes the capsid (gray, with pentamers in yellow) and nucleocapsid (red), matrix protein (green), accessory proteins (magenta), membrane (white), and envelope protein (blue). The model was generated using CellPACK by Graham Johnson

Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BEDAM:

Binding energy distribution analysis method

CCD:

Catalytic core domain

BSI:

Backscattering interferometry

DSF:

Differential scanning fluorimetry

DTP:

Developmental Therapeutics Program

FA@H:

FightAids@Home

FBDD:

Fragment-based drug design

HAART:

Highly active antiretroviral therapy

HIV:

Human immunodeficiency virus

HTVS:

High-throughput virtual screening

IN:

Integrase

INSTI:

IN strand transfer inhibitor

LEGDF:

Lens epithelium-derived growth factor

MD:

Molecular dynamics

MW:

Molecular weight

NMA:

Normal mode analysis

PDB:

Protein Data Bank

PPI:

Protein–protein interaction

PR:

Protease

RC:

Relaxed complex

RH:

RNase H

RT:

Reverse transcriptase

SAMPL:

Statistical Assessment of Modeling of Proteins and Ligands

SBDD:

Structure-based drug design

WCG:

World Community Grid

References

  • Adachi M, Ohhara T, Kurihara K, Tamada T, Honjo E, Okazaki N, Arai S, Shoyama Y, Kimura K, Matsumura H (2009) Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc Nat Acad Sci 106(12):4641–4646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ala PJ, DeLoskey RJ, Huston EE, Jadhav PK, Lam PY, Eyermann CJ, Hodge CN, Schadt MC, Lewandowski FA, Weber PC (1998) Molecular recognition of cyclic urea HIV-1 protease inhibitors. J Biol Chem 273(20):12325–12331

    Article  CAS  PubMed  Google Scholar 

  • Alvizo O, Mittal S, Mayo SL, Schiffer CA (2012) Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease. Protein Sci 21(7):1029–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J comput Aided Mol Des 22(9):693–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baksh MM, Kussrow AK, Mileni M, Finn M, Bornhop DJ (2011) Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nat Biotechnol 29(4):357–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldwin ET, Bhat TN, Gulnik S, Liu B, Topol IA, Kiso Y, Mimoto T, Mitsuya H, Erickson JW (1995) Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure 3(6):581–590

    Article  CAS  PubMed  Google Scholar 

  • Belew RK, Chang MW (2006) Modeling recombination’s role in the evolution of HIV drug resistance. In: Rocha LM, Bedau M, Floreano D, Goldstone R, Vespignani A, Yaeger L (eds) Artificial life X: the tenth international conference on the synthesis and simulation of living systems. MIT Press, Citeseer, pp 98–104

    Google Scholar 

  • Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 31(13):3352–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):e1000585

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang MW, Torbett BE (2011) Accessory mutations maintain stability in drug-resistant HIV-1 protease. J Mol Biol 410(4):756–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang MW, Lindstrom W, Olson AJ, Belew RK (2007) Analysis of HIV wild-type and mutant structures via in silico docking against diverse ligand libraries. J Chem Inf Model 47(3):1258–1262

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shoichet BK (2009) Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5(5):358–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6(6):442–448

    Article  CAS  PubMed  Google Scholar 

  • Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5(6):597–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cosconati S, Marinelli L, Di Leva FS, La Pietra V, De Simone A, Mancini F, Andrisano V, Novellino E, Goodsell DS, Olson AJ (2012) Protein flexibility in virtual screening: the BACE-1 case study. J Chem Inf Model 52(10):2697–2704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engelman A, Cherepanov P (2012) The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 10(4):279–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FightAids@Home FA@H project page (2014) http://fightaidsathome.scripps.edu/. Accessed 21 July 2014

  • Forli S, Olson AJ (2012) A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J Med Chem 55(2):623–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forli S, Tiefenbrunn T, Stout CD, Olson AJ (2014) Allosteric inhibitors of HIV protease, unpublished results, TSRI

    Google Scholar 

  • Gallicchio E, Lapelosa M, Levy RM (2010) Binding energy distribution analysis method (BEDAM) for estimation of Protein-Ligand binding affinities. J Chem Theor Comput 6(9):2961–2977

