Skip to main content

Adenovirus

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 343))

Abstract

Of the 53 different human adenovirus (HAdV) serotypes belonging to species A-G, a significant number are associated with acute respiratory, gastrointestinal and ocular infections. Replication-defective HAdV-5-based vectors also continue to play a significant role in gene transfer trials and in vaccine delivery efforts in the clinic. Although significant progress has been made from studies of AdV biology, we still have an incomplete understanding of AdV’s structure as well as its multifactorial interactions with the host. Continuing efforts to improve knowledge in these areas, as discussed in this chapter, will be crucial for revealing the mechanisms of AdV pathogenesis and for allowing optimal use of AdV vectors for biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agosto MA, Ivanovic T, Nibert ML (2006) Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Proc Natl Acad Sci USA 103:16496–16501

    PubMed  CAS  Google Scholar 

  • Albinsson B, Kidd AH (1999) Adenovirus type 41 lacks an RGD alpha(v)-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res 64:125–136

    PubMed  CAS  Google Scholar 

  • Alemany R, Curiel DT (2001) CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 8:1347–1353

    PubMed  CAS  Google Scholar 

  • Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E, Mercer J, Hemmi S, Greber UF (2008) Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27:956–969

    PubMed  CAS  Google Scholar 

  • Arnberg N, Kidd AH, Edlund K, Nilsson J, Pring-Akerblom P, Wadell G (2002a) Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology 302:33–43

    PubMed  CAS  Google Scholar 

  • Arnberg N, Pring-Akerblom P, Wadell G (2002b) Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells. J Virol 76:8834–8841

    PubMed  CAS  Google Scholar 

  • Bai M, Harfe B, Freimuth P (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 67:5198–5205

    PubMed  CAS  Google Scholar 

  • Bailey CJ, Crystal RG, Leopold PL (2003) Association of adenovirus with the microtubule organizing center. J Virol 77:13275–13287

    PubMed  CAS  Google Scholar 

  • Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000) Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354

    PubMed  CAS  Google Scholar 

  • Benson SD, Bamford JK, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833

    PubMed  CAS  Google Scholar 

  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    PubMed  CAS  Google Scholar 

  • Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW (1998) The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 72:415–419

    PubMed  CAS  Google Scholar 

  • Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583

    PubMed  CAS  Google Scholar 

  • Blumenthal R, Seth P, Willingham MC, Pastan I (1986) pH-dependent lysis of liposomes by adenovirus. Biochemistry 25:2231–2237

    PubMed  CAS  Google Scholar 

  • Boulanger PA, Hennache B (1973) Adenovirus uncoating: an additional evidence for the involvement of cell surface in capsid labilization. FEBS Lett 35:15–18

    PubMed  CAS  Google Scholar 

  • Boulanger PA, Breynaert MD, Biserte G (1970) Lysosomes and the problem of adenovirus uncoating. Exp Mol Pathol 12:235–242

    PubMed  CAS  Google Scholar 

  • Brown DT, Burlingham BT (1973) Penetration of host cell membranes by adenovirus 2. J Virol 12:386–396

    PubMed  CAS  Google Scholar 

  • Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human {alpha}-defensins block papillomavirus infection. Proc Natl Acad Sci USA 103:1516–1521

    PubMed  CAS  Google Scholar 

  • Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736

    PubMed  CAS  Google Scholar 

  • Caravokyri C, Leppard KN (1995) Constitutive episomal expression of polypeptide IX (pIX) in a 293-based cell line complements the deficiency of pIX mutant adenovirus type 5. J Virol 69:6627–6633

    PubMed  CAS  Google Scholar 

  • Carey B, Staudt MK, Bonaminio D, van der Loo JC, Trapnell BC (2007) PU.1 redirects adenovirus to lysosomes in alveolar macrophages, uncoupling internalization from infection. J Immunol 178:2440–2447

    PubMed  CAS  Google Scholar 

  • Carrasco L (1994) Entry of animal viruses and macromolecules into cells. FEBS Lett 350:151–154

    PubMed  CAS  Google Scholar 

  • Cattaneo R (2004) Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens’ magnet. J Virol 78:4385–4388

    PubMed  CAS  Google Scholar 

  • Chardonnet Y, Dales S (1970) Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40:462–477

