Skip to main content

Bioinformatic Approaches for Identification of A-to-I Editing Sites

  • Chapter
  • First Online:
Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

The first discoveries of mammalian A-to-I RNA editing have been serendipitous. In conjunction with the fast advancement in sequencing technology, systematic methods for prediction and detection of editing sites have been developed, leading to the discovery of thousands of A-to-I editing sites. Here we review the state-of-the-art of these methods and discuss future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    Article  PubMed  Google Scholar 

  • Barak M, Levanon EY, Eisenberg E, Paz N, Rechavi G, Church GM, Mehr R (2009) Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res 37:6905–6915

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  PubMed  CAS  Google Scholar 

  • Bhalla T, Rosenthal JJ, Holmgren M, Reenan R (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11:950–956

    Article  PubMed  CAS  Google Scholar 

  • Blow M, Futreal PA, Wooster R, Stratton MR (2004) A survey of RNA editing in human brain. Genome Res 14:2379–2387

    Article  PubMed  CAS  Google Scholar 

  • Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R, Stratton MR (2006) RNA editing of human microRNAs. Genome Biol 7:R27

    Article  PubMed  Google Scholar 

  • Borchert GM, Gilmore BL, Spengler RM, Xing Y, Lanier W, Bhattacharya D, Davidson BL (2009) Adenosine deamination in human transcripts generates novel microRNA binding sites. Hum Mol Genet 18:4801–4807

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (2010) Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci USA 107:19945–19948

    Article  PubMed  CAS  Google Scholar 

  • Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Chateigner-Boutin AL, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35:e114

    Article  PubMed  Google Scholar 

  • Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M et al (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, DeCerbo JN, Carmichael GG (2008a) Alu element-mediated gene silencing. Embo J 27:1694–1705

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Kao SC, Chou HC, Lin WH, Wong FH, Chow WY (2008b) A real-time PCR method for the quantitative analysis of RNA editing at specific sites. Anal Biochem 375:46–52

    Article  PubMed  CAS  Google Scholar 

  • Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck DR, Leroy A, O’Connell MA, Semple CA (2005) A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10. Bioinformatics 21:2590–2595

    Article  PubMed  CAS  Google Scholar 

  • de Hoon MJ, Taft RJ, Hashimoto T, Kanamori-Katayama M, Kawaji H, Kawano M, Kishima M, Lassmann T, Faulkner GJ, Mattick JS, Daub CO, Carninci P, Kawai J, Suzuki H, Hayashizaki Y (2010) Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res 20:257–264

    Article  PubMed  Google Scholar 

  • Eisenberg E, Adamsky K, Cohen L, Amariglio N, Hirshberg A, Rechavi G, Levanon EY (2005a) Identification of RNA editing sites in the SNP database. Nucleic Acids Res 33:4612–4617

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY (2005b) Is abundant A-to-I RNA editing primate-specific? Trends Genet 21:77–81

    Article  PubMed  CAS  Google Scholar 

  • Enstero M, Daniel C, Wahlstedt H, Major F, Ohman M (2009) Recognition and coupling of A-to-I edited sites are determined by the tertiary structure of the RNA. Nucleic Acids Res 37:6916–6926

    Article  PubMed  Google Scholar 

  • Enstero M, Akerborg O, Lundin D, Wang B, Furey TS, Ohman M, Lagergren J (2010) A computational screen for site selective A-to-I editing detects novel sites in neuron specific Hu proteins. BMC Bioinformatics 11:6

    Article  PubMed  Google Scholar 

  • Galeano F, Leroy A, Rossetti C, Gromova I, Gautier P, Keegan LP, Massimi L, Di Rocco C, O’Connell MA, Gallo A (2010) Human BLCAP transcript: new editing events in normal and cancerous tissues. Int J Cancer 127:127–137

    Article  PubMed  CAS  Google Scholar 

  • Gallo A, Thomson E, Brindle J, O’Connell MA, Keegan LP (2002) Micro-processing events in mRNAs identified by DHPLC analysis. Nucleic Acids Res 30:3945–3953

    Article  PubMed  CAS  Google Scholar 

  • Gommans WM, Tatalias NE, Sie CP, Dupuis D, Vendetti N, Smith L, Kaushal R, Maas S (2008) Screening of human SNP database identifies recoding sites of A-to-I RNA editing. RNA 14:2074–2085

