Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 37))

Abstract

Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23:1040–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberini CM (2011) The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci 5:12

    Google Scholar 

  • Anokhin KV, Tiunova AA, Rose SP (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15:1759–1765

    Article  PubMed  Google Scholar 

  • Arguello AA, Ye X, Bozdagi O, Pollonini G, Tronel S, Bambah-Mukku D, et al (2013) CCAAT enhancer binding protein delta plays an essential role in memory consolidation and reconsolidation. J Neurosci 33:3646–3658

    Google Scholar 

  • Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226:631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak S, Liu F, Hamida S Ben, Yowell Q V, Neasta J, Kharazia V, et al (2013) Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci 16:1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baratti CM, Boccia MM, Blake MG, Acosta GB (2008) Reactivated memory of an inhibitory avoidance response in mice is sensitive to a nitric oxide synthase inhibitor. Neurobiol Learn Mem 89:426–440

    Article  CAS  PubMed  Google Scholar 

  • Barnes P, Kirtley A, Thomas KL (2012) Quantitatively and qualitatively different cellular processes are engaged in CA1 during the consolidation and reconsolidation of contextual fear memory. Hippocampus 22:149–171

    Article  PubMed  Google Scholar 

  • Bergstrom HC, McDonald CG, Dey S, Fernandez GM, Johnson LR (2013) Neurons activated during fear memory consolidation and reconsolidation are mapped to a common and new topography in the lateral amygdala. Brain Topogr 26:468–478

    Article  PubMed  Google Scholar 

  • Besnard A (2012) A model of hippocampal competition between new learning and memory updating. J Neurosci 32:3281–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard A, Caboche J, Laroche S (2012) Reconsolidation of memory: a decade of debate. Prog Neurobiol 99:61–80

    Article  PubMed  Google Scholar 

  • Bjorkstrand J, Agren T, Frick A, Engman J, Larsson EM, Furmark T, et al (2015) Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up. PLoS One 10:e0129393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  CAS  PubMed  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  Google Scholar 

  • Bouton ME, Winterbauer NE, Todd TP (2012) Relapse processes after the extinction of instrumental learning: renewal, resurgence, and reacquisition. Behav Process 90:130–141

    Article  Google Scholar 

  • Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40:695–701

    Article  CAS  PubMed  Google Scholar 

  • Bredy TW, Barad M (2008) The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn Mem 15:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK (2008) Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J Psychiatr Res 42:503–506

    Article  PubMed  Google Scholar 

  • Bustos SG, Maldonado H, Molina V a (2009) Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology 34:446–457

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Pearce K, Chen S, Glanzman DL (2011) Protein kinase M maintains long-term sensitization and long-term facilitation in aplysia. J Neurosci 31:6421–6431

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Pearce K, Chen S, Glanzman DL (2012) Reconsolidation of long-term memory in Aplysia. Curr Biol 22:1783–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Censor N, Dayan E, Cohen LG (2014) Cortico-subcortical neuronal circuitry associated with reconsolidation of human procedural memories. Cortex A J Devoted to Study Nerv Syst Behav 58:281–288

    Article  PubMed  Google Scholar 

  • Chia C, Otto T (2013) Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning. Neurobiol Learn Mem 106:48–55

    Article  CAS  PubMed  Google Scholar 

  • Child FM, Epstein HT, Kuzirian AM, Alkon DL (2003) Memory reconsolidation in Hermissenda. Biol Bull 205:218–219

    Article  CAS  PubMed  Google Scholar 

  • Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330(6007):1108–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Cai D, Pearce K, Sun PY, Roberts AC, Glanzman DL (2014) Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. Elife 3:e03896

    Google Scholar 

  • Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci USA 107:2652–2657

    Article  CAS  Google Scholar 

  • Contreras M, Billeke P, Vicencio S, Madrid C, Perdomo G, Gonzalez M, et al (2012) A role for the insular cortex in long-term memory for context-evoked drug craving in rats. Neuropsychopharmacology 37:2101–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    Article  CAS  PubMed  Google Scholar 

