Skip to main content

Shiga Toxin Pathogenesis: Kidney Complications and Renal Failure

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 357))

Abstract

The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome (D+HUS). The pathophysiology of renal disease in D+HUS is largely the result of the interaction between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in the kidney and in the blood circulation. This chapter describes in detail the current knowledge of how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors expressed by specific blood and resident renal cell types are also discussed as are the actions of the toxins on these cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    Article  PubMed  CAS  Google Scholar 

  • Ahn CK, Holt NJ, Tarr PI (2009) Shiga-toxin producing Escherichia coli and the hemolytic uremic syndrome: what have we learned in the past 25 years? Adv Exp Med Biol 634:1–17

    Article  PubMed  Google Scholar 

  • Akiyoshi DE, Rich CM, O’Sullivan-Murphy S, Richard L, Dilo J, Donohue-Rolfe A, Sheoran AS, Chapman-Bonofiglio S, Tzipori S (2005) Characterization of a human monoclonal antibody against Shiga toxin 2 expressed in Chinese hamster ovary cells. Infect Immun 73:4054–4061

    Article  PubMed  CAS  Google Scholar 

  • Appiani AC, Edefonti A, Bettinelli A, Cossu MM, Paracchini ML, Rossi E (1982) The relationship between plasma levels of the factor VIII complex and platelet release products (beta-thromboglobulin and platelet factor 4) in children with the hemolytic-uremic syndrome. Clin Nephrol 17:195–199

    PubMed  CAS  Google Scholar 

  • Arfilli V, Carnicelli D, Rocchi L, Ricci F, Pagliaro P, Tazzari PL, Brigotti M (2010) Shiga toxin 1 and ricin A chain bind to human polymorphonuclear leucocytes through a common receptor. Biochem J 432:173–180

    Article  PubMed  CAS  Google Scholar 

  • Barrett TJ, Potter ME, Wachsmuth IK (1989) Bacterial endotoxin both enhances and inhibits the toxicity of Shiga-like toxin II in rabbits and mice. Infect Immun 57:3434–3437

    PubMed  CAS  Google Scholar 

  • Batsford S, Duermueller U, Seemayer C, Mueller C, Hopfer H, Mihatsch M (2011) Protein level expression of Toll-like receptors 2, 4 and 9 in renal disease. Nephrol Dial Transplant 26:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Bauer ME, Welch RA (1996) Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 64:167–175

    PubMed  CAS  Google Scholar 

  • Bens M, Vandewalle A (2008) Cell models for studying renal physiology. Pflugers Arch 457:1–15

    Article  PubMed  CAS  Google Scholar 

  • Benz K, Amann K (2009) Pathological aspects of membranoproliferative glomerulonephritis (MPGN) and haemolytic uraemic syndrome (HUS)/thrombocytic thrombopenic purpura (TTP). Thromb Haemost 101:265–270

    PubMed  CAS  Google Scholar 

  • Bergstein JM, Riley M, Bang NU (1992) Role of plasminogen-activator inhibitor type 1 in the pathogenesis and outcome of the hemolytic uremic syndrome. N Engl J Med 327:755–759

    Article  PubMed  CAS  Google Scholar 

  • Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Muthing J (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: association with membrane lipid raft microdomains that differ by their stability to cholesterol depletion. J Lipid Res 52:618–634

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Poltorak A (2000) Positional cloning of Lps, and the general role of toll-like receptors in the innate immune response. Eur Cytokine Netw 11:143–152

    PubMed  CAS  Google Scholar 

  • Bitzan M, Richardson S, Huang C, Boyd B, Petric M, Karmali MA (1994) Evidence that verotoxins (Shiga-like toxins) from Escherichia coli bind to P blood group antigens of human erythrocytes in vitro. Infect Immun 62:3337–3347

    PubMed  CAS  Google Scholar 

  • Bitzan M, Bickford BB, Foster GH (2004) Verotoxin (Shiga toxin) sensitizes renal epithelial cells to increased heme toxicity: possible implications for the hemolytic uremic syndrome. J Am Soc Nephrol 15:2334–2343

    Article  PubMed  CAS  Google Scholar 

  • Bolignano D, Coppolino G, Lacquaniti A, Buemi M (2010) From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrology. Eur J Clin Invest 40:273–276

    Article  PubMed  CAS  Google Scholar 

  • Boyd B, Lingwood C (1989) Verotoxin receptor glycolipid in human renal tissue. Nephron 51:207–210

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Carnicelli D, Ravanelli E, Barbieri S, Ricci F, Bontadini A, Tozzi AE, Scavia G, Caprioli A, Tazzari PL (2008) Interactions between Shiga toxins and human polymorphonuclear leukocytes. J Leukoc Biol 84:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Tazzari PL, Ravanelli E, Carnicelli D, Barbieri S, Rocchi L, Arfilli V, Scavia G, Ricci F, Bontadini A, Alfieri RR, Petronini PG, Pecoraro C, Tozzi AE, Caprioli A (2010) Endothelial damage induced by Shiga toxins delivered by neutrophils during transmigration. J Leukoc Biol 88:201–210

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Tazzari PL, Ravanelli E, Carnicelli D, Rocchi L, Arfilli V, Scavia G, Minelli F, Ricci F, Pagliaro P, Ferretti AV, Pecoraro C, Paglialonga F, Edefonti A, Procaccino MA, Tozzi AE, Caprioli A (2011) Clinical Relevance of Shiga Toxin Concentrations in the Blood of Patients With Hemolytic Uremic Syndrome. Pediatr Infect Dis J 30:486–490

    PubMed  Google Scholar 

  • Buelli S, Abbate M, Morigi M, Moioli D, Zanchi C, Noris M, Zoja C, Pusey CD, Zipfel PF, Remuzzi G (2009) Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney Int 75:1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Calderon Toledo C, Rogers TJ, Svensson M, Tati R, Fischer H, Svanborg C, Karpman D (2008) Shiga toxin-mediated disease in MyD88-deficient mice infected with Escherichia coli O157:H7. Am J Pathol 173:1428–1439

    Article  PubMed  Google Scholar 

  • Caprioli J, Remuzzi G, Noris M (2010) Thrombotic microangiopathies: from animal models to human disease and cure. Contrib Nephrol 169:337–350

    Article  Google Scholar 

  • Caprioli J, Remuzzi G, Noris M (2011) Thrombotic microangiopathies: from animal models to human disease and cure. Contrib Nephrol 169:337–350

    Article  PubMed  CAS  Google Scholar 

  • Chaisri U, Nagata M, Kurazono H, Horie H, Tongtawe P, Hayashi H, Watanabe T, Tapchaisri P, Chongsa-nguan M, Chaicumpa W (2001) Localization of Shiga toxins of enterohaemorrhagic Escherichia coli in kidneys of paediatric and geriatric patients with fatal haemolytic uraemic syndrome. Microb Pathog 31:59–67

    Article  PubMed  CAS  Google Scholar 

  • Chandler WL, Jelacic S, Boster DR, Ciol MA, Williams GD, Watkins SL, Igarashi T, Tarr PI (2002) Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome. N Engl J Med 346:23–32