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Vayda ME, Flint SJ (1985) Interactions among the three adenovirus core proteins. J Virol 55:379–386

    PubMed  CAS  Google Scholar 

  • Chillon M, Kremer EJ (2001) Trafficking and propagation of canine adenovirus vectors lacking a known integrin-interacting motif. Hum Gene Ther 12:1815–1823

    PubMed  CAS  Google Scholar 

  • Chiu CY, Mathias P, Nemerow GR, Stewart PL (1999) Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol 73:6759–6768

    PubMed  CAS  Google Scholar 

  • Chiu CY, Wu E, Brown SL, Von Seggern DJ, Nemerow GR, Stewart PL (2001) Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol 75:5375–5380

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Ruigrok RW, Cusack S (1995) Adenovirus fiber. Curr Top Microbiol Immunol 199(Pt 1):163–200

    PubMed  CAS  Google Scholar 

  • Cohen CJ, Gaetz J, Ohman T, Bergelson JM (2001a) Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J Biol Chem 276:25392–25398

    PubMed  CAS  Google Scholar 

  • Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001b) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196

    PubMed  CAS  Google Scholar 

  • Cotten M, Weber JM (1995) The adenovirus protease is required for virus entry into host cells. Virology 213(2):494–502

    Google Scholar 

  • Cotten M, Wagner E, Zatloukal K, Phillips S, Curiel DT, Birnstiel ML (1992) High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci USA 89:6094–6098

    PubMed  CAS  Google Scholar 

  • Dales S, Chardonnet Y (1973) Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology 56:465–483

    PubMed  CAS  Google Scholar 

  • Daniels R, Rusan NM, Wadsworth P, Hebert DN (2006) SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24:955–966

    PubMed  CAS  Google Scholar 

  • Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G (2000) Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268:382–390

    PubMed  CAS  Google Scholar 

  • Ding J, McGrath WJ, Sweet RM, Mangel WF (1996) Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. Embo J 15:1778–1783

    PubMed  CAS  Google Scholar 

  • Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, Wickham TJ (2001) Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 75:11284–11291

    PubMed  CAS  Google Scholar 

  • Everitt E, Philipson L (1974) Structural proteins of adenoviruses. XI. Purification of three low molecular weight virion proteins of adenovirus type 2 and their synthesis during productive infection. Virology 62:253–269

    PubMed  CAS  Google Scholar 

  • Everitt E, Persson MJ, Wohlfart C (1988) pH-dependent exposure of endoproteolytic cleavage sites of the adenovirus 2 hexon protein. FEMS Microbiol Lett 49:229–233

    CAS  Google Scholar 

  • Everitt E, de Luca A, Blixt Y (1992) Antibody-mediated uncoating of adenovirus in vitro. FEMS Microbiol Lett 77:21–27

    PubMed  CAS  Google Scholar 

  • Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW, Schoehn G (2005) A quasi-atomic model of human adenovirus type 5 capsid. Embo J 24:1645–1654

    PubMed  CAS  Google Scholar 

  • Fabry CM, Rosa-Calatrava M, Moriscot C, Ruigrok RW, Boulanger P, Schoehn G (2009) The C-terminal domains of adenovirus serotype 5 protein IX assemble into an antiparallel structure on the facets of the capsid. J Virol 83:1135–1139

    PubMed  CAS  Google Scholar 

  • Farr GA, Zhang LG, Tattersall P (2005) Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci USA 102:17148–17153

    PubMed  CAS  Google Scholar 

  • FitzGerald DJ, Padmanabhan R, Pastan I, Willingham MC (1983) Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32:607–617

    PubMed  CAS  Google Scholar 

  • Furcinitti PS, van Oostrum J, Burnett RM (1989) Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8:3563–3570

    PubMed  CAS  Google Scholar 

  • Gaggar A, Shayakhmetov DM, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412

    PubMed  CAS  Google Scholar 

  • Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF (2008) Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 9(12):2265–2278

    PubMed  CAS  Google Scholar 

  • Goldman MJ, Wilson JM (1995) Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol 69:5951–5958

    PubMed  CAS  Google Scholar 

  • Goldman M, Su Q, Wilson JM (1996) Gradient of RGD-dependent entry of adenoviral vector in nasal and intrapulmonary epithelia: implications for gene therapy of cystic fibrosis. Gene Ther 3:811–818

