Skip to main content

Plant Viral Epitope Display Systems for Vaccine Development

  • Chapter
  • First Online:
Plant Viral Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 375))

Abstract

The ‘easiest’ vaccines, base on production of neutralizing antibodies, have been made. With the emergence of chronic diseases, vaccine developers have understood the importance to trigger an efficient cellular mediated immune response (CTL response) to respond to this medical need. Several options are currently in development and the utilization of plant virus as vaccine platform for the trigger of a CTL response is considered as an interesting avenue. The highly ordered structures of plant viruses are good triggers of the innate immune system, which in turn, is used to initiate an immune response to a vaccine target. It is likely that plant viruses will play an important role in the development of the vaccine of the futures even if there is still several challenges to face.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen presentation cells

CD8+:

Cytotoxic T cells with CD8 surface protein are called CD8+ T cells

CP:

Coat protein

CPMV:

Cowpea mosaic virus

DCs:

Dendritic cells

CTL:

Cytotoxic T lymphocytes

FMDV:

Foot-and-mouth disease

Gp100:

Melanosomal matrix protein whose expression is closely correlated with cellular melanin content

GFP:

Gellyfish fluorescent protein

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HIV-1:

Human immunodeficiency virus-1

HLA:

Human leucocyte antigene

HPV:

Human papilloma virus

IFN-γ:

Interferon gamma

LCMV:

Lymphocytic choriomeningitis virus

MaMV:

Malva mosaic virus

MHC class 1:

One of two primary classes of major histocompatibility complex (MHC) molecules I

PAMPs:

Pathogen associated molecular patterns

PapMV:

Papaya mosaic virus

PPV:

Procine parvorvirus

PVX:

Potato virus X

TAP:

Transporter associated with antigen processing

TMV:

Tobacco mosaic virus

VLPs:

Virus like particles

References

  • Atmar RL, Keitel WA (2009) Adjuvants for pandemic influenza vaccines. Curr Top Microbiol Immunol 333:323–44

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane M, Koo M, Karrer E, Beachy RN (1999) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus–host interactions. J Mol Biol 290:9–20

    Article  PubMed  CAS  Google Scholar 

  • Bol JF (2005) Replication of alfamo- and ilarmoviruses: role of the coat protein. Annu Rev Phytopathol. 43:39–62

    Article  PubMed  CAS  Google Scholar 

  • Boraschi D, Del Giudice G, Dutel C et al (2010) Ageing and immunity: adressing immune senescence to ensure healthy ageing. Vaccine 28:3627–3631

    Article  PubMed  Google Scholar 

  • Bragard C, Dincan GH, Wesley SV et al (2000) Virus like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. J Gen Virol 81:267–272

    PubMed  CAS  Google Scholar 

  • Cañizares MC, Nicholson L, Lomonossof GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  PubMed  Google Scholar 

  • Choudhury S, Kakkar V, Suman P et al (2009) Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP12 peptides presented on Johnson grass mosaic virus-like particles. Vaccine 27:2948–2953

    Article  PubMed  CAS  Google Scholar 

  • Cruz SS, Chapman S, Roberts AG et al (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA 93:6286–6290

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Jing Y, Campbell AE, Graveinstein S (2004) Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J Immunol 172:3437–3446

    PubMed  CAS  Google Scholar 

  • Denis J, Majeau N, Acosta-Ramirez E, Savard C et al (2007) Immunogenicity of papaya mosaic virus like particlesfused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology 363:59–68

    Article  PubMed  CAS  Google Scholar 

  • Denis J, Acosta-Ramirez E, Zhao Y et al (2008) Development of a universal influenza a vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26:3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Turner SJ, Webby RG et al (2006) Influenza and the challenge for immunology. Nat Immunol 5:450–455

    Google Scholar 

  • Fagan EA, Tolley P, Smith HM et al (1987) Hepatitis B vaccine: immunogenicity and follow-up including two year booster doses in high-risk health care personnel in a London teaching hospital. J Med Virol 21:49–56

    Article  PubMed  CAS  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size-dependant immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154

    PubMed  CAS  Google Scholar 

  • Gonzales MJ, Plummer EM, Rae CS, Manchester M (2009) Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. Plos One 4:e7981