    Article  PubMed  CAS  Google Scholar 

  • Cicala C, Santacroce C, Itoh H, Douglas GJ, Page CP (1997) A study on rat platelet responsiveness following intravenous endotoxin administration. Life Sci 60:PL31–PL38

    Article  PubMed  CAS  Google Scholar 

  • Clayton F, Pysher TJ, Lou R, Kohan DE, Denkers ND, Tesh VL, Taylor FB Jr, Siegler RL (2005) Lipopolysaccharide upregulates renal shiga toxin receptors in a primate model of hemolytic uremic syndrome. Am J Nephrol 25:536–540

    Article  PubMed  CAS  Google Scholar 

  • Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, Chugh SS (2010) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Hannigan GE, Williams BR, Lingwood CA (1987) Roles of globotriosyl- and galabiosylceramide in verotoxin binding and high affinity interferon receptor. J Biol Chem 262:17088–17091

    PubMed  CAS  Google Scholar 

  • Cohen A, Madrid-Marina V, Estrov Z, Freedman MH, Lingwood CA, Dosch HM (1990) Expression of glycolipid receptors to Shiga-like toxin on human B lymphocytes: a mechanism for the failure of long-lived antibody response to dysenteric disease. Int Immunol 2:1–8

    Article  PubMed  CAS  Google Scholar 

  • Collino F, Bussolati B, Gerbaudo E, Marozio L, Pelissetto S, Benedetto C, Camussi G (2008) Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Renal Physiol 294:F1185–F1194

    Article  PubMed  CAS  Google Scholar 

  • Cooling LL, Walker KE, Gille T, Koerner TA (1998) Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid. Infect Immun 66:4355–4366

    PubMed  CAS  Google Scholar 

  • Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, Satchell S, Holman GD, Kerjaschki D, Tavare JM, Mathieson PW, Saleem MA (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54:3095–3102

    Article  PubMed  CAS  Google Scholar 

  • Creydt VP, Silberstein C, Zotta E, Ibarra C (2006) Cytotoxic effect of Shiga toxin-2 holotoxin and its B subunit on human renal tubular epithelial cells. Microbes Infect 8:410–419

    Article  PubMed  CAS  Google Scholar 

  • D’Agati VD (2008) Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts). Kidney Int 73:399–406

    Article  PubMed  Google Scholar 

  • Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Devarajan P (2010) Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton) 15:419–428

    Article  Google Scholar 

  • Dowling TC, Chavaillaz PA, Young DG, Melton-Celsa A, O’Brien A, Thuning-Roberson C, Edelman R, Tacket CO (2005) Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody c alpha Stx2 administered intravenously to healthy adult volunteers. Antimicrob Agents Chemother 49:1808–1812

    Article  PubMed  CAS  Google Scholar 

  • Dran GI, Fernandez GC, Rubel CJ, Bermejo E, Gomez S, Meiss R, Isturiz MA, Palermo MS (2002) Protective role of nitric oxide in mice with Shiga toxin-induced hemolytic uremic syndrome. Kidney Int 62:1338–1348

    Article  PubMed  CAS  Google Scholar 

  • Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Ergonul Z, Clayton F, Fogo AB, Kohan DE (2003a) Shiga toxin-1 binding and receptor expression in human kidneys do not change with age. Pediatr Nephrol 18:246–253

    PubMed  Google Scholar 

  • Ergonul Z, Hughes AK, Kohan DE (2003b) Induction of apoptosis of human brain microvascular endothelial cells by Shiga toxin 1. J Infect Dis 187:154–158

    Article  PubMed  CAS  Google Scholar 

  • Falguieres T, Mallard F, Baron C, Hanau D, Lingwood C, Goud B, Salamero J, Johannes L (2001) Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 12:2453–2468

    PubMed  CAS  Google Scholar 

  • Falguieres T, Romer W, Amessou M, Afonso C, Wolf C, Tabet JC, Lamaze C, Johannes L (2006) Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. Febs J 273:5205–5218

    Article  PubMed  CAS  Google Scholar 

  • Fernandez GC, Te Loo MW, van der Velden TJ, van der Heuvel LP, Palermo MS, Monnens LL (2003) Decrease of thrombomodulin contributes to the procoagulant state of endothelium in hemolytic uremic syndrome. Pediatr Nephrol 18:1066–1068

    Article  PubMed  Google Scholar 

  • Fernandez GC, Gomez SA, Rubel CJ, Bentancor LV, Barrionuevo P, Alduncin M, Grimoldi I, Exeni R, Isturiz MA, Palermo MS (2005) Impaired neutrophils in children with the typical form of hemolytic uremic syndrome. Pediatr Nephrol 20:1306–1314

    Article  PubMed  Google Scholar 

  • Fernandez GC, Lopez MF, Gomez SA, Ramos MV, Bentancor LV, Fernandez-Brando RJ, Landoni VI, Dran GI, Meiss R, Isturiz MA, Palermo MS (2006) Relevance of neutrophils in the murine model of haemolytic uraemic syndrome: mechanisms involved in Shiga toxin type 2-induced neutrophilia. Clin Exp Immunol 146:76–84

    Article  PubMed  CAS  Google Scholar 

  • Fernandez GC, Gomez SA, Ramos MV, Bentancor LV, Fernandez-Brando RJ, Landoni VI, Lopez L, Ramirez F, Diaz M, Alduncin M, Grimoldi I, Exeni R, Isturiz MA, Palermo MS (2007) The functional state of neutrophils correlates with the severity of renal dysfunction in children with hemolytic uremic syndrome. Pediatr Res 61:123–128

    Article  PubMed  Google Scholar 

  • Fitzpatrick MM, Shah V, Trompeter RS, Dillon MJ, Barratt TM (1992) Interleukin-8 and polymorphoneutrophil leucocyte activation in hemolytic uremic syndrome of childhood. Kidney Int 42:951–956

    Article  PubMed  CAS  Google Scholar 

  • Fogo AB (2009) The multi-talented podocyte. Nephrol Dial Transplant 24:3269–3270

    Article  PubMed  Google Scholar 

  • Fong JS, Kaplan BS (1982) Impairment of platelet aggregation in hemolytic uremic syndrome: evidence for platelet “exhaustion”. Blood 60:564–570

    PubMed  CAS  Google Scholar 

  • Forsyth KD, Simpson AC, Fitzpatrick MM, Barratt TM, Levinsky RJ (1989) Neutrophil-mediated endothelial injury in haemolytic uraemic syndrome. Lancet 2:411–414

    Article  PubMed  CAS  Google Scholar 

  • Fujii J, Wood K, Matsuda F, Carneiro-Filho BA, Schlegel KH, Yutsudo T, Binnington-Boyd B, Lingwood CA, Obata F, Kim KS, Yoshida S, Obrig T (2008) Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 76:3679–3689

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA (2011) Shiga toxin subtypes display dramatic differences in potency. Infect Immun 79:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Bosques CJ, Wishnok JS, Feng Y, Karalius BJ, Butterton JR, Schauer DB, Rogers AB, Fox JG (2006) Renal injury is a consistent finding in Dutch Belted rabbits experimentally infected with enterohemorrhagic Escherichia coli. J Infect Dis 193:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Gear AR, Camerini D (2003) Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 10:335–350