    PubMed  CAS  Google Scholar 

  • Greber UF (1998) Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev Med Virol 8:213–222

    PubMed  CAS  Google Scholar 

  • Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    PubMed  CAS  Google Scholar 

  • Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease on virus entry into cells. Embo J 15:1766–1777

    PubMed  CAS  Google Scholar 

  • Gustin KE, Imperiale MJ (1998) Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J Virol 72:7860–7870

    PubMed  CAS  Google Scholar 

  • Guy J, Drabek D, Antoniou M (1995) Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol Biotechnol 3:237–248

    PubMed  CAS  Google Scholar 

  • Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic D, L-alpha-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13:5145–5153

    PubMed  CAS  Google Scholar 

  • Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML (2008) Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. Embo J 27:1289–1298

    PubMed  CAS  Google Scholar 

  • Janshoff A, Bong DT, Steinem C, Johnson JE, Ghadiri MR (1999) An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes. Biochemistry 38:5328–5336

    PubMed  CAS  Google Scholar 

  • Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL, Shayakhmetov DM (2008) Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 105:5483–5488

    PubMed  CAS  Google Scholar 

  • Laver WG, Wrigley NG, Pereira HG (1969) Removal of pentons from particles of adenovirus type 2. Virology 39:599–604

    PubMed  CAS  Google Scholar 

  • Law LK, Davidson BL (2005) What does it take to bind CAR? Mol Ther 12:599–609

    PubMed  CAS  Google Scholar 

  • Lawrence WC, Ginsberg HS (1967) Intracellular uncoating of type 5 adenovirus deoxyribonucleic acid. J Virol 1:851–867

    PubMed  CAS  Google Scholar 

  • Legrand V, Spehner D, Schlesinger Y, Settelen N, Pavirani A, Mehtali M (1999) Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber. J Virol 73:907–919

    PubMed  CAS  Google Scholar 

  • Lehmberg E, Traina JA, Chakel JA, Chang RJ, Parkman M, McCaman MT, Murakami PK, Lahidji V, Nelson JW, Hancock WS, Nestaas E, Pungor E Jr (1999) Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome. J Chromatogr B Biomed Sci Appl 732:411–423

    PubMed  CAS  Google Scholar 

  • Leopold PL, Kreitzer G, Miyazawa N, Rempel S, Pfister KK, Rodriguez-Boulan E, Crystal RG (2000) Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 11:151–165

    PubMed  CAS  Google Scholar 

  • Li E, Stupack D, Bokoch GM, Nemerow GR (1998a) Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72:8806–8812

    PubMed  CAS  Google Scholar 

  • Li E, Stupack D, Klemke R, Cheresh DA, Nemerow GR (1998b) Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 72:2055–2061

    PubMed  CAS  Google Scholar 

  • Li E, Stupack DG, Brown SL, Klemke R, Schlaepfer DD, Nemerow GR (2000) Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem 275:14729–14735

    PubMed  CAS  Google Scholar 

  • Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR (2001) Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 75:5405–5409

    PubMed  CAS  Google Scholar 

  • Lisewski U, Shi Y, Wrackmeyer U, Fischer R, Chen C, Schirdewan A, Juttner R, Rathjen F, Poller W, Radke MH, Gotthardt M (2008) The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J Exp Med 205:2369–2379

    PubMed  CAS  Google Scholar 

  • Lonberg-Holm K, Philipson L (1969) Early events of virus-cell interaction in an adenovirus system. J Virol 4:323–338

    PubMed  CAS  Google Scholar 

  • Lortat-Jacob H, Chouin E, Cusack S, van Raaij MJ (2001) Kinetic analysis of adenovirus fiber binding to its receptor reveals an avidity mechanism for trimeric receptor-ligand interactions. J Biol Chem 276:9009–9015

    PubMed  CAS  Google Scholar 

  • Lukashok SA, Horwitz MS (1998) New perspectives in adenoviruses. Curr Clin Top Infect Dis 18:286–305

    PubMed  CAS  Google Scholar 

  • Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20:289–300

    PubMed  CAS  Google Scholar 

  • Mani B, Baltzer C, Valle N, Almendral JM, Kempf C, Ros C (2006) Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol 80:1015–1024

