Skip to main content

Ecology and Physiology of the Intestinal Tract

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

The number of microorganisms inhabiting the human digestive tract exceeds the number of body cells by a factor of ten. This microbial community affects host physiology and host health. The metabolic potential of the gut microbiota is immense affording the extraction of energy from otherwise indigestible carbohydrates (dietary fiber) and the conversion of host-derived substances, non-nutritive dietary components and drugs. Recognized functions of the gut microbiota include provision of colonization resistance against pathogens and priming of both the innate and the acquired immune systems. However, the intestinal microbiota may also contribute to the development of diseases such as ulcerative colitis and colorectal cancer. Culture-dependent studies provided basic knowledge on the gut microbiota, but only the advent of culture-independent molecular methods led to a better understanding of host-microbe interactions. The application of metagenomics to the gut microbial ecosystem revealed truly remarkable correlations between certain diseases and the gut microbiome. It also led to the suggestion of the existence of a ‘core microbiome’ that encompasses key functions shared by each individual. However, the mechanisms underlying host-microbe interactions have not yet been unraveled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann. Med. 29:95–120

    PubMed  CAS  Google Scholar 

  • Allison MJ, Dawson KA, Mayberry WR et al (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141:1–7

    Article  PubMed  CAS  Google Scholar 

  • Alpert C, Scheel J, Engst W et al (2009) Adaptation of protein expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice. Environ Microbiol 11:751–761

    Article  PubMed  CAS  Google Scholar 

  • Amann R, Springer N, Ludwig W et al (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164

    Article  PubMed  CAS  Google Scholar 

  • Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317S–325S

    PubMed  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  PubMed  CAS  Google Scholar 

  • Atkinson C, Berman S, Humbert O et al (2004) In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J Nutr 134:596–599

    PubMed  CAS  Google Scholar 

  • Axelson M, Sjövall J, Gustafsson BE et al (1982) Origin of lignans in mammals and identification of a precursor from plants. Nature 298:659–660

    Article  PubMed  CAS  Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444

    Article  PubMed  CAS  Google Scholar 

  • Bik EM, Eckburg PB, Gill SR et al. (2006) Molecular analysis of the bacterial microbiota in the human stomach. In: Proceedings of National Academy of Science U S A 103:732–737

    Google Scholar 

  • Blaut M, Collins MD, Welling GW et al (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 2:S203–S211

    Article  Google Scholar 

  • Blaut M, Braune A, Wunderlich S et al (2006) Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Food Chem Toxicol 44:1940–1947

    Article  PubMed  CAS  Google Scholar 

  • Bokkenheuser VD, Winter J, Finegold SM et al (1979) New markers for Eubacterium lentum. Appl Environ Microbiol 37:1001–1006

    PubMed  CAS  Google Scholar 

  • Bry L, Falk PG, Midtvedt T et al (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Hwa V, Salyers AA (1992) A locus that contributes to colonization of the intestinal tract by Bacteroides thetaiotaomicron contains a single regulatory gene (chuR) that links two polysaccharide utilization pathways. J Bacteriol 174:7185–7193

    PubMed  CAS  Google Scholar 

  • Cheng Q, Yu MC, Reeves AR et al (1995) Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 177:3721–3727

    PubMed  CAS  Google Scholar 

  • Chiang YC, Pai WY, Chen CY et al (2008) Use of primers based on the heat shock protein genes hsp70, hsp40, and hsp10, for the detection of bovine mastitis pathogens Streptococcus agalactiae, Streptococcus uberis and Streptococcus bovis. Mol Cell Probes 22:262–266

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Cho D, Wang GR et al (2001) New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. J Bacteriol 183:7198–7205

    Article  PubMed  CAS  Google Scholar 

  • Clavel T, Henderson G, Alpert CA et al (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71:6077–6085

    Article  PubMed  CAS  Google Scholar 

  • Clavel T, Henderson G, Engst W et al (2006a) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478

    Article  CAS  Google Scholar 

  • Clavel T, Borrmann D, Braune A et al (2006b) Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12:140–147

    Article  CAS  Google Scholar 

  • Clavel T, Lippman R, Gavini F et al (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26