    Article  Google Scholar 

  • Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Guidotti LG, Chisari FV (2009) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1:23–61

    Article  Google Scholar 

  • Hanafi L-A, Bolduc M, LalibertĂ©-GagnĂ© M-E et al (2010) Two distinct chimeric potexviruses share antigenic cross-presentation properties of MHC class I epitopes. Vaccine 28:5617–5626

    Article  PubMed  CAS  Google Scholar 

  • Harding CV, Song R (1994) Phagocytic processing of exogenous particulate antigens by macrophages for prĂ©sentation by class I MHC molĂ©cule. J Immunol 153:4925–4933

    PubMed  CAS  Google Scholar 

  • Harper DM, Franco EL, Wheeler C et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364:1757–1765

    Article  PubMed  CAS  Google Scholar 

  • Hwang DJ, Roberts IM, Wilson TMA (1994) Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proc Nat Acad Sci USA 91:9067–9071

    Article  PubMed  CAS  Google Scholar 

  • Jagadish MN, Ward CW, Gough KH et al (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J Gen Virol 72:1543–1550

    Article  PubMed  CAS  Google Scholar 

  • Jagadish MN, Huang D, Ward CW (1993) Site-directed mutagenesis of a potyvirus coat protein and its assembly in Escherichia coli. J Gen Virol 74:893–896

    Article  PubMed  CAS  Google Scholar 

  • Jennings GT, Bachmann MF (2008) The coming age of virus-like paricle vaccines. Biol Chem 389:521–536

    Article  PubMed  CAS  Google Scholar 

  • Lacasse P, Denis J, Lapointe R et al (2008) Novel plant virus-based vaccine induces protective CTL-mediated antiviral immunity through dendritic cell maturation. J Virol 82:785–794

    Article  PubMed  CAS  Google Scholar 

  • Leclerc D, Beauseigle D, Denis J et al (2007) Proteasome-independent MHC class I cross-presentation mediated by papaya mosaic virus-like particles leads to the expansion of specific human T cells. J Virol 81:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Li OT, Poon LL (2009) One step closer to universal influenza epitopes. Expert Rev Anti Infect Ther 7:687–690

    Article  PubMed  Google Scholar 

  • Liu L, Cañizares MC, Monger W et al (2005) Cowpea moaic virus-based systems for the production of antigens and antibodies in plants. Vaccine 23:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Liu XS, Liu WJ, Zhao KN et al (2002) Route of administration of chimeric BPV1 VLP determines the character of the induced immune responses. Immunol Cell Biol 80:21–29

    Article  PubMed  CAS  Google Scholar 

  • Lico C, Capuano F, Renzone J et al (2006) Peptide display on potato vrus X: molecular features of the coat protein-fused peptide affeting cell-to-cell and phloem movement of chimeric virus particles. J Gen Virol 87:3103–3112

    Article  PubMed  CAS  Google Scholar 

  • Lico C, Mancini C, Italiani P et al (2009) Plant-produced potato virus X chimeric particles displaying an influenza virus-derived paptide activate specific CD8+ T cells in mice. Vaccine 27:5069–5076

    Article  PubMed  CAS  Google Scholar 

  • McCormick AA, Corbo TA, Wykoff-Clary S et al (2006) Chemical conjugate TMV-peptide bivalent fusion vaccines O, prove cellular immunity and tumor protection. Bioconjugate Chem 17:1330–1338

    Article  CAS  Google Scholar 

  • Morin H, Tremblay MH, Plante E et al (2007) High avidity binding of engineered papaya mosaic virus virus-like particles to resting spores of Plasmodiophora Brassicae. J Biotechnol 128:423–434

    Article  PubMed  CAS  Google Scholar 

  • O’Connell KA, Bailey JR, Blankson JN (2009) Elucidating the Ă©lite: mechanisms of control of HIV-1 infection. Trends Pharmacol Sci 30:631–637

    Article  PubMed  Google Scholar 

  • Palache AM (1997) Influenza vaccines: a reappraisal of their use. Drugs 54:841–856

    Article  PubMed  CAS  Google Scholar 

  • Paebody DS (2003) A viral platform for chemical modification and multivalent display. J Nanobiotechnol 1:1–8