    PubMed  CAS  Google Scholar 

  • Gear ARL, Suttitanamongkol D, Viisoreanu D, Polanowska Grabowska RK, Raha S, Camerini D (2001) Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood 97:937–945

    Article  PubMed  CAS  Google Scholar 

  • Geelen JM, van der Velden TJ, Te Loo DM, Boerman OC, van den Heuvel LP, Monnens LA (2007a) Lack of specific binding of Shiga-like toxin (verocytotoxin) and non-specific interaction of Shiga-like toxin 2 antibody with human polymorphonuclear leucocytes. Nephrol Dial Transplant 22:749–755

    Article  PubMed  CAS  Google Scholar 

  • Geelen JM, van der Velden TJ, van den Heuvel LP, Monnens LA (2007b) Interactions of Shiga-like toxin with human peripheral blood monocytes. Pediatr Nephrol 22:1181–1187

    Article  PubMed  Google Scholar 

  • Geelen J, Valsecchi F, van der Velden T, van den Heuvel L, Monnens L, Morigi M (2008) Shiga-toxin-induced firm adhesion of human leukocytes to endothelium is in part mediated by heparan sulfate. Nephrol Dial Transplant 23:3091–3095

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SA, Polanowska-Grabowska RK, Fujii J, Obrig T, Gear AR (2004) Shiga toxin binds to activated platelets. J Thromb Haemost 2:499–506

    Article  PubMed  CAS  Google Scholar 

  • Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, Tourrel F, Ikehata M, Li M, Berra S, Carraro M, Messa P, Rastaldi MP (2009) Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 20:1929–1940

    Article  PubMed  CAS  Google Scholar 

  • Goncalves GM, Castoldi A, Braga TT, Camara NO (2011) New roles for innate immune response in acute and chronic kidney injuries. Scand J Immunol 73:428–435

    Article  PubMed  CAS  Google Scholar 

  • Grant DS, Kleinman HK, Martin GR (1990) The role of basement membranes in vascular development. Ann N Y Acad Sci 588:61–72

    Article  PubMed  CAS  Google Scholar 

  • Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Keepers TR, Obrig T, Gear AR (2005a) Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function. Thromb Haemost 94:1019–1027

    PubMed  CAS  Google Scholar 

  • Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Kongkhum S, Heatherly D, Obrig T, Gear AR (2005b) Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function. Infect Immun 73:8306–8316

    Article  PubMed  CAS  Google Scholar 

  • Habib R (1992) Pathology of the hemolytic uremic syndrome. In: Kaplan BS, Trompeter RS, Moake JL (eds) Thrombotic thrombocytopenic purpura. Decker, New York, pp 315–353

    Google Scholar 

  • Hakomori SI (2000) Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J 17:143–151

    Article  PubMed  CAS  Google Scholar 

  • Henao DE, Mathieson PW, Saleem MA, Bueno JC, Cadavid A (2007) A novel renal perspective of preeclampsia: a look from the podocyte. Nephrol Dial Transplant 22:1477

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg R, Wang S, Mitu GM (2008) Functional symbiosis between endothelium and epithelial cells in glomeruli. Cell Tissue Res 331:485–493

    Article  PubMed  Google Scholar 

  • Hoch J, Jarrell BE, Schneider T, Williams SK (1989) Endothelial cell interactions with native surfaces. Ann Vasc Surg 3:153–159

    Article  PubMed  CAS  Google Scholar 

  • Hoey DE, Sharp L, Currie C, Lingwood CA, Gally DL, Smith DG (2003) Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity. Cell Microbiol 5:85–97

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Motto DG, Bundle DR, Sadler JE (2010) Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood 116:3653–3659

    Article  PubMed  CAS  Google Scholar 

  • Hughes AK, Stricklett PK, Kohan DE (1998a) Cytotoxic effect of Shiga toxin-1 on human proximal tubule cells. Kidney Int 54:426–437

    Article  PubMed  CAS  Google Scholar 

  • Hughes AK, Stricklett PK, Kohan DE (1998b) Shiga toxin-1 regulation of cytokine production by human proximal tubule cells. Kidney Int 54:1093–1106

    Article  PubMed  CAS  Google Scholar 

  • Hughes AK, Stricklett PK, Schmid D, Kohan DE (2000) Cytotoxic effect of Shiga toxin-1 on human glomerular epithelial cells. Kidney Int 57:2350–2359

    Article  PubMed  CAS  Google Scholar 

  • Hughes AK, Ergonul Z, Stricklett PK, Kohan DE (2002) Molecular basis for high renal cell sensitivity to the cytotoxic effects of shigatoxin-1: upregulation of globotriaosylceramide expression. J Am Soc Nephrol 13:2239–2245

    Article  PubMed  CAS  Google Scholar 

  • Inward CD, Varagunam M, Adu D, Milford DV, Taylor CM (1997) Cytokines in haemolytic uraemic syndrome associated with verocytotoxin-producing Escherichia coli infection. Arch Dis Child 77:145–147

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Cicala C, Douglas GJ, Page CP (1996) Platelet accumulation induced by bacterial endotoxin in rats. Thromb Res 83:405–419

    Article  PubMed  CAS  Google Scholar 

  • Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC (2010) VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer 46:439–448

    Article  PubMed  CAS  Google Scholar 

  • Jandhyala DM, Ahluwalia A, Obrig T, Thorpe CM (2008) ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol 10:1468–1477

    Article  PubMed  CAS  Google Scholar 

  • Jelacic S, Wobbe CL, Boster DR, Ciol MA, Watkins SL, Tarr PI, Stapleton AE (2002) ABO and P1 blood group antigen expression and stx genotype and outcome of childhood Escherichia coli O157:H7 infections. J Infect Dis 185:214–219

    Article  PubMed  CAS  Google Scholar 

  • Jeong KI, Chapman-Bonofiglio S, Singh P, Lee J, Tzipori S, Sheoran AS (2010) In vitro and in vivo protective efficacies of antibodies that neutralize the RNA N-glycosidase activity of Shiga toxin 2. BMC Immunol 11:16

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Romer W (2010) Shiga toxins—from cell biology to biomedical applications. Nat Rev Microbiol 8:105–116

    PubMed  CAS  Google Scholar 

  • Kamitsuji H, Nonami K, Murakami T, Ishikawa N, Nakayama A, Umeki Y (2000) Elevated tissue factor circulating levels in children with hemolytic uremic syndrome caused by verotoxin-producing E. coli. Clin Nephrol 53:319–324

    PubMed  CAS  Google Scholar 

  • Kaneko K, Kiyokawa N, Ohtomo Y, Nagaoka R, Yamashiro Y, Taguchi T, Mori T, Fujimoto J, Takeda T (2001) Apoptosis of renal tubular cells in Shiga-toxin-mediated hemolytic uremic syndrome. Nephron 87:182–185

    Article  PubMed  CAS  Google Scholar 

  • Karch H, Bitzan M, Pietsch R, Stenger KO, von Wulffen H, Heesemann J, Dusing R (1988) Purified verotoxins of Escherichia coli O157:H7 decrease prostacyclin synthesis by endothelial cells. Microb Pathog 5:215–221

    Article  PubMed  CAS  Google Scholar 

  • Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295:405–418

    Article  PubMed  CAS  Google Scholar 

  • Karpman D, Andreasson A, Thysell H, Kaplan BS, Svanborg C (1995) Cytokines in childhood hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Pediatr Nephrol 9:694–699