  • Davis S, Renaudineau S, Poirier R, Poucet B, Save E, Laroche S (2010) The formation and stability of recognition memory: What happens upon recall? Front Behav Neurosci 4:177

    Google Scholar 

  • De Oliveira Alvares L, Crestani AP, Cassini L, Haubrich J, Santana F, Quillfeldt JA (2013) Reactivation enables memory updating, precision-keeping and strengthening: exploring the possible biological roles of reconsolidation. Neuroscience: 1–7. doi:10.1016/j.neuroscience.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  • Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538

    Article  CAS  PubMed  Google Scholar 

  • Debiec J, Doyere V, Nader K, LeDoux JE, McEwen BS (2006) Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. PNAS Proc Natl Acad Sci USA 103:3428–3433

    Article  CAS  PubMed  Google Scholar 

  • Descalzi G, Li X-Y, Chen T, Mercaldo V, Koga K, Zhuo M (2012) Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Mataix L, Debiec J, LeDoux JE, Doyere V (2011) Sensory-specific associations stored in the lateral amygdala allow for selective alteration of fear memories. J Neurosci 31:9538–9543

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Mataix L, Ruiz Martinez RC, Schafe GE, LeDoux JE, Doyere V (2013) Detection of a temporal error triggers reconsolidation of amygdala-dependent memories. Curr Biol 23:467–472

    Article  PubMed  CAS  Google Scholar 

  • Diekelmann S, Büchel C, Born J, Rasch B (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14:381–386

    Article  CAS  PubMed  Google Scholar 

  • Diergaarde L, Schoffelmeer AN, Vries TJ De (2006) Beta-adrenoceptor mediated inhibition of long-term reward-related memory reconsolidation. Behav Brain Res 170:333–336

    Google Scholar 

  • Dong Z, Han H, Li H, Bai Y, Wang W, Tu M et al (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247

    Article  PubMed  Google Scholar 

  • Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE (2007) Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 10:414–416

    Article  PubMed  CAS  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Dudai Y (2009) Predicting not to predict too much: how the cellular machinery of memory anticipates the uncertain future. Philos Trans R Soc Lond Ser B Biol Sci 364:1255–1262

    Article  Google Scholar 

  • Dudai Y, Morris R (2000) To consolidate or not to consolidate: what are the questions? In: Bolhius J (ed) Brain, perception, memory: advances in cognitive sciences. Oxford University Press, Oxford, pp 149–162

    Chapter  Google Scholar 

  • Duncan CP (1949) The retroactive effect of electroshock on learning. J Comp Physiol Psychol 42:32–44

    Article  CAS  PubMed  Google Scholar 

  • Duvarci S, Nader K, LeDoux JE (2005) Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci 21:283–289

    Article  PubMed  Google Scholar 

  • Ebbinghaus M (1885) Ãœber das Gedächtnis. Buehler, Leipzig

    Google Scholar 

  • Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg M, Dudai Y (2004) Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don’t die. Eur J Neurosci 20:3397–3403

    Article  Google Scholar 

  • Eysenck HJ (1968) A theory of the incubation of anxiety/fear responses. Behav Res Ther 6:309–321

    Article  CAS  PubMed  Google Scholar 

  • Flavell CR, Barber DJ, Lee JLC (2011) Behavioural memory reconsolidation of food and fear memories. Nat Commun 2:504

    Article  PubMed  CAS  Google Scholar 

  • Flexner LB, Flexner JB, Stellar E (1965) Memory and cerebral protein synthesis in mice as affected by graded amounts of puromycin. Exp Neurol 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Forcato C, Argibay PF, Pedreira ME, Maldonado H (2009) Human reconsolidation does not always occur when a memory is retrieved: the relevance of the reminder structure. Neurobiol Learn Mem 91:50–57