    Article  PubMed  CAS  Google Scholar 

  • Gommans WM, Mullen SP, Maas S (2009) RNA editing: a driving force for adaptive evolution? Bioessays 31:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Greenberger S, Levanon EY, Paz-Yaacov N, Barzilai A, Safran M, Osenberg S, Amariglio N, Rechavi G, Eisenberg E (2010) Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats. BMC Genomics 11:608

    Article  PubMed  Google Scholar 

  • Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349–356

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Hideyama T, Yamashita T, Nishimoto Y, Suzuki T, Kwak S (2010) Novel etiological and therapeutic strategies for neurodiseases: RNA editing enzyme abnormality in sporadic amyotrophic lateral sclerosis. J Pharmacol Sci 113:9–13

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  PubMed  CAS  Google Scholar 

  • Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Marra M et al (1996) Generation and analysis of 280, 000 human expressed sequence tags. Genome Res 6:807–828

    Article  PubMed  CAS  Google Scholar 

  • Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Article  PubMed  CAS  Google Scholar 

  • Hundley HA, Krauchuk AA, Bass BL (2008) C-elegans and H-sapiens mRNAs with edited 3′ UTRs are present on polysomes. RNA 14:2050–2060

    Article  PubMed  CAS  Google Scholar 

  • Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 285:33358–33370

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007a) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8:763–769

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007b) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  PubMed  CAS  Google Scholar 

  • Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res 14:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Kleinberger Y, Eisenberg E (2010) Large-scale analysis of structural, sequence and thermodynamic characteristics of A-to-I RNA editing sites in human Alu repeats. BMC Genomics 11:453

    Article  PubMed  Google Scholar 

  • Kwak S, Nishimoto Y, Yamashita T (2008) Newly identified ADAR-mediated A-to-I editing positions as a tool for ALS research. RNA Biol 5:193–197

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco MF, Seitz PK, Morabito MV, Emeson RB, Sanders-Bush E, Cunningham KA (2009) An innovative real-time PCR method to measure changes in RNA editing of the serotonin 2C receptor (5-HT(2C)R) in brain. J Neurosci Methods 179:247–257

    Article  PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (2000) Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39:12875–12884

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechavi G, Jantsch MF, Eisenberg E (2005a) Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Levanon K, Eisenberg E, Rechavi G, Levanon EY (2005b) Letter from the editor: Adenosine-to-inosine RNA editing in Alu repeats in the human genome. EMBO Rep 6:831–835

    Article  PubMed  CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    Article  PubMed  Google Scholar 

  • Li JB, Gao Y, Aach J, Zhang K, Kryukov GV, Xie B, Ahlford A, Yoon JK, Rosenbaum AM, Zaranek AW, LeProust E, Sunyaev SR, Church GM (2009a) Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res 19:1606–1615

    Article  PubMed  Google Scholar 

  • Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009b) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Landweber LF (2007) Hypothesis: RNA editing of microRNA target sites in humans? RNA 13:463–467

    Article  PubMed  CAS  Google Scholar 

  • Linsen SE, de Wit E, de Bruijn E, Cuppen E (2010) Small RNA expression and strain specificity in the rat. BMC Genomics 11:249

    Article  PubMed  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  PubMed  CAS  Google Scholar 

  • Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98:14687–14692

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31:227–233

    Article  PubMed  CAS  Google Scholar 

  • Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379:460–464

    Article  PubMed  CAS  Google Scholar 

  • Moller-Krull M, Zemann A, Roos C, Brosius J, Schmitz J (2008) Beyond DNA: RNA editing and steps toward Alu exonization in primates. J Mol Biol 382:601–609

    Article  PubMed  Google Scholar 

  • Morse DP, Bass BL (1999) Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A) + RNA. Proc Natl Acad Sci USA 96:6048–6053

    Article  PubMed  CAS  Google Scholar 

  • Neeman Y, Levanon EY, Jantsch MF, Eisenberg E (2006) RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12:1802–1809

    Article  PubMed  CAS  Google Scholar 

  • Nicholas A, de Magalhaes JP, Kraytsberg Y, Richfield EK, Levanon EY, Khrapko K (2010) Age-related gene-specific changes of A-to-I mRNA editing in the human brain. Mech Ageing Dev 131(6):445–447

    Article  PubMed  CAS  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto Y, Yamashita T, Hideyama T, Tsuji S, Suzuki N, Kwak S (2008) Determination of editors at the novel A-to-I editing positions. Neurosci Res 61:201–206

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Herrick-Davis K, Dilley GE, Meltzer HY, Overholser JC, Stockmeier CA, Emeson RB, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacol 24:478–491