    Article  PubMed  CAS  Google Scholar 

  • Karpman D, Connell H, Svensson M, Scheutz F, Alm P, Svanborg C (1997) The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J Infect Dis 175:611–620

    Article  PubMed  CAS  Google Scholar 

  • Karpman D, Hakansson A, Perez MT, Isaksson C, Carlemalm E, Caprioli A, Svanborg C (1998) Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: in vivo and in vitro studies. Infect Immun 66:636–644

    PubMed  CAS  Google Scholar 

  • Karpman D, Papadopoulou D, Nilsson K, Sjogren AC, Mikaelsson C, Lethagen S (2001) Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 97:3100–3108

    Article  PubMed  CAS  Google Scholar 

  • Karpman D, Sartz L, Johnson S (2010) Pathophysiology of typical hemolytic uremic syndrome. Semin Thromb Hemost 36:575–585

    Article  PubMed  CAS  Google Scholar 

  • Katayama M, Handa M, Araki Y, Ambo H, Kawai Y, Watanabe K, Ikeda Y (1993) Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br J Haematol 84:702–710

    Article  PubMed  CAS  Google Scholar 

  • Kaye SA, Obrig TG (1995) Effect of TNF-alpha, Shiga toxin and calcium ionophore on Weibel-Palade body content of endothelial cells: possible implications for the hemolytic uremic syndrome. Thromb Res 79:415–421

    Article  PubMed  CAS  Google Scholar 

  • Kaye SA, Louise CB, Boyd B, Lingwood CA, Obrig TG (1993) Shiga toxin-associated hemolytic uremic syndrome: interleukin-1 beta enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect Immun 61:3886–3891

    PubMed  CAS  Google Scholar 

  • Keepers TR, Psotka MA, Gross LK, Obrig TG (2006) A murine model of HUS: shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J Am Soc Nephrol 17:3404–3414

    Article  PubMed  CAS  Google Scholar 

  • Keepers TR, Gross LK, Obrig TG (2007) Monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and RANTES recruit macrophages to the kidney in a mouse model of hemolytic-uremic syndrome. Infect Immun 75:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Khan F, Proulx F, Lingwood CA (2009) Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int 75:1209–1216

    Article  PubMed  Google Scholar 

  • Knotek M, Rogachev B, Wang W, Ecder T, Melnikov V, Gengaro PE, Esson M, Edelstein CL, Dinarello CA, Schrier RW (2001) Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59:2243–2249

    PubMed  CAS  Google Scholar 

  • Kodama T, Nagayama K, Yamada K, Ohba Y, Akeda Y, Honda T (1999) Induction of apoptosis in human renal proximal tubular epithelial cells by Escherichia coli verocytotoxin 1 in vitro. Med Microbiol Immunol 188:73–78

    Article  PubMed  CAS  Google Scholar 

  • Kurioka T, Yunou Y, Kita E (1998) Enhancement of susceptibility to Shiga toxin-producing Escherichia coli O157:H7 by protein calorie malnutrition in mice. Infect Immun 66:1726–1734

    PubMed  CAS  Google Scholar 

  • Lalka SG, Oelker LM, Malone JM, Duhamel RC, Kevorkian MA, Raper BA, Nixon JC, Etchberger KJ, Dalsing MC, Cikrit DF et al (1989) Acellular vascular matrix: a natural endothelial cell substrate. Ann Vasc Surg 3:108–117

    Article  PubMed  CAS  Google Scholar 

  • Lammle B, Griffin JH (1985) Formation of the fibrin clot: the balance of procoagulant and inhibitory factors. Clin Haematol 14:281–342

    PubMed  CAS  Google Scholar 

  • Li X, Pabla N, Wei Q, Dong G, Messing RO, Wang CY, Dong Z (2010) PKC-delta promotes renal tubular cell apoptosis associated with proteinuria. J Am Soc Nephrol 21:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    PubMed  CAS  Google Scholar 

  • Lingwood CA (1993) Verotoxins and their glycolipid receptors. Adv Lipid Res 25:189–211

    PubMed  CAS  Google Scholar 

  • Lingwood CA (1994) Verotoxin-binding in human renal sections. Nephron 66:21–28

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA (1996) Role of verotoxin receptors in pathogenesis. Trends Microbiol 4:147–153

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Mylvaganam M (2003) Lipid modulation of glycosphingolipid (GSL) receptors: soluble GSL mimics provide new probes of GSL receptor function. Methods Enzymol 363:264–283

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262:8834–8839

    PubMed  CAS  Google Scholar 

  • Lingwood CA, Binnington B, Manis A, Branch DR (2010a) Globotriaosyl ceramide receptor function—where membrane structure and pathology intersect. FEBS Lett 584:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Manis A, Mahfoud R, Khan F, Binnington B, Mylvaganam M (2010b) New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids 163:27–35

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Akahoshi T, Sasahana T, Kitasato H, Namai R, Sasaki T, Inoue M, Kondo H (1999a) Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157:H7. Infect Immun 67:6203–6205

    PubMed  CAS  Google Scholar 

  • Liu XH, Lingwood CA, Ray PE (1999b) Recruitment of renal tubular epithelial cells expressing verotoxin-1 (Stx1) receptors in HIV-1 transgenic mice with renal disease. Kidney Int 55:554–561

    Article  PubMed  CAS  Google Scholar 

  • Lopez EL, Contrini MM, Glatstein E, Gonzalez Ayala S, Santoro R, Allende D, Ezcurra G, Teplitz E, Koyama T, Matsumoto Y, Sato H, Sakai K, Hoshide S, Komoriya K, Morita T, Harning R, Brookman S (2010) Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob Agents Chemother 54:239–243

    Article  PubMed  CAS  Google Scholar 

  • Louise CB, Obrig TG (1991) Shiga toxin-associated hemolytic-uremic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1 beta, and tumor necrosis factor alpha on human vascular endothelial cells in vitro. Infect Immun 59:4173–4179

    PubMed  CAS  Google Scholar 

  • Louise CB, Obrig TG (1992) Shiga toxin-associated hemolytic uremic syndrome: combined cytotoxic effects of shiga toxin and lipopolysaccharide (endotoxin) on human vascular endothelial cells in vitro. Infect Immun 60:1536–1543

    PubMed  CAS  Google Scholar 

  • Louise CB, Obrig TG (1994) Human renal microvascular endothelial cells as a potential target in the development of the hemolytic uremic syndrome as related to fibrinolysis factor expression, in vitro. Microvasc Res 47:377–387

    Article  PubMed  CAS  Google Scholar 

  • Louise CB, Tran MC, Obrig TG (1997) Sensitization of human umbilical vein endothelial cells to Shiga toxin: involvement of protein kinase C and NF-kappaB. Infect Immun 65:3337–3344

    PubMed  CAS  Google Scholar 

  • Mahfoud R, Manis A, Binnington B, Ackerley C, Lingwood CA (2010) A major fraction of glycosphingolipids in model and cellular cholesterol containing membranes are undetectable by their binding proteins. J Biol Chem 285:36049–36059

