Skip to main content

The Legionella pneumophila Two-Component Regulatory Systems that Participate in the Regulation of Icm/Dot Effectors

  • Chapter
  • First Online:
Book cover Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

Legionella pneumophila, the causative agent of Legionnaires’ disease, actively manipulates intracellular processes to establish a replication niche inside their host cells. The establishment of its replication niche requires a functional Icm/Dot type IV secretion system which translocates about 300 effector proteins into the host cells during infection. This enormous number of effectors should be coordinated at the level of gene expression, in order to be expressed and translocated at the correct time and appropriate amounts. One of the predominant ways in bacteria to regulate virulence gene expression is by the use of two-component systems (TCSs). To date, four TCSs have been shown to be involved in the regulation of Icm/Dot effector-encoding genes: The PmrAB and CpxRA TCSs that directly control, and the LetAS and LqsRS TCSs that indirectly control the level of expression of effector-encoding genes. According to our current knowledge, these four TCSs control the expression of about 70 effector-encoding genes. The regulation by different TCSs divides the effectors into groups of co-regulated effector-encoding genes that are probably co-expressed at a similar time during infection and might perform related functions. In addition, examples of interplay between these TCSs were already reported indicating that they form part of a regulatory network that orchestrates the expression of L. pneumophila effector-encoding genes during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GAP:

GTPas activating protein

GEF:

Guanine nucleotide exchange factor

Icm/Dot:

Intracellular multiplication/Defect organelle trafficking

LCV:

Legionella containing vacuole

TCS:

Two-component system

References

  • Abu Kwaik Y (1996) The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62:2022–2028

    PubMed  CAS  Google Scholar 

  • Al-Khodor S, Kalachikov S, Morozova I, Price CT, Abu Kwaik Y (2009) The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun 77:374–386

    Google Scholar 

  • Altman E, Segal G (2008) The response regulator CpxR directly regulates the expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190:1985–1996

    Article  PubMed  CAS  Google Scholar 

  • Bachman MA, Swanson MS (2004) The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophila. Infect Immun 72:3284–3293

    Article  PubMed  CAS  Google Scholar 

  • Banga S, Gao P, Shen X, Fiscus V, Zong WX, Chen L, Luo ZQ (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci USA 104:5121–5126

    Article  PubMed  CAS  Google Scholar 

  • Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190:3026–3035

    Article  PubMed  CAS  Google Scholar 

  • Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508

    Article  PubMed  Google Scholar 

  • Campodonico EM, Chesnel L, Roy CR (2005) A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 56:918–933

    Article  PubMed  CAS  Google Scholar 

  • Creasey EA, Isberg RR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci USA 109:3481–3486

    Article  PubMed  CAS  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117

    Article  PubMed  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF, Kalachikov S, Shuman HA (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726

    Article  PubMed  Google Scholar 

  • Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:e34

    Article  PubMed  Google Scholar 

  • Edwards RL, Jules M, Sahr T, Buchrieser C, Swanson MS (2010) The Legionella pneumophila LetA/LetS two-component system exhibits rheostat-like behavior. Infect Immun 78:2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Ensminger AW, Isberg RR (2009) Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12:67–73

    Article  PubMed  CAS  Google Scholar 

  • Fass E, Groisman EA (2009) Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12:199–204

    Article  PubMed  CAS  Google Scholar 

  • Fontana MF, Banga S, Barry KC, Shen X, Tan Y, Luo ZQ, Vance RE (2011) Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog 7:e1001289

    Article  PubMed  CAS  Google Scholar 

  • Forsbach-Birk V, McNealy T, Shi C, Lynch D, Marre R (2004) Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. Int J Med Microbiol 294:15–25

    Article  PubMed  CAS  Google Scholar 

  • Franco IS, Shohdy N, Shuman HA (2012) The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8:e1002546

    Article  PubMed  CAS  Google Scholar 

  • Franco IS, Shuman HA, Charpentier X (2009) The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 11:1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Gal-Mor O, Segal G (2003a) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919

    Article  PubMed  CAS  Google Scholar 

  • Gal-Mor O, Segal G (2003b) The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34:187–194

    Article  PubMed  CAS  Google Scholar 

  • Ge J, Gong YN, Xu Y, Shao F (2012) Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci USA 109:6193–6198

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C (2011) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2:208

    Article  PubMed  Google Scholar 

  • Gooderham WJ, Hancock RE (2009) Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33:279–294

    Article  PubMed  CAS  Google Scholar 

  • Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A, Goody RS (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31:1774–1784

    Article  PubMed  CAS  Google Scholar 

  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16:284–290

    Article  PubMed  CAS  Google Scholar 

  • Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA (2008) Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10:1460–1474

    Article  PubMed  CAS  Google Scholar 

  • Hammer BK, Tateda ES, Swanson MS (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44:107–118

    Article  PubMed  CAS  Google Scholar 

  • Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1983a) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1983b) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126

    Article  PubMed  CAS  Google Scholar 

  • Hovel-Miner G, Pampou S, Faucher SP, Clarke M, Morozova I, Morozov P, Russo JJ, Shuman HA, Kalachikov S (2009) SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 191:2461–2473

    Article  PubMed  CAS  Google Scholar 

  • Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y (2012) Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci USA 109:13567–13572