    PubMed  CAS  Google Scholar 

  • Marsh MP, Campos SK, Baker ML, Chen CY, Chiu W, Barry MA (2006) Cryoelectron microscopy of protein IX-modified adenoviruses suggests a new position for the C terminus of protein IX. J Virol 80:11881–11886

    PubMed  CAS  Google Scholar 

  • Martin-Fernandez M, Longshaw SV, Kirby I, Santis G, Tobin MJ, Clarke DT, Jones GR (2004) Adenovirus type-5 entry and disassembly followed in living cells by FRET, fluorescence anisotropy, and FLIM. Biophys J 87:1316–1327

    PubMed  CAS  Google Scholar 

  • Mathias P, Wickham T, Moore M, Nemerow G (1994) Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68:6811–6814

    PubMed  CAS  Google Scholar 

  • McGrath WJ, Abola AP, Toledo DL, Brown MT, Mangel WF (1996) Characterization of human adenovirus proteinase activity in disrupted virus particles. Virology 217:131–138

    PubMed  CAS  Google Scholar 

  • McGrath WJ, Ding J, Didwania A, Sweet RM, Mangel WF (2003) Crystallographic structure at 1.6-A resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim Biophys Acta 1648:1–11

    PubMed  CAS  Google Scholar 

  • Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158:1119–1131

    PubMed  CAS  Google Scholar 

  • Meunier-Durmort C, Picart R, Ragot T, Perricaudet M, Hainque B, Forest C (1997) Mechanism of adenovirus improvement of cationic liposome-mediated gene transfer. Biochim Biophys Acta 1330:8–16

    PubMed  CAS  Google Scholar 

  • Miles BD, Luftig RB, Weatherbee JA, Weihing RR, Weber J (1980) Quantitation of the interaction between adenovirus types 2 and 5 and microtubules inside infected cells. Virology 105:265–269

    PubMed  CAS  Google Scholar 

  • Miyazawa N, Crystal RG, Leopold PL (2001) Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 75:1387–1400

    PubMed  CAS  Google Scholar 

  • Morgan C, Rosenkranz HS, Mednis B (1969) Structure and development of viruses as observed in the electron microscope. X. Entry and uncoating of adenovirus. J Virol 4:777–796

    PubMed  CAS  Google Scholar 

  • Nakano MY, Greber UF (2000) Quantitative microscopy of fluorescent adenovirus entry. J Struct Biol 129:57–68

    PubMed  CAS  Google Scholar 

  • Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF (2000) The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74:7085–7095

    PubMed  CAS  Google Scholar 

  • National Institutes of Health Recombinant DNA Advisory Committee (2002) Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 13:3–13

    Google Scholar 

  • Nicklin SA, Wu E, Nemerow GR, Baker AH (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12:384–393

    PubMed  CAS  Google Scholar 

  • Otero MJ, Carrasco L (1987) Proteins are cointernalized with virion particles during early infection. Virology 160:75–80

    PubMed  CAS  Google Scholar 

  • Pache L, Venkataraman S, Nemerow GR, Reddy VS (2008) Conservation of fiber structure and CD46 usage by subgroup B2 adenoviruses. Virology 375:573–579

    PubMed  CAS  Google Scholar 

  • Perez L, Carrasco L (1994) Involvement of the vacuolar H(+)-ATPase in animal virus entry. J Gen Virol 75(Pt 10):2595–2606

    PubMed  CAS  Google Scholar 

  • Persson BD, Reiter DM, Marttila M, Mei YF, Casasnovas JM, Arnberg N, Stehle T (2007) Adenovirus type 11 binding alters the conformation of its receptor CD46. Nat Struct Mol Biol 14:164–166

    PubMed  CAS  Google Scholar 

  • Philipson L (1967) Attachment and eclipse of adenovirus. J Virol 1:868–875

    PubMed  CAS  Google Scholar 

  • Philipson L, Lonberg-Holm K, Pettersson U (1968) Virus-receptor interaction in an adenovirus system. J Virol 2:1064–1075

    PubMed  CAS  Google Scholar 

  • Philpott NJ, Nociari M, Elkon KB, Falck-Pedersen E (2004) Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci USA 101:6200–6205