    Article  PubMed  CAS  Google Scholar 

  • Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101:841–843

    Article  PubMed  CAS  Google Scholar 

  • Marshall SM (2007) The podocyte: a potential therapeutic target in diabetic nephropathy? Curr Pharm Des 13:2713–2720

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Furchgott RF, Villani GM, Jothianandan D (1986) Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 237:529–538

    PubMed  CAS  Google Scholar 

  • McCluer RH, Williams MA, Gross SK, Meisler MH (1981) Testosterone effects on the induction and urinary excretion of mouse kidney glycosphingolipids associated with lysosomes. J Biol Chem 256:13112–13120

    PubMed  CAS  Google Scholar 

  • McNeilly TN, Mitchell MC, Rosser T, McAteer S, Low JC, Smith DG, Huntley JF, Mahajan A, Gally DL (2010) Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. Vaccine 28:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Melton-Celsa AR, O’Brien AD (2003) Animal models for STEC-mediated disease. Methods Mol Med 73:291–305

    PubMed  Google Scholar 

  • Miura Y, Sakaki A, Kamihira M, Iijima S, Kobayashi K (2006) A globotriaosylceramide (Gb3Cer) mimic peptide isolated from phage display library expressed strong neutralization to Shiga toxins. Biochim Biophys Acta 1760:883–889

    Article  PubMed  CAS  Google Scholar 

  • Mkaddem SB, Bens M, Vandewalle A (2010) Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget 1:741–750

    PubMed  Google Scholar 

  • Moake J (2009) Thrombotic thrombocytopenia purpura (TTP) and other thrombotic microangiopathies. Best Pract Res Clin Haematol 22:567–576

    Article  PubMed  Google Scholar 

  • Mohawk KL, Melton-Celsa AR, Robinson CM, O’Brien AD (2010) Neutralizing antibodies to Shiga toxin type 2 (Stx2) reduce colonization of mice by Stx2-expressing Escherichia coli O157:H7. Vaccine 28:4777–4785

    Article  PubMed  CAS  Google Scholar 

  • Morigi M, Micheletti G, Figliuzzi M, Imberti B, Karmali MA, Remuzzi A, Remuzzi G, Zoja C (1995) Verotoxin-1 promotes leukocyte adhesion to cultured endothelial cells under physiologic flow conditions. Blood 86:4553–4558

    PubMed  CAS  Google Scholar 

  • Morigi M, Galbusera M, Binda E, Imberti B, Gastoldi S, Remuzzi A, Zoja C, Remuzzi G (2001) Verotoxin-1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood 98:1828–1835

    Article  PubMed  CAS  Google Scholar 

  • Morigi M, Buelli S, Zanchi C, Longaretti L, Macconi D, Benigni A, Moioli D, Remuzzi G, Zoja C (2006) Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. Am J Pathol 169:1965–1975

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Higuchi T, Takada K, Oida K, Horie S, Ishii H (2006) Verotoxin-1 stimulation of macrophage-like THP-1 cells up-regulates tissue factor expression through activation of c-Yes tyrosine kinase: possible signal transduction in tissue factor up-regulation. Biochim Biophys Acta 1762:835–843

    Article  PubMed  CAS  Google Scholar 

  • Muthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264

    PubMed  Google Scholar 

  • Nestoridi E, Kushak RI, Duguerre D, Grabowski EF, Ingelfinger JR (2005a) Up-regulation of tissue factor activity on human proximal tubular epithelial cells in response to Shiga toxin. Kidney Int 67:2254–2266

    Article  PubMed  Google Scholar 

  • Nestoridi E, Tsukurov O, Kushak RI, Ingelfinger JR, Grabowski EF (2005b) Shiga toxin enhances functional tissue factor on human glomerular endothelial cells: implications for the pathophysiology of hemolytic uremic syndrome. J Thromb Haemost 3:752–762

    Article  PubMed  CAS  Google Scholar 

  • Nevard CH, Jurd KM, Lane DA, Philippou H, Haycock GB, Hunt BJ (1997) Activation of coagulation and fibrinolysis in childhood diarrhoea-associated haemolytic uraemic syndrome. Thromb Haemost 78:1450–1455

    PubMed  CAS  Google Scholar 

  • Nevard CH, Blann AD, Jurd KM, Haycock GB, Hunt BJ (1999) Markers of endothelial cell activation and injury in childhood haemolytic uraemic syndrome. Pediatr Nephrol 13:487–492

    Article  PubMed  CAS  Google Scholar 

  • Newburg DS, Chaturvedi P, Lopez EL, Devoto S, Fayad A, Cleary TG (1993) Susceptibility to hemolytic-uremic syndrome relates to erythrocyte glycosphingolipid patterns. J Infect Dis 168:476–479

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa K, Watanabe M, Kita E, Igai K, Omata K, Yaffe MB, Natori Y (2006) A multivalent peptide library approach identifies a novel Shiga toxin inhibitor that induces aberrant cellular transport of the toxin. Faseb J 20:2597–2599

    Article  PubMed  CAS  Google Scholar 

  • Nolasco LH, Turner NA, Bernardo A, Tao Z, Cleary TG, Dong JF, Moake JL (2005) Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood 106:4199–4209

    Article  PubMed  CAS  Google Scholar 

  • Obata F (2010) Influence of Escherichia coli shiga toxin on the mammalian central nervous system. Adv Appl Microbiol 71:1–19

    Article  PubMed  CAS  Google Scholar 

  • Obata F, Obrig T (2010) Distribution of Gb(3) immunoreactivity in the mouse central nervous system. Toxins (Basel) 2:1997–2006

    Article  CAS  Google Scholar 

  • Obata F, Tohyama K, Bonev AD, Kolling GL, Keepers TR, Gross LK, Nelson MT, Sato S, Obrig TG (2008) Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis 198:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Obrig TG (2010) Escherichia coli shiga toxin mechanisms of action in renal disease. Toxins (Basel) 2:2769–2794

    Article  CAS  Google Scholar 

  • Obrig TG, Del Vecchio PJ, Brown JE, Moran TP, Rowland BM, Judge TK, Rothman SW (1988) Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect Immun 56:2373–2378

    PubMed  CAS  Google Scholar 

  • Obrig TG, Louise CB, Lingwood CA, Boyd B, Barley-Maloney L, Daniel TO (1993) Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 268:15484–15488

    PubMed  CAS  Google Scholar 

  • Ohmi K, Kiyokawa N, Takeda T, Fujimoto J (1998) Human microvascular endothelial cells are strongly sensitive to Shiga toxins. Biochem Biophys Res Commun 251:137–141

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Tokuda N, Numata S, Ito M, Ohta M, Kawamura K, Wiels J, Urano T, Tajima O, Furukawa K (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281:10230–10235

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin EV, Robins-Browne RM (2001) Effect of shiga toxin and shiga-like toxins on eukaryotic cells. Microbes Infect 3:493–507

    Article  PubMed  Google Scholar 

  • Orth D, Khan AB, Naim A, Grif K, Brockmeyer J, Karch H, Joannidis M, Clark SJ, Day AJ, Fidanzi S, Stoiber H, Dierich MP, Zimmerhackl LB, Wurzner R (2009) Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol 182:6394–6400

