Skip to main content

Orexin and Alzheimer’s Disease

  • Chapter
  • First Online:
Book cover Behavioral Neuroscience of Orexin/Hypocretin

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 33))

Abstract

Alzheimer’s disease (AD) is the most frequent age-related dementia. It prevalently causes cognitive decline, although it is frequently associated with secondary behavioral disturbances. AD neurodegeneration characteristically produces a remarkable destruction of the sleep–wake cycle, with diurnal napping, nighttime arousals, sleep fragmentation, and REM sleep impairment. It was recently hypothesized that the orexinergic system was involved in AD pathology. Accordingly, recent papers showed the association between orexinergic neurotransmission dysfunction, sleep impairment, and cognitive decline in AD. Orexin is a hypothalamic neurotransmitter which physiologically produces wakefulness and reduces REM sleep and may alter the sleep–wake cycle in AD patients. Furthermore, the orexinergic system seems to interact with CSF AD biomarkers, such as beta-amyloid and tau proteins. Beta-amyloid accumulation is the main hallmark of AD pathology, while tau proteins mark brain neuronal injury due to AD pathology. Investigations so far suggest that orexinergic signaling overexpression alters the sleep–wake cycle and secondarily induces beta-amyloid accumulation and tau-mediated neurodegeneration. Therefore, considering that orexinergic system dysregulation impairs sleep–wake rhythms and may influence AD pathology, it is hypothesized that orexin receptor antagonists are likely potential preventive/therapeutic options in AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alzheimer (1907) Über eine eigenartige Erkan kung der Hirnrinde. Psych Genchtl Med 64:146–148

    Google Scholar 

  2. Blessed G, Tomilson B-E, Roth M (1968) The association between quantitative measures of dementia, and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114:797–811

    CAS  PubMed  Google Scholar 

  3. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    CAS  PubMed  Google Scholar 

  4. Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, Scheltens P, Carrillo MC, Thies W, Bednar MM, Black RS, Brashear HR, Grundman M, Siemers ER, Feldman HH, Schindler RJ (2011) Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7(4):367–385. doi:10.1016/j.jalz.2011.05.2351 (Review)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mander BA, Winer JR, Jagust WJ, Walker MP (2016) Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer's disease? Trends Neurosci 39(8):552–566

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liguori C, Romigi A, Nuccetelli M, Zannino S, Sancesario G, Martorana A, Albanese M, Mercuri NB, Izzi F, Bernardini S, Nitti A, Sancesario GM, Sica F, Marciani MG, Placidi F (2014) Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol 71(12):1498–1505. doi:10.1001/jamaneurol.2014.2510

    Article  PubMed  Google Scholar 

  7. Liguori C, Placidi F, Albanese M, Nuccetelli M, Izzi F, Marciani MG, Mercuri NB, Bernardini S, Romigi A (2014) CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis? J Sleep Res 23(4):420–424

    PubMed  Google Scholar 

  8. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377. doi:10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  9. Cricco M, Simonsick EM, Foley DJ (2001) The impact of insomnia on cognitive functioning in older adults. J Am Geriatr Soc 49(9):1185–1189

    CAS  PubMed  Google Scholar 

  10. Nebes RD, Buysse DJ, Halligan EM, Houck PR, Monk TH (2009) Self-reported sleep quality predicts poor cognitive performance in healthy older adults. J Gerontol B Psychol Sci Soc Sci 64(2):180–187. doi:10.1093/geronb/gbn037 (Epub 9 Feb 2009)

    Article  PubMed  Google Scholar 

  11. Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA (2014) Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71(8):971–977

    PubMed  Google Scholar 

  12. Peter-Derex L, Magnin M, Bastuji H (2015) Heterogeneity of arousals in human sleep: a stereo-electroencephalographic study. Neuroimage 123:229–244. doi:10.1016/j.neuroimage.2015.07.057 (Epub 26 July 2015)

    Article  PubMed  Google Scholar 

  13. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H, Nedergaard M, Deane R (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McCurry SM, Logsdon RG, Vitiello MV, Teri L (2004) Treatment of sleep and nighttime disturbances in Alzheimer’s disease: a behavior management approach. Sleep Med 5(4):373–377

    PubMed  Google Scholar 

  15. Moran M, Lynch CA, Walsh C, Coen R, Coakley D, Lawlor BA (2005) Sleep disturbance in mild to moderate Alzheimer’s disease. Sleep Med 6(4):347–352 (Epub 31 Mar 2005)