    Article  CAS  Google Scholar 

  • Gallicchio E, Deng N, He P, Wickstrom L, Perryman AL, Santiago DN, Forli S, Olson AJ, Levy RM (2014) Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge. J Comput Aided Mol Des 28(4):475–490

    Google Scholar 

  • Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins Struct Funct Bioinform 8(3):195–202

    Article  CAS  Google Scholar 

  • Grid IWC WCG (2014) http://www.worldcommunitygrid.org/. Accessed 21 July 2014

  • Grzesiek S, Bax A, Nicholson LK, Yamazaki T, Wingfield P, Stahl SJ, Eyermann CJ, Torchia DA, Hodge CN (1994) NMR evidence for the displacement of a conserved interior water molecule in HIV protease by a non-peptide cyclic urea-based inhibitor. J Am Chem Soc 116(4):1581–1582

    Article  CAS  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219

    Article  CAS  PubMed  Google Scholar 

  • Hall HI, Song R, Rhodes P, Prejean J, An Q, Lee LM, Karon J, Brookmeyer R, Kaplan EH, McKenna MT (2008) Estimation of HIV incidence in the United States. JAMA 300(5):520–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct Funct Bioinform 47(4):409–443

    Article  CAS  Google Scholar 

  • Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Nat Acad Sci 107(46):20057–20062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins Struct Funct Bioinform 70(4):1506–1517

    Article  CAS  Google Scholar 

  • Heal J, Jimenez-Roldan JE, Wells SA, Freedman R, Römer RA (2012) Inhibition of HIV-1 protease: the rigidity perspective. Bioinformatics 28(3):350–357

    Article  CAS  PubMed  Google Scholar 

  • Heaslet H, Rosenfeld R, Giffin M, Lin Y-C, Tam K, Torbett BE, Elder JH, McRee DE, Stout CD (2007) Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr Sect. D: Biol Crystallogr 63(8):866–875

    Article  CAS  Google Scholar 

  • Hodge CN, Aldrich PE, Bacheler LT, Chang C-H, Eyermann CJ, Garber S, Grubb M, Jackson DA, Jadhav PK, Korant B (1996) Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. Chem Biol 3(4):301–314

    Article  CAS  PubMed  Google Scholar 

  • Holbeck S (2004) Update on NCI in vitro drug screen utilities. Eur J Cancer 40(6):785–793

    Article  CAS  PubMed  Google Scholar 

  • Jadhav PK, Ala P, Woerner FJ, Chang C-H, Garber SS, Anton ED, Bacheler LT (1997) Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J Med Chem 40(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Goodsell DS, Autin L, Forli S, Sanner M, Olson AJ (2014) FD 169: 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 169:23–44

    Google Scholar 

  • King NM, Prabu-Jeyabalan M, Bandaranayake RM, Nalam MN, Nalivaika EA, Ael Özen, Tr Haliloĝlu, NeK Yılmaz, Schiffer CA (2012) Extreme Entropy-Enthalpy Compensation in a Drug-Resistant Variant of HIV-1 Protease. ACS Chem Biol 7(9):1536–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiso Y, Matsumoto H, Mizumoto S, Kimura T, Fujiwara Y, Akaji K (1999) Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic. Pept Sci 51(1):59–68

    Article  CAS  Google Scholar 

  • Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  CAS  PubMed  Google Scholar 

  • Lange-Savage G, Berchtold H, Liesum A, Budt KH, Peyman A, Knolle J, Sedlacek J, Fabry M, Hilgenfeld R (1997) Structure of HOE/BAY 793 complexed to Human Immunodeficiency Virus (HIV-1) protease in two different crystal forms structure/function relationship and influence of crystal packing. Eur J Biochem 248(2):313–322

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Leslie A, Pfafferott K, Chetty P, Draenert R, Addo M, Feeney M, Tang Y, Holmes E, Allen T, Prado J (2004) HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10(3):282–289

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 34(13):3698–3707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Li AP (2010) Enzyme inhibition in drug discovery and development: the good and the bad. Wiley, New York

    Google Scholar 

  • Marshall GR (1987) Computer-aided drug design. Ann Rev Pharmacol Toxicol 27(1):193–213