    Article  Google Scholar 

  • Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11(Suppl 4):S5–S11

    Article  PubMed  CAS  Google Scholar 

  • Pushko P, Tumpey TM, Van Hoeven N et al (2007) Evaluation of influenza virus-like particles and Novasome adjuvant as candidate vaccine for avian influenza. Vaccine 25:4283–4290

    Article  PubMed  CAS  Google Scholar 

  • Ruedl C, Storni T, Lechner F et al (2002) Cross-presentation of virus-like particles by skin-derived CD8(+) dendritic cells: a dispensable role for TAP. Eur J Immunol 32:818–825

    Article  PubMed  CAS  Google Scholar 

  • Savard C, GuĂ©rin A, Drouin K et al (2011) Improvement of the trivalent inactivated flu vaccine using PapMV nanoparticles. Plos One 6:e21522

    Article  PubMed  CAS  Google Scholar 

  • Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4:431–440

    Article  PubMed  Google Scholar 

  • Sedlik C, Saron MF, Sarraseca J et al (1997) Recombinant parvovirus-like articles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic t cells. Proc Natl Acad Sci USA 94:7503–7508

    Article  PubMed  CAS  Google Scholar 

  • Simonsen L, Reichert TA, Viboud C et al (2005) Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch Intern Med 165:265–272

    Article  PubMed  Google Scholar 

  • Simonsen L, Taylor RJ, Viboud C et al (2007) Mortality benefits of influenza vaccination in elderly people: an ongoing controversy. Lancet Infect Dis 7:658–666

    Article  PubMed  Google Scholar 

  • Smith ML, Lindbo JA, Dillard-Telm S et al (2006) Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 348:475–488

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Fitzmaurice WP, Turpen TH, Palmer KE (2009) Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 332:13–31

    Article  PubMed  CAS  Google Scholar 

  • Stamataki Z, Grove J, Balfe P et al (2008) Hepatitis C virus entry and neutralization. Clin Liver Dis 12:693–712

    Article  PubMed  Google Scholar 

  • Storni T, Bachmann MF (2004) Loading of MHC class I and II presentation pathways by exogenous antigens: a quantitative in vivo comparision. J Immunol 17:6129–6135

    Google Scholar 

  • Strassburg MA, Greenland S, Sorvilla FJ et al (1986) Influenza in the elderly: report of an outbreak and review of vaccine effectiveness reports. Vaccine 4:38–44

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    Article  PubMed  CAS  Google Scholar 

  • Tremblay M-H, Majeau N, LalibertĂ© GagnĂ© M-E et al (2006) Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J 273:14–25

    Article  PubMed  CAS  Google Scholar 

  • Turpen TH, Reini SJ, Charoenvit Y et al (1995) Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology 13:53–57

    Article  PubMed  CAS  Google Scholar 

  • Vaine M, Lu S, Wang S (2009) Progress on the induction of neutralizing antibodies against HIV type 1 (HIV-1). BioDrugs 23:137–153

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Kumar A, North A et al (1996) Purification, characterization, assembly and crystallization of assembled alfalfa mosaic virus coat protein expressed in Escherichia coli. J Gen Virol 77:567–573

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Mett V, Mett V et al (2005) Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine 23:2261–2265

    Article  PubMed  CAS  Google Scholar 

  • Zayakina O, Arkhipenko M, Smirnov A et al (2009) Restoration of potato virus X coat protein capacity for assembly with RNA after His-tag removal. Arch Virol 154:337–341

    Article  PubMed  CAS  Google Scholar 

  • Zeisel MB, Fafi-Kremer S, Fofafa I et al (2007) Neutralizing antibodies in hepatitis C virus infection. World J Gastroenterol 13:4824–4830

    PubMed  CAS  Google Scholar 

  • Zhao X, Fox JM, Olsen NH et al (1995) In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro transcribed viral cDNA. Virology 207:486–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Leclerc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leclerc, D. (2011). Plant Viral Epitope Display Systems for Vaccine Development. In: Palmer, K., Gleba, Y. (eds) Plant Viral Vectors. Current Topics in Microbiology and Immunology, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_183

Download citation

Publish with us

Policies and ethics