    PubMed  CAS  Google Scholar 

  • Prage L, Pettersson U, Philipson L (1968) Internal basic proteins in adenovirus. Virology 36:508–511

    PubMed  CAS  Google Scholar 

  • Prage L, Pettersson U, Hoglund S, Lonberg-Holm K, Philipson L (1970) Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology 42:341–358

    PubMed  CAS  Google Scholar 

  • Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J (2005) Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. J Virol 79:12332–12341

    PubMed  CAS  Google Scholar 

  • Raman S, Hsu TH, Ashley SL, Spindler KR (2009) Integrin and heparan sulfate usage as receptors for mouse adenovirus type 1. J Virol 83:2831–2838

    PubMed  CAS  Google Scholar 

  • Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    PubMed  CAS  Google Scholar 

  • Rexroad J, Evans RK, Middaugh CR (2006) Effect of pH and ionic strength on the physical stability of adenovirus type 5. J Pharm sci 95:237–247

    PubMed  CAS  Google Scholar 

  • Rodriguez E, Everitt E (1996) Adenovirus uncoating and nuclear establishment are not affected by weak base amines. J Virol 70:3470–3477

    PubMed  CAS  Google Scholar 

  • Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915

    PubMed  CAS  Google Scholar 

  • Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571

    PubMed  CAS  Google Scholar 

  • Roy S, Clawson DS, Calcedo R, Lebherz C, Sanmiguel J, Wu D, Wilson JM (2005) Use of chimeric adenoviral vectors to assess capsid neutralization determinants. Virology 333:207–214

    PubMed  CAS  Google Scholar 

  • Russell WC, Valentine RC, Pereira HG (1967) The effect of heat on the anatomy of the adenovirus. J Gen Virol 1:509–522

    PubMed  CAS  Google Scholar 

  • Rux JJ, Kuser PR, Burnett RM (2003) Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77:9553–9566

    PubMed  CAS  Google Scholar 

  • Saban SD, Nepomuceno RR, Gritton LD, Nemerow GR, Stewart PL (2005) CryoEM structure at 9A resolution of an adenovirus vector targeted to hematopoietic cells. J Mol Biol 349:526–537

    PubMed  CAS  Google Scholar 

  • Saban SD, Silvestry M, Nemerow GR, Stewart PL (2006) Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80:12049–12059

    PubMed  CAS  Google Scholar 

  • San Martin C, Glasgow JN, Borovjagin A, Beatty MS, Kashentseva EA, Curiel DT, Marabini R, Dmitriev IP (2008) Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid. J Mol Biol 383:923–934

    PubMed  CAS  Google Scholar 

  • Segerman A, Atkinson JP, Marttila M, Dennerquist V, Wadell G, Arnberg N (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77:9183–9191

    PubMed  CAS  Google Scholar 

  • Seki T, Dmitriev I, Kashentseva E, Takayama K, Rots M, Suzuki K, Curiel DT (2002) Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol 76:1100–1108

    PubMed  CAS  Google Scholar 

  • Seth P (1994) Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 68:1204–1206

    PubMed  CAS  Google Scholar 

  • Seth P, Fitzgerald D, Ginsberg H, Willingham M, Pastan I (1984a) Evidence that the penton base of adenovirus is involved in potentiation of toxicity of Pseudomonas exotoxin conjugated to epidermal growth factor. Mol Cell Biol 4:1528–1533

    PubMed  CAS  Google Scholar 

  • Seth P, Fitzgerald DJ, Willingham MC, Pastan I (1984b) Role of a low-pH environment in adenovirus enhancement of the toxicity of a Pseudomonas exotoxin-epidermal growth factor conjugate. J Virol 51:650–655

    PubMed  CAS  Google Scholar 

  • Seth P, Willingham MC, Pastan I (1984c) Adenovirus-dependent release of 51Cr from KB cells at an acidic pH. J Biol Chem 259:14350–14353

    PubMed  CAS  Google Scholar 

  • Seth P, Pastan I, Willingham MC (1985a) Adenovirus-dependent increase in cell membrane permeability. J Biol Chem 260:9598–9602

    PubMed  CAS  Google Scholar 

  • Seth P, Willingham MC, Pastan I (1985b) Binding of adenovirus and its external proteins to Triton X-114 Dependence on pH. J Biol Chem 260:14431–14434