    PubMed  Google Scholar 

  16. Vitiello MV, Prinz PN (1989) Alzheimer’s disease. Sleep and sleep/wake patterns. Clin Geriatr Med 5(2):289–299

    CAS  PubMed  Google Scholar 

  17. Osorio RS, Gumb T, Pirraglia E, Varga AW, Lu SE, Lim J, Wohlleber ME, Ducca EL, Koushyk V, Glodzik L, Mosconi L, Ayappa I, Rapoport DM, de Leon MJ (2015) Alzheimer’s disease neuroimaging initiative. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84(19):1964–1971

    PubMed  PubMed Central  Google Scholar 

  18. Troussière AC, Charley CM, Salleron J, Richard F, Delbeuck X, Derambure P, Pasquier F, Bombois S (2014) Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 85(12):1405–1408

    PubMed  Google Scholar 

  19. Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13(5):325–335. doi:10.1038/nrn3208 (Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    CAS  PubMed  Google Scholar 

  21. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69(3):143–179

    CAS  PubMed  Google Scholar 

  22. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327

    PubMed  PubMed Central  Google Scholar 

  23. Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27(52):14239–14247

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaeger LB, Farr SA, Banks WA, Morley JE (2002) Effects of orexin-A on memory processing. Peptides 23(9):1683–1688

    CAS  PubMed  Google Scholar 

  25. Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA (2015) Promotion of wakefulness and energy expenditure by orexin-A in the ventrolateral preoptic area. Sleep 38(9):1361–1370

    PubMed  PubMed Central  Google Scholar 

  26. Stanley EM, Fadel JR (2011) Aging-related alterations in orexin/hypocretin modulation of septo-hippocampal amino acid neurotransmission. Neuroscience 195:70–79

    CAS  PubMed  Google Scholar 

  27. Scheurink AJ, Boersma GJ, Nergårdh R, Södersten P (2010) Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav 100(5):490–495

    CAS  PubMed  Google Scholar 

  28. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 109(42):E2895–E2903

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Uslaner JM, Tye SJ, Eddins DM, et al. (2013) Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition. Sci Transl Med 5(179):179ra44

    PubMed  Google Scholar 

  30. Dietrich H, Jenck F (2010) Intact learning and memory in rats following treatment with the dual orexin receptor antagonist almorexant. Psychopharmacology (Berl) 212(2):145–154

    CAS  PubMed  Google Scholar 

  31. Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, Kaisers UX, Thiery J, Hegerl U, Schönknecht P (2013) Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer’s disease. PLoS One 8(5):e63136. doi:10.1371/journal.pone.0063136 (Print 2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S (2016) From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid. Sci Rep 6:25162

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McGregor R, Wu MF, Barber G, Ramanathan L, Siegel JM (2011) Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J Neurosci 31(43):15455–15467

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boddum K, Hansen MH, Jennum PJ, Kornum BR (2016) Cerebrospinal fluid hypocretin-1 (orexin-A) level fluctuates with season and correlates with day length. PLoS One 11(3):e0151288

    PubMed  PubMed Central  Google Scholar 

  35. Hunt NJ, Rodriguez ML, Waters KA, Machaalani R (2015) Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiol Aging 36(1):292–300

    CAS  PubMed  Google Scholar 

  36. Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M, Yesavage J, Di Monte D, Dohi K, Melberg A, Lammers GJ, Nishida Y, Roelandse FW, Hungs M, Mignot E, Nishino S (2001) CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57(12):2253–2258

    CAS  PubMed  Google Scholar 

  37. Baumann CR, Hersberger M, Bassetti CL (2006) Hypocretin-1 (orexin A) levels are normal in Huntington’s disease. J Neurol 253(9):1232–1233 (Epub 5 Apr 2006, No abstract available)

    PubMed  Google Scholar 

  38. Dauvilliers YA, Lehmann S, Jaussent I, Gabelle A (2014) Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy. Front Aging Neurosci 6:119. doi:10.3389/fnagi.2014.00119 (eCollection 2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deuschle M, Schilling C, Leweke FM, Enning F, Pollmächer T, Esselmann H, Wiltfang J, Frölich L, Heuser I (2014) Hypocretin in cerebrospinal fluid is positively correlated with Tau and pTau. Neurosci Lett 561:41–45. doi:10.1016/j.neulet.2013.12.036 (Epub 25 Dec 2013)