    Article  CAS  PubMed  Google Scholar 

  • Forcato C, Rodríguez MLC, Pedreira ME, Maldonado H (2010) Reconsolidation in humans opens up declarative memory to the entrance of new information. Neurobiol Learn Mem 93:77–84

    Article  PubMed  Google Scholar 

  • Forcato C, Fernandez RS, Pedreira ME (2014) Strengthening a consolidated memory: the key role of the reconsolidation process. J Physiol Paris 108:323–333

    Article  PubMed  Google Scholar 

  • Forcato C, Rodríguez MLC, Pedreira ME (2011) Repeated labilization-reconsolidation processes strengthen declarative memory in humans. PLoS One 6:e23305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankland PW, Ding H-KK, Takahashi E, Suzuki A, Kida S, Silva AJ (2006) Stability of recent and remote contextual fear memory. Learn Mem 13:451–457

    Article  Google Scholar 

  • Frankland PW, Köhler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497–503

    Article  CAS  PubMed  Google Scholar 

  • Frenkel L, Maldonado H, Delorenzi A (2005) Memory strengthening by a real-life episode during reconsolidation: an outcome of water deprivation via brain angiotensin II. Eur J Neurosci 22:1757–1766

    Article  PubMed  Google Scholar 

  • Fukushima H, Zhang Y, Archbold G, Ishikawa R, Nader K, Kida S (2014) Enhancement of fear memory by retrieval through reconsolidation. Elife 2014:1–19

    Google Scholar 

  • Gabriel M (1968) Effects of intersession delay and training level on avoidance extinction and intertrial behavior. J Comp Physiol Psychol 66:412–416

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Schonfeldt-Lecuona C, Spitzer M, Graf H (2014) Electroconvulsive therapy and posttraumatic stress disorder: first experience with conversation-based reactivation of traumatic memory contents and subsequent ECT-mediated impairment of reconsolidation. J Neuropsychiatry Clin Neurosci 26:E38–E39

    Article  PubMed  Google Scholar 

  • García-DeLaTorre P, Rodriguez-Ortiz CJ, Arreguin-Martinez JL, Cruz-Castañeda P, Bermúdez-Rattoni F (2009) Simultaneous but not independent anisomycin infusions in insular cortex and amygdala hinder stabilization of taste memory when updated. Learn Mem 16:514–519

    Article  Google Scholar 

  • Glickman S (1961) Perseverative neural processes and consolidation of the memory trace. Psychol Bull 58:218–233

    Article  CAS  PubMed  Google Scholar 

  • Gold PE, King RA (1974) Retrograde amnesia: storage failure versus retrieval failure. Physiol Rev 81:465–469

    CAS  Google Scholar 

  • Gordon WC (1977a) Similarities of recently acquired and reactivated memories in interference. Am J Psychol 90(2):231–242

    Article  Google Scholar 

  • Gordon WC (1977b) Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon. Physiol Behav 18(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Gordon WC, Spear NE (1973) Effect of reactivation of a previously acquired memory on the interaction between memories in the rat. J Exp Psychol 99:349–355

    Article  CAS  PubMed  Google Scholar 

  • Gräff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J et al (2014) Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    Article  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001a) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13:1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001b) Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 21:2186–2193

    PubMed  PubMed Central  Google Scholar 

  • Haubrich J, Crestani AP, Cassini LF, Santana F, Sierra RO, Alvares Lde O et al (2015) Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40:315–326

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York. doi:10.2307/1418888

    Article  Google Scholar 

  • Hellemans KG, Everitt BJ, Lee JL (2006) Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J Neurosci 26:12694–12699

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PJ, Kelley AE (2004) Long-term memory for instrumental responses does not undergo protein synthesis-dependent reconsolidation upon retrieval. Learn Mem 11:748–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertzen LS von, Giese KP (2005) Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J Neurosci 25:1935–1942