    Article  PubMed  CAS  Google Scholar 

  • Paixao-Cavalcante D, Botto M, Cook HT, Pickering MC (2009) Shiga toxin-2 results in renal tubular injury but not thrombotic microangiopathy in heterozygous factor H-deficient mice. Clin Exp Immunol 155:339–347

    Article  PubMed  CAS  Google Scholar 

  • Palermo M, Alves-Rosa F, Rubel C, Fernandez GC, Fernandez-Alonso G, Alberto F, Rivas M, Isturiz M (2000) Pretreatment of mice with lipopolysaccharide (LPS) or IL-1beta exerts dose-dependent opposite effects on Shiga toxin-2 lethality. Clin Exp Immunol 119:77–83

    Article  PubMed  CAS  Google Scholar 

  • Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D’Agati V, Lin CS, Barasch J (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  PubMed  CAS  Google Scholar 

  • Pearson JD (2000) Normal endothelial cell function. Lupus 9:183–188

    Article  PubMed  CAS  Google Scholar 

  • Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier. J Am Soc Nephrol 21:1835–1841

    Article  PubMed  Google Scholar 

  • Petruzziello TN, Mawji IA, Khan M, Marsden PA (2009) Verotoxin biology: molecular events in vascular endothelial injury. Kidney Int Suppl 112:S17–S19

    Article  PubMed  CAS  Google Scholar 

  • Picken MM (2009) The role of mesangial homeostasis in glomerular injury progression: hope for mesangial sclerosis reversal. Kidney Int 75:574–576

    Article  PubMed  CAS  Google Scholar 

  • Pijpers AH, van Setten PA, van den Heuvel LP, Assmann KJ, Dijkman HB, Pennings AH, Monnens LA, van Hinsbergh VW (2001) Verocytotoxin-induced apoptosis of human microvascular endothelial cells. J Am Soc Nephrol 12:767–778

    PubMed  CAS  Google Scholar 

  • Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB (2004) Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22:362–369

    Article  PubMed  CAS  Google Scholar 

  • Psotka MA, Obata F, Kolling GL, Gross LK, Saleem MA, Satchell SC, Mathieson PW, Obrig TG (2009) Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect Immun 77:959–969

    Article  PubMed  CAS  Google Scholar 

  • Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK, van der Poll T, Florquin S, Leemans JC (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Quaggin SE (2009) Genetic susceptibility to HIV-associated nephropathy. J Clin Invest 119:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058

    Article  PubMed  CAS  Google Scholar 

  • Rao LV, Rapaport SI, Bajaj SP (1986) Activation of human factor VII in the initiation of tissue factor-dependent coagulation. Blood 68:685–691

    PubMed  CAS  Google Scholar 

  • Robinson LA, Hurley RM, Lingwood C, Matsell DG (1995) Escherichia coli verotoxin binding to human paediatric glomerular mesangial cells. Pediatr Nephrol 9:700–704

    Article  PubMed  CAS  Google Scholar 

  • Robson WL, Fick GH, Wilson PC (1988) Prognostic factors in typical postdiarrhea hemolytic-uremic syndrome. Child Nephrol Urol 9:203–207

    PubMed  Google Scholar 

  • Robson WL, Leung AK, Fick GH, McKenna AI (1992) Hypocomplementemia and leukocytosis in diarrhea-associated hemolytic uremic syndrome. Nephron 62:296–299

    Article  PubMed  CAS  Google Scholar 

  • Roche JK, Keepers TR, Gross LK, Seaner RM, Obrig TG (2007) CXCL1/KC and CXCL2/MIP-2 are critical effectors and potential targets for therapy of Escherichia coli O157:H7-associated renal inflammation. Am J Pathol 170:526–537

    Article  PubMed  CAS  Google Scholar 

  • Rosner MH (2009) Urinary biomarkers for the detection of renal injury. Adv Clin Chem 49:73–97

    Article  PubMed  CAS  Google Scholar 

  • Rutjes NW, Binnington BA, Smith CR, Maloney MD, Lingwood CA (2002) Differential tissue targeting and pathogenesis of verotoxins 1 and 2 in the mouse animal model. Kidney Int 62:832–845

    Article  PubMed  CAS  Google Scholar 

  • Saluk-Juszczak J, Wachowicz B, Kaca W (1999) Stimulatory effects of endotoxin on the platelet secretory process. Microbios 99:45–53

    PubMed  CAS  Google Scholar 

  • Sandvig K, Bergan J, Dyve AB, Skotland T, Torgersen ML (2009) Endocytosis and retrograde transport of Shiga toxin. Toxicon

    Google Scholar 

  • Sassetti B, Vizcarguenaga MI, Zanaro NL, Silva MV, Kordich L, Florentini L, Diaz M, Vitacco M, Sanchez Avalos JC (1999) Hemolytic uremic syndrome in children: platelet aggregation and membrane glycoproteins. J Pediatr Hematol Oncol 21:123–128

    Article  PubMed  CAS  Google Scholar 

  • Sauter KA, Melton-Celsa AR, Larkin K, Troxell ML, O’Brien AD, Magun BE (2008) Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect Immun 76:4469–4478

    Article  PubMed  CAS  Google Scholar 

  • Savage B, Shattil SJ, Ruggeri ZM (1992) Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb–IIIa (integrin alpha IIb beta 3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem 267:11300–11306

    PubMed  CAS  Google Scholar 

  • Schlondorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Karch H, Beutin L (1994) The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol Lett 117:189–196

    PubMed  CAS  Google Scholar 

  • Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147

    Article  PubMed  CAS  Google Scholar 

  • Shayman JA, Radin NS (1991) Structure and function of renal glycosphingolipids. Am J Physiol 260:F291–F302

    PubMed  CAS  Google Scholar 

  • Shigematsu H, Dikman SH, Churg J, Grishman E, Duffy JL (1976) Mesangial involvement in hemolytic-uremic syndrome. A light and electron microscopic study. Am J Pathol 85:349–362

    PubMed  CAS  Google Scholar 

  • Siegler RL, Pysher TJ, Lou R, Tesh VL, Taylor FB Jr (2001) Response to shiga toxin-1, with and without lipopolysaccharide, in a primate model of hemolytic uremic syndrome. Am J Nephrol 21:420–425

    Article  PubMed  CAS  Google Scholar 

  • Siegler RL, Obrig TG, Pysher TJ, Tesh VL, Denkers ND, Taylor FB (2003) Response to shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr Nephrol 18:92–96

    PubMed  Google Scholar 

  • Siegler RL, Pysher TJ, Tesh VL, Noris M, Cassis P, Taylor FB Jr (2005) Reduced nitric oxide bioavailability in a baboon model of Shiga toxin mediated hemolytic uremic syndrome (HUS). Ren Fail 27:635–641

    Article  PubMed  CAS  Google Scholar 

  • Silberstein C, Pistone Creydt V, Gerhardt E, Nunez P, Ibarra C (2008) Inhibition of water absorption in human proximal tubular epithelial cells in response to shiga toxin-2. Pediatr Nephrol 23:1981–1990

    Article  PubMed  Google Scholar 

  • Simon M, Cleary TG, Hernandez JD, Abboud HE (1998) Shiga toxin 1 elicits diverse biologic responses in mesangial cells. Kidney Int 54:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Sison K, Eremina V, Baelde H, Min W, Hirashima M, Fantus IG, Quaggin SE (2010) Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J Am Soc Nephrol 21:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Smith PS, Fanning JC, Aarons I (1989) The structure of the normal human glomerular basement membrane. Ultrastructural localization of type IV collagen and laminin. Pathology 21:254–258