    Article  PubMed  CAS  Google Scholar 

  • Collado MC, Derrien M, Isolauri E et al (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770

    Article  PubMed  CAS  Google Scholar 

  • Corfield AP, Wagner SA, Clamp JR et al (1992) Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60:3971–3978

    PubMed  CAS  Google Scholar 

  • Cummings JH (1994) Anatomy and physiology of the human colon. In: ILSI Workshop on colonic microflora: nutrition and health, Barcelona, Spain

    Google Scholar 

  • Cummings JH (1995) Short chain fatty acids. In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition physiology and pathology. CRC Press, Boca Raton, pp 101–130

    Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Deisinger PJ, Hill TS, English JC (1996) Human exposure to naturally occurring hydroquinone. J Toxicol Environ Health 47:31–46

    Article  PubMed  CAS  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM et al (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Doré J, Sghir A, Hannequart-Gramet G et al (1998) Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 21:65–71

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Falk PG, Hooper LV, Midtvedt T et al (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170

    PubMed  CAS  Google Scholar 

  • Filipe MI (1979) Mucins in the human gastrointestinal epithelium: a review. Invest Cell Pathol 2:195–216

    PubMed  CAS  Google Scholar 

  • Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469

    PubMed  CAS  Google Scholar 

  • Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, pp 3–31

    Chapter  Google Scholar 

  • Franks AH, Harmsen HJM, Raangs GC et al (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed  CAS  Google Scholar 

  • Gibson GR (1999) Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 129:1438S–1441S

    PubMed  CAS  Google Scholar 

  • Gibson SA, McFarlan C, Hay S et al (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683

    PubMed  CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang X et al (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    Article  PubMed  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Gniechwitz D, Brueckel B, Reichardt N et al (2007) Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures. J Agric Food Chem 55:11027–11034

    Article  PubMed  CAS  Google Scholar 

  • Hansson GC, Johansson ME (2010) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1:51–54

    Article  PubMed  Google Scholar 

  • Hespell RB, Smith CJ (1983) Utilization of nitrogen sources by gastrointestinal tract bacteria. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, p 21

    Google Scholar 

  • Hillman K, Whyte AL, Stewart CS (1993) Dissolved oxygen in the porcine gastrointestinal tract. Lett. Appl. Microbiol. 16:299–302

    Article  Google Scholar 

  • Holdeman LV, Moore WE (1972) Roll-tube techniques for anaerobic bacteria. Am J Clin Nutr 25:1314–1317

    PubMed  CAS  Google Scholar 

  • Hooper LV, Xu J, Falk PG et al. (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. In: In: Proceedings of National Academy of Science U S A 96:9833–9838

    Google Scholar 

  • Hughes R, Magee EA, Bingham S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol 1:51–58

    PubMed  CAS  Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    PubMed  CAS  Google Scholar 

  • Hwa V, Salyers AA (1992) Evidence for differential regulation of genes in the chondroitin sulfate utilization pathway of Bacteroides thetaiotaomicron. J Bacteriol 174:342–344

    PubMed  CAS  Google Scholar 

  • Joshi S, Agte V (1995) Digestibility of dietary fiber components in vegetarian men. Plant Foods Hum Nutr 48:39–44

    Article  PubMed  CAS  Google Scholar 

  • Kline KA, Falker S, Dahlberg S et al (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592

    Article  PubMed  CAS  Google Scholar 

  • Kotarski SF, Linz J, Braun DM et al (1985) Analysis of outer membrane proteins which are associated with growth of Bacteroides thetaiotaomicron on chondroitin sulfate. J Bacteriol 163:1080–1086

    PubMed  CAS  Google Scholar 

  • Kumar R, Mukherjee M, Bhandari M et al (2002) Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol 41:318–322

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S et al (2006b) Human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Linn S, Chan T, Lipeski L et al (1983) Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron. J Bacteriol 156:859–866

    PubMed  CAS  Google Scholar 

  • MacDonald IA, Jellett JF, Mahony DE et al (1979) Bile salt 3 alpha- and 12 alpha-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol 37:992–1000

    PubMed  CAS  Google Scholar 

  • Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132:1647–1656

    PubMed  CAS  Google Scholar 

  • Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457

    Article  PubMed  CAS  Google Scholar 

  • Maruo T, Sakamoto M, Ito C et al (2008) Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Matthies A, Blaut M, Braune A (2009) Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740–1744