    Article  CAS  PubMed  Google Scholar 

  40. Liguori C, Nuccetelli M, Izzi F, Sancesario G, Romigi A, Martorana A, Amoros C, Bernardini S, Marciani MG, Mercuri NB, Placidi F (2016) Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s disease. Neurol Aging 40:120–126

    CAS  Google Scholar 

  41. Fronczek R, van Geest S, Frölich M, Overeem S, Roelandse FW, Lammers GJ, Swaab DF (2012) Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33(8):1642–1650. doi:10.1016/j.neurobiolaging.2011.03.014 (Epub 5 May 2011)

    Article  CAS  PubMed  Google Scholar 

  42. Gerashchenko D, Murillo-Rodriguez E, Lin L, Xu M, Hallett L, Nishino S, Mignot E, Shiromani PJ (2003) Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol 184(2):1010–1016

    CAS  PubMed  Google Scholar 

  43. Zhu Y, Fenik P, Zhan G, Somach R, Veasey RX (2016) Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. Sleep 39(8):1601–1611. pii: sp-00094-16 (Epub ahead of print)

    Google Scholar 

  44. Jones BE (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 145:157–169

    CAS  PubMed  Google Scholar 

  45. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Videnovic A, Zee PC (2015) Consequences of circadian disruption on neurologic health. Sleep Med Clin 10(4):469–480

    PubMed  PubMed Central  Google Scholar 

  47. Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, Satlin A (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58(1):29–39

    CAS  PubMed  Google Scholar 

  48. Wu YH, Feenstra MG, Zhou JN, Liu RY, Toranõ JS, Van Kan HJ, Fischer DF, Ravid R, Swaab DF (2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 88(12):5898–5906

    CAS  PubMed  Google Scholar 

  49. Wang JL, Lim AS, Chiang WY, et al. (2015) Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol 78(2):317–322

    PubMed  PubMed Central  Google Scholar 

  50. Friedman LF, Zeitzer JM, Lin L, Hoff D, Mignot E, Peskind ER, Yesavage JA (2007) Alzheimer disease, increased wake fragmentation found in those with lower hypocretin-1. Neurology 68(10):793–794 (No abstract available)

    CAS  PubMed  Google Scholar 

  51. Arrigoni E, Mochizuki T, Scammell TE (2010) Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 198(3):223–235

    CAS  PubMed  Google Scholar 

  52. Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Beaulieu-Bonneau S, Hudon C (2009) Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr 21(4):654–666

    PubMed  Google Scholar 

  54. Bonanni E, Maestri M, Tognoni G et al (2005) Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res 14(3):311–317

    PubMed  Google Scholar 

  55. Montplaisir J, Petit D, Lorrain D et al (1995) Sleep in Alzheimer’s disease: further considerations on the role of brainstem and forebrain cholinergic populations in sleep-wake mechanisms. Sleep 18(3):145–148

    CAS  PubMed  Google Scholar 

  56. Maestri M, Carnicelli L, Tognoni G, Di Coscio E, Giorgi FS, Volpi L, Economou NT, Ktonas P, Ferri R, Bonuccelli U, Bonanni E (2015) Non-rapid eye movement sleep instability in mild cognitive impairment: a pilot study. Sleep Med 16(9):1139–1145

    PubMed  Google Scholar 

  57. Naismith SL, Hickie IB, Terpening Z, Rajaratnam SM, Hodges JR, Bolitho S, Rogers NL, Lewis SJ (2014) Circadian misalignment and sleep disruption in mild cognitive impairment. J Alzheimers Dis 38(4):857–866

    CAS  PubMed  Google Scholar 

  58. Ferrazzoli D, Sica F, Sancesario G (2013) Sundowning syndrome: a possible marker of frailty in Alzheimer's disease? CNS Neurol Disord Drug Targets 12(4):525–528

    CAS  PubMed  Google Scholar 

  59. Lin L, Huang QX, Yang SS, et al. (2013) Melatonin in Alzheimer’s disease. Int J Mol Sci 14(7):14575–14593

    PubMed  PubMed Central  Google Scholar 

  60. Grothe M, Zaborszky L, Atienza M et al (2010) Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex 20(7):1685–1695

    PubMed  Google Scholar 

  61. Kundermann B, Thum A, Rocamora R, Haag A, Krieg JC, Hemmeter U (2011) Comparison of polysomnographic variables and their relationship to cognitive impairment in patients with Alzheimer’s disease and frontotemporal dementia. J Psychiatr Res 45(12):1585–1592