    Article  CAS  Google Scholar 

  • Ohlson J, Ohman M (2007) A method for finding sites of selective adenosine deamination. Methods Enzymol 424:289–300

    Article  PubMed  CAS  Google Scholar 

  • Ohlson J, Enstero M, Sjoberg BM, Ohman M (2005) A method to find tissue-specific novel sites of selective adenosine deamination. Nucleic Acids Res 33:e167

    Article  PubMed  Google Scholar 

  • Ohlson J, Pedersen JS, Haussler D, Ohman M (2007) Editing modifies the GABA(A) receptor subunit alpha3. RNA 13:698–703

    Article  PubMed  CAS  Google Scholar 

  • Osenberg S, Dominissini D, Rechavi G, Eisenberg E (2009) Widespread cleavage of A-to-I hyperediting substrates. RNA 15:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Osenberg S, Paz Yaacov N, Safran M, Moshkovitz S, Shtrichman R, Sherf O, Jacob-Hirsch J, Keshet G, Amariglio N, Itskovitz-Eldor J, Rechavi G (2010) Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One 5:e11173

    Article  PubMed  Google Scholar 

  • Paul MS, Bass BL (1998) Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. Embo J 17:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, Barbash ZS, Adamsky K, Safran M, Hirschberg A, Krupsky M, Ben-Dov I, Cazacu S, Mikkelsen T, Brodie C, Eisenberg E, Rechavi G (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–1595

    Article  PubMed  CAS  Google Scholar 

  • Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G (2010) Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107:12174–12179

    Article  PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. Embo J 13:5701–5711

    PubMed  CAS  Google Scholar 

  • Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840

    Article  PubMed  CAS  Google Scholar 

  • Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  PubMed  CAS  Google Scholar 

  • Riedmann EM, Schopoff S, Hartner JC, Jantsch MF (2008) Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg BR, Hamilton CE, Mwangi MM, Dewell S, Papavasiliou FN (2011) Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat Struct Mol Biol 18:230–236

    Article  PubMed  CAS  Google Scholar 

  • Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  PubMed  CAS  Google Scholar 

  • Rula EY, Lagrange AH, Jacobs MM, Hu N, Macdonald RL, Emeson RB (2008) Developmental modulation of GABA(A) receptor function by RNA editing. J Neurosci 28:6196–6201

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T (2010) Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol 6:733–740

    Article  PubMed  CAS  Google Scholar 

  • Scadden ADJ, Smith CWJ (2001) RNAi is antagonized by A® I hyper-editing. EMBO Reports 2:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26:217–229

    Article  PubMed  CAS  Google Scholar 

  • Sie CP, Maas S (2009) Conserved recoding RNA editing of vertebrate C1q-related factor C1QL1. FEBS Lett 583:1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19

    Article  PubMed  CAS  Google Scholar 

  • Suspene R, Renard M, Henry M, Guetard D, Puyraimond-Zemmour D, Billecocq A, Bouloy M, Tangy F, Vartanian JP, Wain-Hobson S (2008) Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. Nucleic Acids Res 36:e72

    Article  PubMed  Google Scholar 

  • Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302:1725

    Article  PubMed  CAS  Google Scholar 

  • Wahlstedt H, Daniel C, Enstero M, Ohman M (2009) Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19:978–986

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Khillan J, Gadue P, Nishikura K (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952–4961

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhang Z, Blackwell K, Carmichael GG (2005) Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 15:384–391

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Lyddon R, Dracheva S (2009) TaqMan-based, real-time quantitative polymerase chain reaction method for RNA editing analysis. Anal Biochem 390:173–180

    Article  PubMed  CAS  Google Scholar 

  • XuFeng R, Boyer MJ, Shen H, Li Y, Yu H, Gao Y, Yang Q, Wang Q, Cheng T (2009) ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc Natl Acad Sci USA 106:17763–17768

    Article  PubMed  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

  • Zaranek AW, Levanon EY, Zecharia T, Clegg T, Church GM (2010) A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing. PLoS Genet 6:e1000954

    Article  PubMed  Google Scholar 

  • Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475

    Article  PubMed  CAS  Google Scholar 

  • Zilberman DE, Safran M, Paz N, Amariglio N, Simon A, Fridman E, Kleinmann N, Ramon J, Rechavi G (2009) Does RNA editing play a role in the development of urinary bladder cancer? Urol Oncol 29:21–26

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Eisenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisenberg, E. (2011). Bioinformatic Approaches for Identification of A-to-I Editing Sites. In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_147

Download citation

Publish with us

Policies and ethics