    PubMed  CAS  Google Scholar 

  • Shayakhmetov DM, Lieber A (2000) Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 74:10274–10286

    PubMed  CAS  Google Scholar 

  • Shayakhmetov DM, Li ZY, Ternovoi V, Gaggar A, Gharwan H, Lieber A (2003) The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 77:3712–3723

    PubMed  CAS  Google Scholar 

  • Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–7491

    PubMed  CAS  Google Scholar 

  • Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K, Beerli RR, Vogt L, Ruedl C, Bachmann MF, Greber UF, Hemmi S (2004) The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 78:4454–4462

    PubMed  CAS  Google Scholar 

  • Smith JG, Nemerow GR (2008) Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3:11–19

    PubMed  CAS  Google Scholar 

  • Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M, Kaleko M, Stevenson SC (2002) In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 5:770–779

    PubMed  CAS  Google Scholar 

  • Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, Sherer AD, Markovits JE, Lyons RM, Kaleko M, Stevenson SC (2003) Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14:1595–1604

    PubMed  CAS  Google Scholar 

  • Smith JG, Cassany A, Gerace L, Ralston R, Nemerow GR (2008) Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol 82:6492–6500

    PubMed  CAS  Google Scholar 

  • Stewart PL, Nemerow GR (2007) Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 15:500–507

    PubMed  CAS  Google Scholar 

  • Stewart PL, Fuller SD, Burnett RM (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. Embo J 12:2589–2599

    PubMed  CAS  Google Scholar 

  • Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P, Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. Embo J 16:1189–1198

    PubMed  CAS  Google Scholar 

  • Stonebraker JR, Wagner D, Lefensty RW, Burns K, Gendler SJ, Bergelson JM, Boucher RC, O’Neal WK, Pickles RJ (2004) Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 78:13755–13768

    PubMed  CAS  Google Scholar 

  • Strunze S, Trotman LC, Boucke K, Greber UF (2005) Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 16:2999–3009

    PubMed  CAS  Google Scholar 

  • Sumida SM, Truitt DM, Lemckert AA, Vogels R, Custers JH, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG, Jackson SS, Gorgone DA, Lifton MA, Essex M, Walker BD, Goudsmit J, Havenga MJ, Barouch DH (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 174:7179–7185

    PubMed  CAS  Google Scholar 

  • Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144:657–672

    PubMed  CAS  Google Scholar 

  • Sussenbach JS (1967) Early events in the infection process of adenovirus type 5 in HeLa cells. Virology 33:567–574

    PubMed  CAS  Google Scholar 

  • Svensson U (1985) Role of vesicles during adenovirus 2 internalization into HeLa cells. J Virol 55:442–449

    PubMed  CAS  Google Scholar 

  • Svensson U, Persson R (1984) Entry of adenovirus 2 into HeLa cells. J Virol 51:687–694

    PubMed  CAS  Google Scholar 

  • Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94:3352–3356

    PubMed  CAS  Google Scholar 

  • Toogood CI, Crompton J, Hay RT (1992) Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73(Pt 6):1429–1435

    PubMed  CAS  Google Scholar 

  • van Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56:439–448

    PubMed  Google Scholar 

  • van Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–938

    PubMed  Google Scholar 

  • Varga MJ, Weibull C, Everitt E (1991) Infectious entry pathway of adenovirus type 2. J Virol 65:6061–6070

    PubMed  CAS  Google Scholar 

  • Varghese R, Mikyas Y, Stewart PL, Ralston R (2004) Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 78:12320–12332

    PubMed  CAS  Google Scholar 

  • Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR (1999) A helper-independent adenovirus vector with E1, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 73:1601–1608

    Google Scholar 

  • Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, Pink R, Buckley SM, Greig JA, Denby L, Custers J, Morita T, Francischetti IM, Monteiro RQ, Barouch DH, van Rooijen N, Napoli C, Havenga MJ, Nicklin SA, Baker AH (2008) Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132:397–409

    PubMed  CAS  Google Scholar 

  • Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274:10219–10226

    PubMed  CAS  Google Scholar 

  • Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110:789–799

    PubMed  CAS  Google Scholar 

  • Wang K, Huang S, Kapoor-Munshi A, Nemerow G (1998) Adenovirus internalization and infection require dynamin. J Virol 72:3455–3458