    PubMed  Google Scholar 

  62. Mallick BN, Joseph MM (1997) Role of cholinergic inputs to the medial preoptic area in regulation of sleep-wakefulness and body temperature in freely moving rats. Brain Res 750:311–317

    CAS  PubMed  Google Scholar 

  63. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280

    CAS  PubMed  Google Scholar 

  64. Power AE (2004) Slow-wave sleep, acetylcholine, and memory consolidation. Proc Natl Acad Sci U S A 101:1795–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Eggermann E, Bayer L, Serafin M et al (2003) The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci 23(5):1557–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pedrazzoli M, D’Almeida V, Martins PJ et al (2004) Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation. Brain Res 995(1):1–6

    CAS  PubMed  Google Scholar 

  67. Blennow K et al. (2016) Cerebrospinal fluid biomarkers in Alzheimer's and Parkinson's diseases-from pathophysiology to clinical practice. Mov Disord 31(6):836–847

    PubMed  Google Scholar 

  68. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman DM (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326(5955):1005–1007. doi:10.1126/science.1180962 (Epub 24 Sep 2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roh JH, Huang Y, Bero AW et al (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4(150):150ra122

    PubMed  PubMed Central  Google Scholar 

  70. Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Morris JC, Holtzman DM (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70(5):587–593

    PubMed  PubMed Central  Google Scholar 

  71. Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE, Cirrito JR, Heda A, Snider BJ, Li M, Yanagisawa M, de Lecea L, Holtzman DM (2014) Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med 211(13):2487–2496. doi:10.1084/jem.20141788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Slats D, Claassen JA, Lammers GJ, Melis RJ, Verbeek MM, Overeem S (2012) Association between hypocretin-1 and amyloid-β42 cerebrospinal fluid levels in Alzheimer’s disease and healthy controls. Curr Alzheimer Res 9(10):1119–1125

    CAS  PubMed  Google Scholar 

  73. Wennström M, Londos E, Minthon L, Nielsen HM (2012) Altered CSF orexin and α-synuclein levels in dementia patients. J Alzheimers Dis 29(1):125–132. doi:10.3233/JAD-2012-111655

    Article  CAS  PubMed  Google Scholar 

  74. Osorio RS, Ducca EL, Wohlleber ME, Tanzi EB, Gumb T, Twumasi A, Tweardy S, Lewis C, Fischer E, Koushyk V, Cuartero-Toledo M, Sheikh MO, Pirraglia E, Zetterberg H, Blennow K, Lu SE, Mosconi L, Glodzik L, Schuetz S, Varga AW, Ayappa I, Rapoport DM, de Leon MJ (2016) Orexin-A is associated with increases in cerebrospinal fluid phosphorylated-tau in cognitively normal elderly subjects. Sleep 39(6):1253–1260

    PubMed  PubMed Central  Google Scholar 

  75. Liguori C, Placidi F, Izzi F, et al. (2016) Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time. Sleep Breath 20(1):277–283 discussion 283

    PubMed  Google Scholar 

  76. Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110:1129–1134

    CAS  PubMed  Google Scholar 

  77. Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613

    CAS  PubMed  Google Scholar 

  79. Kester MI, van der Vlies AE, Blankenstein MA et al (2009) CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 73(17):1353–1358

    CAS  PubMed  Google Scholar 

  80. Yamada K, Holth JK, Liao F et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. doi:10.1084/jem.20131685 (Epub 17 Feb 2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Meco et al (2014) NBA

    Google Scholar 

  82. Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E (2015) Orexin receptors exert a neuroprotective effect in Alzheimer’s disease (AD) via heterodimerization with GPR103. Sci Rep 5:12584

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Liguori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Liguori, C. (2016). Orexin and Alzheimer’s Disease. In: Lawrence, A.J., de Lecea, L. (eds) Behavioral Neuroscience of Orexin/Hypocretin. Current Topics in Behavioral Neurosciences, vol 33. Springer, Cham. https://doi.org/10.1007/7854_2016_50

Download citation

Publish with us

Policies and ethics