    Article  CAS  Google Scholar 

  • Mittal S, Cai Y, Nalam MN, Bolon DN, Schiffer CA (2012) Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 134(9):4163–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des 28(4):327–345

    Google Scholar 

  • Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins Struct Funct Bioinform 11(4):314–328

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337(6208):615–620. doi:10.1038/337615a0

    Article  CAS  PubMed  Google Scholar 

  • Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PY, Jadhav PK (1995) Flexibility and function in HIV-1 protease. Nat Struct Biol 2(4):274–280

    Article  CAS  PubMed  Google Scholar 

  • NIH Developmental Therapeutics Program (2014) http://dtp.nci.nih.gov/. Accessed 11 June 2014

  • NIH2 DTP NCI Diversity set IV (2014) http://dtp.nci.nih.gov/branches/dscb/div2_explanation.html. Accessed 10 June 2014

  • Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins Struct Funct Bioinform 46 (1):34–40

    Google Scholar 

  • Perryman AL, Lin JH, McCammon JA (2004) HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci 13(4):1108–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perryman AL, Lin JH, McCammon JA (2006) Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design. Biopolymers 82(3):272–284

    Article  CAS  PubMed  Google Scholar 

  • Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ (2010a) A dynamic model of HIV integrase inhibition and drug resistance. J Mol Biol 397(2):600–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perryman AL, Zhang Q, Soutter HH, Rosenfeld R, McRee DE, Olson AJ, Elder JE, David Stout C (2010b) Fragment-Based Screen against HIV Protease. Chem Biol Drug Des 75(3):257–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perryman AL, Santiago DN, Forli S, Santos-Martins D, Olson AJ (2014) Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein–ligand binding challenge. J Comput Aided Mol Des 28(4):429–441

    Google Scholar 

  • Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3):305–320

    Article  CAS  PubMed  Google Scholar 

  • Suresh CH, Vargheese AM, Vijayalakshmi KP, Mohan N, Koga N (2008) Role of structural water molecule in HIV protease-inhibitor complexes: a QM/MM study. J Comput Chem 29(11):1840–1849

    Article  CAS  PubMed  Google Scholar 

  • Tiefenbrunn T, Forli S, Baksh MM, Chang MW, Happer M, Lin Y-C, Perryman AL, Rhee J-K, Torbett BE, Olson AJ (2013) Small molecule regulation of protein conformation by binding in the flap of HIV protease. ACS Chem Biol 8(6):1223–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiefenbrunn T, Forli S, Happer M, Gonzalez A, Tsai Y, Soltis M, Elder JH, Olson AJ, Stout CD (2014) Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease. Chem Biol Drug Des 83(2):141–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28(15):2074–2075

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-X, Freedberg DI, Wingfield PT, Stahl SJ, Kaufman JD, Kiso Y, Bhat TN, Erickson JW, Torchia DA (1996) Bound water molecules at the interface between the HIV-1 protease and a potent inhibitor, KNI-272, determined by NMR. J Am Chem Soc 118(49):12287–12290

    Article  CAS  Google Scholar 

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303

    Article  CAS  PubMed  Google Scholar 

  • Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931

    Article  CAS  PubMed  Google Scholar 

  • Weber IT (1990) Evaluation of homology modeling of HIV protease. Proteins Struct Funct Bioinform 7(2):172–184

    Article  CAS  Google Scholar 

  • Whiting M, Muldoon J, Lin Y-C, Silverman SM, Lindstrom W, Olson AJ, Kolb HC, Finn M, Sharpless KB, Elder JH (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew Chem Int Ed 45(9):1435–1439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank IBM World Community Grid for the computational resource support provided to the FightAIDS@Home project. This work was supported by NIH R01 GM073087 and P50 GM103368 to AJO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Olson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forli, S., Olson, A.J. (2015). Computational Challenges of Structure-Based Approaches Applied to HIV. In: Torbett, B., Goodsell, D., Richman, D. (eds) The Future of HIV-1 Therapeutics. Current Topics in Microbiology and Immunology, vol 389. Springer, Cham. https://doi.org/10.1007/82_2015_432

Download citation

Publish with us

Policies and ethics