    Article  PubMed  CAS  Google Scholar 

  • Smith DC, Sillence DJ, Falguieres T, Jarvis RM, Johannes L, Lord JM, Platt FM, Roberts LM (2006a) The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol Biol Cell 17:1375–1387

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Teel LD, Carvalho HM, Melton-Celsa AR, O’Brien AD (2006b) Development of a hybrid Shiga holotoxoid vaccine to elicit heterologous protection against Shiga toxins types 1 and 2. Vaccine 24:4122–4129

    Article  PubMed  CAS  Google Scholar 

  • Sood A, Mathew R, Trachtman H (2001) Cytoprotective effect of curcumin in human proximal tubule epithelial cells exposed to shiga toxin. Biochem Biophys Res Commun 283:36–41

    Article  PubMed  CAS  Google Scholar 

  • Spitalnik PF, Spitalnik SL (1995) The P blood group system: biochemical, serological, and clinical aspects. Transfus Med Rev 9:110–122

    Article  PubMed  CAS  Google Scholar 

  • Ståhl AL, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108:167–176

    Article  PubMed  CAS  Google Scholar 

  • Ståhl AL, Sartz L, Nelsson A, Bekassy ZD, Karpman D (2009) Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS One 4:e6990

    Article  PubMed  CAS  Google Scholar 

  • Ståhl AL, Sartz L, Karpman D (2011) Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood 117:5503–5513

    Article  PubMed  CAS  Google Scholar 

  • Stearns-Kurosawa DJ, Collins V, Freeman S, Tesh VL, Kurosawa S (2010) Distinct physiologic and inflammatory responses elicited in baboons after challenge with Shiga toxin type 1 or 2 from enterohemorrhagic Escherichia coli. Infect Immun 78:2497–2504

    Article  PubMed  CAS  Google Scholar 

  • Stricklett PK, Hughes AK, Kohan DE (2005) Inhibition of p38 mitogen-activated protein kinase ameliorates cytokine up-regulated shigatoxin-1 toxicity in human brain microvascular endothelial cells. J Infect Dis 191:461–471

    Article  PubMed  CAS  Google Scholar 

  • Sugatani J, Komiyama N, Mochizuki T, Hoshino M, Miyamoto D, Igarashi T, Hoshi S, Miwa M (2002) Urinary concentrating defect in rats given Shiga toxin: elevation in urinary AQP2 level associated with polyuria. Life Sci 71:171–189

    Article  PubMed  CAS  Google Scholar 

  • Szabady RL, Lokuta MA, Walters KB, Huttenlocher A, Welch RA (2009) Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7. PLoS Pathog 5:e1000320

    Article  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2001) Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 1:625–635

    Article  PubMed  CAS  Google Scholar 

  • Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073–1086

    PubMed  CAS  Google Scholar 

  • Taylor CM, Milford DV, Rose PE, Roy TC, Rowe B (1990) The expression of blood group P1 in post-enteropathic haemolytic uraemic syndrome. Pediatr Nephrol 4:59–61

    Article  PubMed  CAS  Google Scholar 

  • Taylor FB Jr, Tesh VL, DeBault L, Li A, Chang AC, Kosanke SD, Pysher TJ, Siegler RL (1999) Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. Am J Pathol 154:1285–1299

    Article  PubMed  CAS  Google Scholar 

  • Tazzari PL, Ricci F, Carnicelli D, Caprioli A, Tozzi AE, Rizzoni G, Conte R, Brigotti M (2004) Flow cytometry detection of shiga toxins in the blood from children with hemolytic uremic syndrome. Cytom B Clin Cytom 61:40–44

    Google Scholar 

  • Te Loo DM, Monnens LA, van Der Velden TJ, Vermeer MA, Preyers F, Demacker PN, van Den Heuvel LP, van Hinsbergh VW (2000) Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood 95:3396–3402

    PubMed  CAS  Google Scholar 

  • Te Loo DM, van Hinsbergh VW, van den Heuvel LP, Monnens LA (2001) Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J Am Soc Nephrol 12:800–806

    PubMed  CAS  Google Scholar 

  • Te Loo DM, Monnens L, van der Velden T, Karmali M, van den Heuvel L, van Hinsbergh V (2006) Shiga toxin-1 affects nitric oxide production by human glomerular endothelial and mesangial cells. Pediatr Nephrol 21:1815–1823

    Article  PubMed  Google Scholar 

  • Tesh VL, Samuel JE, Perera LP, Sharefkin JB, O’Brien AD (1991) Evaluation of the role of Shiga and Shiga-like toxins in mediating direct damage to human vascular endothelial cells. J Infect Dis 164:344–352

    Article  PubMed  CAS  Google Scholar 

  • Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O’Brien AD, Samuel JE (1993) Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect Immun 61:3392–3402

    PubMed  CAS  Google Scholar 

  • Thorner PS, Ho M, Eremina V, Sado Y, Quaggin S (2008) Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 19:495–502

    Article  PubMed  Google Scholar 

  • Thurman JM, Marians R, Emlen W, Wood S, Smith C, Akana H, Holers VM, Lesser M, Kline M, Hoffman C, Christen E, Trachtman H (2009) Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 4:1920–1924

    Article  PubMed  CAS  Google Scholar 

  • Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P (2006) Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 21:989–994

    Article  PubMed  Google Scholar 

  • Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354:1387–1401

    Article  PubMed  CAS  Google Scholar 

  • Tsai HM, Chandler WL, Sarode R, Hoffman R, Jelacic S, Habeeb RL, Watkins SL, Wong CS, Williams GD, Tarr PI (2001) von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome. Pediatr Res 49:653–659

    Article  PubMed  CAS  Google Scholar 

  • Turi S, Nemeth I, Vargha I, Matkovics B (1994) Oxidative damage of red blood cells in haemolytic uraemic syndrome. Pediatr Nephrol 8:26–29

    Article  PubMed  CAS  Google Scholar 

  • Tzipori S, Sheoran A, Akiyoshi D, Donohue-Rolfe A, Trachtman H (2004) Antibody therapy in the management of shiga toxin-induced hemolytic uremic syndrome. Clin Microbiol Rev 17:926–941 Table of contents

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Kiyokawa N, Horie H, Fujimoto J, Takeda T (1999) The detection of Shiga toxins in the kidney of a patient with hemolytic uremic syndrome. Pediatr Res 45:133–137

    Article  PubMed  CAS  Google Scholar 

  • van de Kar NC, Monnens LA, Karmali MA, van Hinsbergh VW (1992) Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 80:2755–2764

    PubMed  Google Scholar 

  • van de Kar NC, Monnens LA, Van Hinsbergh VW (1993) Tumor necrosis factor and interleukin 1 induce expression of the glycolipid verotoxin receptor in human endothelial cells. Implications for the pathogenesis of the haemolytic uraemic syndrome. Behring Inst Mitt 92:202–209