    Article  PubMed  CAS  Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  • Mittal RD, Kumar R, Mittal B et al (2003) Stone composition, metabolic profile and the presence of the gut-inhabiting bacterium Oxalobacter formigenes as risk factors for renal stone formation. Med Princ Pract 12:208–213

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  • Rajilic-Stojanovic M, Heilig HG, Molenaar D et al (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751

    Article  PubMed  CAS  Google Scholar 

  • Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649

    PubMed  CAS  Google Scholar 

  • Reichardt N, Gniechwitz D, Steinhart H et al (2009) Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol Nutr Food Res 53:287–299

    Article  PubMed  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  PubMed  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch - a review. Compr Rev Food Sci F 5:1–17

    Article  CAS  Google Scholar 

  • Salyers AA, Kotarski SF (1980) Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron. J Bacteriol 143:781–788

    PubMed  CAS  Google Scholar 

  • Salyers AA, O’Brien M (1980) Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol 143:772–780

    PubMed  CAS  Google Scholar 

  • Salyers AA, Pajeau M (1989) Competitiveness of different polysaccharide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. Appl Environ Microbiol 55:2572–2578

    PubMed  CAS  Google Scholar 

  • Salyers AA, West SE, Vercellotti JR et al (1977) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34:529–533

    PubMed  CAS  Google Scholar 

  • Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    Article  PubMed  CAS  Google Scholar 

  • Schoefer L, Mohan R, Braune A et al (2002) Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol. Lett. 208:197–202

    Article  PubMed  CAS  Google Scholar 

  • Setchell KD, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 140:1355S–1362S

    Article  PubMed  CAS  Google Scholar 

  • Shipman JA, Cho KH, Siegel HA et al (1999) Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181:7206–7211

    PubMed  CAS  Google Scholar 

  • Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182:5365–5372

    Article  PubMed  CAS  Google Scholar 

  • Sidhu H, Schmidt ME, Cornelius JG et al (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10:S334–S340

    PubMed  CAS  Google Scholar 

  • Slavin JL, Brauer PM, Marlett JA (1981) Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. J Nutr 111:287–297

    PubMed  CAS  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. In: Proceedings of National Academy of Science, U S A 105:16731–16736

    Google Scholar 

  • Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Suau A, Bonnet R, Sutren M et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed  CAS  Google Scholar 

  • Suau A, Rochet V, Sghir A et al (2001) Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 24:139–145

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Hashiba H, Kok J et al (2000) Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl Environ Microbiol 66:2502–2512

    Article  PubMed  CAS  Google Scholar 

  • Troxel SA, Sidhu H, Kaul P et al (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17:173–176

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Quince C, Faith JJ et al. (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. In: Proceedings of National Academy of Science, U S A 107:7503-7508

    Google Scholar 

  • Van Soest PJ (1984) Some physical characteristics of dietary fibres and their influence on the microbial ecology of the human colon. Proc Nutr Soc 43:25–33

    Article  PubMed  Google Scholar 

  • Variyam EP, Hoskins LC (1981) Mucin degradation in human colon ecosystems: degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 81:751–758

    PubMed  CAS  Google Scholar 

  • Vervaeke IJ, Van Nevel CJ, Decuypere JA et al (1973) A comparison of two methods for obtaining anaerobic counts in different segments of the gastro-intestinal tract of piglets. J Appl Bacteriol 36:397–405

    Article  PubMed  CAS  Google Scholar 

  • Wells JM, Rossi O, Meijerink M et al. (2011) Epithelial crosstalk at the microbiota-mucosal interface. In: Proceedings of National Academy of Science, U S A 1:4607–4614 (108 Supplementary)

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51:221–271

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Miller TL (1983) Carbohydrate fermentation. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, p 19

    Google Scholar 

  • Woting A, Clavel T, Loh G et al (2010) Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiol Ecol 72:507–514

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Bjursell MK, Himrod J et al (2003) A genomic view of the human Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blaut, M. (2011). Ecology and Physiology of the Intestinal Tract. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_192

Download citation

Publish with us

Policies and ethics