    PubMed  CAS  Google Scholar 

  • Wang K, Guan T, Cheresh DA, Nemerow GR (2000) Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin beta5. J Virol 74:2731–2739

    PubMed  CAS  Google Scholar 

  • Wang H, Liaw YC, Stone D, Kalyuzhniy O, Amiraslanov I, Tuve S, Verlinde CL, Shayakhmetov D, Stehle T, Roffler S, Lieber A (2007) Identification of CD46 binding sites within the adenovirus serotype 35 fiber knob. J Virol 81:12785–12792

    PubMed  CAS  Google Scholar 

  • Warren JC, Cassimeris L (2007) The contributions of microtubule stability and dynamic instability to adenovirus nuclear localization efficiency. Cell Motil Cytoskeleton 64:675–689

    PubMed  CAS  Google Scholar 

  • Warren JC, Rutkowski A, Cassimeris L (2006) Infection with replication-deficient adenovirus induces changes in the dynamic instability of host cell microtubules. Mol Biol Cell 17:3557–3568

    PubMed  CAS  Google Scholar 

  • Weber JM (1995) Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol Immunol 199(Pt 1):227–235

    PubMed  CAS  Google Scholar 

  • Webster A, Russell WC, Kemp GD (1989) Characterization of the adenovirus proteinase: development and use of a specific peptide assay. J Gen Virol 70(Pt 12):3215–3223

    PubMed  CAS  Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72:97–104

    PubMed  CAS  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    PubMed  CAS  Google Scholar 

  • Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR (1994) Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 127:257–264

    PubMed  CAS  Google Scholar 

  • Wiethoff CM, Wodrich H, Gerace L, Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79:1992–2000

    PubMed  CAS  Google Scholar 

  • Wodrich H, Guan T, Cingolani G, Von Seggern D, Nemerow G, Gerace L (2003) Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. Embo J 22:6245–6255

    PubMed  CAS  Google Scholar 

  • Wohlfart C (1988) Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol 62:2321–2328

    PubMed  CAS  Google Scholar 

  • Wohlfart CE, Svensson UK, Everitt E (1985) Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera. J Virol 56:896–903

    PubMed  CAS  Google Scholar 

  • Wu E, Nemerow GR (2004) Virus yoga: the role of flexibility in virus host cell recognition. Trends Microbiol 12:162–169

    PubMed  CAS  Google Scholar 

  • Wu E, Pache L, Von Seggern DJ, Mullen TM, Mikyas Y, Stewart PL, Nemerow GR (2003) Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77:7225–7235

    PubMed  CAS  Google Scholar 

  • Wu E, Trauger SA, Pache L, Mullen TM, von Seggern DJ, Siuzdak G, Nemerow GR (2004) Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78:3897–3905

    PubMed  CAS  Google Scholar 

  • Xie J, Chiang L, Contreras J, Wu K, Garner JA, Medina-Kauwe L, Hamm-Alvarez SF (2006) Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 80:11833–11851

    PubMed  CAS  Google Scholar 

  • Yoshimura A (1985) Adenovirus-induced leakage of co-endocytosed macromolecules into the cytosol. Cell Struct Funct 10:391–404

    PubMed  CAS  Google Scholar 

  • Zinn KR, Szalai AJ, Stargel A, Krasnykh V, Chaudhuri TR (2004) Bioluminescence imaging reveals a significant role for complement in liver transduction following intravenous delivery of adenovirus. Gene Ther 11:1482–1486

    PubMed  CAS  Google Scholar 

  • Zubieta C, Schoehn G, Chroboczek J, Cusack S (2005) The structure of the human adenovirus 2 penton. Mol Cell 17:121–135

    PubMed  CAS  Google Scholar 

  • Zubieta C, Blanchoin L, Cusack S (2006) Structural and biochemical characterization of a human adenovirus 2/12 penton base chimera. FEBS J 273:4336–4345

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work is manuscript No. 19961 at The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen R. Nemerow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, J.G., Wiethoff, C.M., Stewart, P.L., Nemerow, G.R. (2010). Adenovirus. In: Johnson, J. (eds) Cell Entry by Non-Enveloped Viruses. Current Topics in Microbiology and Immunology, vol 343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_16

Download citation

Publish with us

Policies and ethics