    PubMed  Google Scholar 

  • van de Kar NC, van Hinsbergh VW, Brommer EJ, Monnens LA (1994) The fibrinolytic system in the hemolytic uremic syndrome: in vivo and in vitro studies. Pediatr Res 36:257–264

    Article  PubMed  Google Scholar 

  • Van Geet C, Proesmans W, Arnout J, Vermylen J, Declerck PJ (1998) Activation of both coagulation and fibrinolysis in childhood hemolytic uremic syndrome. Kidney Int 54:1324–1330

    Article  PubMed  Google Scholar 

  • van Setten PA, Monnens LA, Verstraten RG, van den Heuvel LP, van Hinsbergh VW (1996) Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood 88:174–183

    PubMed  Google Scholar 

  • van Setten PA, van Hinsbergh VW, Van den Heuvel LP, van der Velden TJ, van de Kar NC, Krebbers RJ, Karmali MA, Monnens LA (1997a) Verocytotoxin inhibits mitogenesis and protein synthesis in purified human glomerular mesangial cells without affecting cell viability: evidence for two distinct mechanisms. J Am Soc Nephrol 8:1877–1888

    PubMed  Google Scholar 

  • van Setten PA, van Hinsbergh VW, van der Velden TJ, van de Kar NC, Vermeer M, Mahan JD, Assmann KJ, van den Heuvel LP, Monnens LA (1997b) Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int 51:1245–1256

    Article  PubMed  Google Scholar 

  • van Setten PA, van Hinsbergh VW, van den Heuvel LP, Preyers F, Dijkman HB, Assmann KJ, van der Velden TJ, Monnens LA (1998) Monocyte chemoattractant protein-1 and interleukin-8 levels in urine and serum of patents with hemolytic uremic syndrome. Pediatr Res 43:759–767

    Article  PubMed  Google Scholar 

  • Vandewalle A (2008) Toll-like receptors and renal bacterial infections. Chang Gung Med J 31:525–537

    PubMed  Google Scholar 

  • Vaughan MR, Quaggin SE (2008) How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol 19:24–33

    Article  PubMed  Google Scholar 

  • Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F (2010) Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 120:4065–4076

    Article  PubMed  CAS  Google Scholar 

  • Viisoreanu D, Polanowska-Grabowska R, Suttitanamongkol S, Obrig TG, Gear AR (2000) Human platelet aggregation is not altered by Shiga toxins 1 or 2. Thromb Res 98:403–410

    Article  PubMed  CAS  Google Scholar 

  • Wachowicz B, Saluk J, Kaca W (1998) Response of blood platelets to Proteus mirabilis lipopolysaccharide. Microbiol Immunol 42:47–49

    PubMed  CAS  Google Scholar 

  • Waddell T, Cohen A, Lingwood CA (1990) Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriosylceramide. Proc Natl Acad Sci U S A 87:7898–7901

    Article  PubMed  CAS  Google Scholar 

  • Wahome PG, Bai Y, Neal LM, Robertus JD, Mantis NJ (2010) Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen. Toxicon 56:526–534

    Article  PubMed  CAS  Google Scholar 

  • Warnier M, Romer W, Geelen J, Lesieur J, Amessou M, van den Heuvel L, Monnens L, Johannes L (2006) Trafficking of Shiga toxin/Shiga-like toxin-1 in human glomerular microvascular endothelial cells and human mesangial cells. Kidney Int 70:2085–2092

    PubMed  CAS  Google Scholar 

  • Watanabe-Takahashi M, Sato T, Dohi T, Noguchi N, Kano F, Murata M, Hamabata T, Natori Y, Nishikawa K (2010) An orally applicable Shiga toxin neutralizer functions in the intestine to inhibit the intracellular transport of the toxin. Infect Immun 78:177–183

    Article  PubMed  CAS  Google Scholar 

  • Williams JM, Boyd B, Nutikka A, Lingwood CA, Barnett Foster DE, Milford DV, Taylor CM (1999) A comparison of the effects of verocytotoxin-1 on primary human renal cell cultures. Toxicol Lett 105:47–57

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Foster GH, Bitzan M (2005) Silencing of Bak ameliorates apoptosis of human proximal tubular epithelial cells by Escherichia coli-derived Shiga toxin 2. Infection 33:362–367

    Article  PubMed  CAS  Google Scholar 

  • Winter KR, Stoffregen WC, Dean-Nystrom EA (2004) Shiga toxin binding to isolated porcine tissues and peripheral blood leukocytes. Infect Immun 72:6680–6684

    Article  PubMed  CAS  Google Scholar 

  • Wolski VM, Soltyk AM, Brunton JL (2002) Tumour necrosis factor alpha is not an essential component of verotoxin 1-induced toxicity in mice. Microb Pathog 32:263–271

    Article  PubMed  CAS  Google Scholar 

  • Wu X, He Y, Jing Y, Li K, Zhang J (2010) Albumin overload induces apoptosis in renal tubular epithelial cells through a CHOP-dependent pathway. Omics 14:61–73

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Akira S (2010) Lipid A receptor TLR4-Mediated signaling pathways. Adv Exp Med Biol 667:59–68

    Article  PubMed  Google Scholar 

  • Yannariello-Brown J, Wewer U, Liotta L, Madri JA (1988) Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration. J Cell Biol 106:1773–1786

    Article  PubMed  CAS  Google Scholar 

  • Zanchi C, Zoja C, Morigi M, Valsecchi F, Liu XY, Rottoli D, Locatelli M, Buelli S, Pezzotta A, Mapelli P, Geelen J, Remuzzi G, Hawiger J (2008) Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. J Immunol 181:1460–1469

    PubMed  CAS  Google Scholar 

  • Zipfel PF, Heinen S, Skerka C (2010) Thrombotic microangiopathies: new insights and new challenges. Curr Opin Nephrol Hypertens 19:372–378

    Article  PubMed  Google Scholar 

  • Zoja C, Morigi M, Remuzzi G (2001) The role of the endothelium in hemolytic uremic syndrome. J Nephrol 14(4):S58–S62

    PubMed  Google Scholar 

  • Zoja C, Angioletti S, Donadelli R, Zanchi C, Tomasoni S, Binda E, Imberti B, te Loo M, Monnens L, Remuzzi G, Morigi M (2002) Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1. Kidney Int 62:846–856

    Article  PubMed  CAS  Google Scholar 

  • Zoja C, Morigi M, Remuzzi G (2003) Proteinuria and phenotypic change of proximal tubular cells. J Am Soc Nephrol 14(1):S36–S41

    Article  PubMed  Google Scholar 

  • Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25:2231–2240

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Numbers AI024431, AI054782, and AI075778 to TGO from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Diana Karpman is supported by grants from The Swedish Research Council (K2010-65X-14008), Torsten and Ragnar Söderberg Foundation, The Fund for Renal Research, Crown Princess Lovisa’s Society for Child Care, The Konung Gustaf V:s 80-årsfond, Fanny Ekdahl’s Foundation and is the recipient of a clinical-experimental research fellowship from the Royal Swedish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom G. Obrig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obrig, T.G., Karpman, D. (2011). Shiga Toxin Pathogenesis: Kidney Complications and Renal Failure. In: Mantis, N. (eds) Ricin and Shiga Toxins. Current Topics in Microbiology and Immunology, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_172

Download citation

Publish with us

Policies and ethics