    Article  PubMed  CAS  Google Scholar 

  • Humphreys S, Rowley G, Stevenson A, Anjum MF, Woodward MJ, Gilbert S, Kormanec J, Roberts M (2004) Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 72:4654–4661

    Article  PubMed  CAS  Google Scholar 

  • Hunke S, Keller R, Muller VS (2012) Signal integration by the Cpx-envelope stress system. FEMS Microbiol Lett 326:12–22

    Article  PubMed  CAS  Google Scholar 

  • Hurtado-Guerrero R, Zusman T, Pathak S, Ibrahim AF, Shepherd S, Prescott A, Segal G, van Aalten DM (2010) Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem J 426:281–292

    Article  PubMed  CAS  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369

    Article  PubMed  CAS  Google Scholar 

  • Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    Article  PubMed  CAS  Google Scholar 

  • Jung K, Fried L, Behr S, Heermann R (2012) Histidine kinases and response regulators in networks. Curr Opin Microbiol 15:118–124

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Schell U, Sahr T, Tiaden A, Harrison C, Buchrieser C, Hilbi H (2013) The Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuit. Environ Microbiol 15:646–662

    Article  PubMed  CAS  Google Scholar 

  • Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N, Doran A, Guirado E, Schlesinger LS, Shuman H, Amer AO (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol: doi. doi:10.1002/eji.201242835

    Google Scholar 

  • Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR (2006) A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci USA 103:18745–18750

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  PubMed  CAS  Google Scholar 

  • Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121–145

    Article  PubMed  CAS  Google Scholar 

  • Lynch D, Fieser N, Gloggler K, Forsbach-Birk V, Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248

    Article  PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56

    Article  PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–977

    Article  PubMed  CAS  Google Scholar 

  • Marchal K, De Keersmaecker S, Monsieurs P, van Boxel N, Lemmens K, Thijs G, Vanderleyden J, De Moor B (2004) In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection. Genome Biol 5:R9

    Article  PubMed  Google Scholar 

  • Merighi M, Ellermeier CD, Slauch JM, Gunn JS (2005) Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 187:7407–7416

    Article  PubMed  CAS  Google Scholar 

  • Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AB, Swanson MS (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106

    Article  PubMed  CAS  Google Scholar 

  • Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949

    Article  PubMed  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  PubMed  CAS  Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner, MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456

    Google Scholar 

  • Neunuebel MR, Machner MP (2012) The taming of a Rab GTPase by Legionella pneumophila. Small GTPases 3:28–33

    Article  PubMed  Google Scholar 

  • Nevesinjac AZ, Raivio TL (2005) The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 187:672–686

    Article  PubMed  CAS  Google Scholar 

  • O’Connor TJ, Boyd D, Dorer MS, Isberg RR (2012) Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338:1440–1444

    Article  PubMed  Google Scholar 

  • Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654

    Article  PubMed  CAS  Google Scholar 

  • Perez JC, Groisman EA (2007) Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63:283–293

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, Kwaik YA (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5:e1000704

    Article  PubMed  Google Scholar 

  • Price CT, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y (2010) Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med 207:1713–1726

    Google Scholar 

  • Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557

    Google Scholar 

  • Rasis M, Segal G (2009) The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Robinson CG, Roy CR (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol 8:793–805

    Article  PubMed  CAS  Google Scholar 

  • Sahr T, Bruggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C (2009) Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72:741–762

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Feldman M, Zusman T (2005) The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 29:65–81

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Banga S, Liu Y, Xu L, Gao P, Shamovsky I, Nudler E, Luo ZQ (2009) Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 11:911–926

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Forsbach-Birk V, Marre R, McNealy TL (2006) The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Roy CR (2008) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Shohdy N, Efe JA, Emr SD, Shuman HA (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci USA 102:4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H (2008) The Legionella autoinducer synthase LqsA produces an alpha-hydroxyketone signaling molecule. J Biol Chem 283:18113–18123

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 108:21212–21217

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Carranza P, Bruggemann H, Riedel K, Eberl L, Buchrieser C, Hilbi H (2008) Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 190:7532–7547

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Sahr T, Walti MA, Boucke K, Buchrieser C, Hilbi H (2010) The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ Microbiol 12:1243–1259

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Weber SS, Bruggemann H, Bosshard R, Buchrieser C, Hilbi H (2007) The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol 9:2903–2920

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114:4637–4650

    PubMed  CAS  Google Scholar 

  • Vogt SL, Raivio TL (2012) Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 326:2–11

    Article  PubMed  CAS  Google Scholar 

  • Wosten MM, Groisman EA (1999) Molecular characterization of the PmrA regulon. J Biol Chem 274:27185–27190

    Article  PubMed  CAS  Google Scholar 

  • Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA (2000) A signal transduction system that responds to extracellular iron. Cell 103:113–125

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo ZQ (2010) Inhibition of host vacuolar H + -ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6:e1000822

    Article  PubMed  Google Scholar 

  • Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E, Feldman M, Segal G (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Segal, G. (2013). The Legionella pneumophila Two-Component Regulatory Systems that Participate in the Regulation of Icm/Dot Effectors. In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_346

Download citation

Publish with us

Policies and ethics