    Google Scholar 

  • Hong I, Kim J, Kim J, Lee S, Ko H-G, Nader K et al (2013) AMPA receptor exchange underlies transient memory destabilization on retrieval. Proc Natl Acad Sci USA 110:8218–8223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupbach A, Gomez R, Hardt O, Nadel L (2007) Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn Mem 14:47–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Hupbach A, Hardt O, Gomez R, Nadel L (2008) The dynamics of memory: Context-dependent updating. Learn Mem 15:574–579

    Article  Google Scholar 

  • Inda MC, Muravieva E V, Alberini CM (2011) Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction. J Neurosci 31:1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Jarome TJ, Kwapis JL, Werner CT, Parsons RG, Gafford GM, Helmstetter FJ (2012) The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation. Learn Mem 19:300–306

    Article  CAS  Google Scholar 

  • Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ (2015) Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories. Neuropsychopharmacology 40(13):3044–3052

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones B, Bukoski E, Nadel L, Fellous J-M (2012) Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn Mem 19:91–98

    Article  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Kelly A, Laroche S, Davis S (2003) Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23:5354–5360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kemenes G, Kemenes I, Michel M, Papp A, Muller U (2006) Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J Neurosci 26:6298–6302

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S et al (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Song B, Hong I, Kim J, Lee J, Park S, et al (2010) Reactivation of fear memory renders consolidated amygdala synapses labile. J Neurosci 30:9631–9640

    Article  CAS  PubMed  Google Scholar 

  • Kindt M, Soeter M, Vervliet B (2009) Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci 12:256–258

    Article  CAS  PubMed  Google Scholar 

  • Kroes MCW, Tendolkar I, van Wingen GA, van Waarde JA, Strange BA, Fernández G (2014) An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nat Neurosci 17:204–206

    Article  PubMed  CAS  Google Scholar 

  • Kwapis JL, Jarome TJ, Lonergan ME, Helmstetter FJ (2009) Protein kinase Mzeta maintains fear memory in the amygdala but not in the hippocampus. Behav Neurosci 123:844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagasse F, Devaud JM, Mery F (2009) A switch from cycloheximide-resistant consolidated memory to cycloheximide-sensitive reconsolidation and extinction in Drosophila. J Neurosci 29:2225–2230

    Article  CAS  PubMed  Google Scholar 

  • Lee JLC (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci 11:1264–1266

    Article  CAS  PubMed  Google Scholar 

  • Lee JLC (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JLC (2010) Memory reconsolidation mediates the updating of hippocampal memory content. Front Behav Neurosci 4:168

    Google Scholar 

  • Lee JLC, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    Article  CAS  PubMed  Google Scholar 

  • Lee JLC, Milton AL, Everitt BJ (2006) Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci 26:10051–10056

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Choi S (2011) In vitro synaptic reconsolidation in amygdala slices prepared from rat brains. Biochem Biophys Res Commun 407:339–342

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kwak C, Shim J, Kim JE, Choi SL, Kim HF et al (2012) A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia. Proc Natl Acad Sci USA 109:14200–14205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DJ (1979) Psychobiology of active and inactive memory. Psychol Bull 86:1054–1083

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Meloni EG, Carlezon Jr. WA, Milad MR, Pitman RK, Nader K, et al (2013) Learning and reconsolidation implicate different synaptic mechanisms. Proc Natl Acad Sci USA 110:4798–4803

    Article  CAS  Google Scholar 

  • Litvin OO, Anokhin KV (2000) Mechanisms of memory reorganization during retrieval of acquired behavioral experience in chicks: the effects of protein synthesis inhibition in the brain. Neurosci Behav Physiol 30:671–678

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M et al (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304(5673):1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Lubin FD, Sweatt JD (2007) The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55:942–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukowiak K, Fras M, Smyth K, Wong C, Hittel K (2007) Reconsolidation and memory infidelity in Lymnaea. Neurobiol Learn Mem 87:547–560

    Article  PubMed  Google Scholar 

  • Maddox SA, Watts CS, Doyere V, Schafe GE (2013a) A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One 8:e54463

    Google Scholar 

  • Maddox SA, Watts CS, Schafe GE (2013b) p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn Mem 20:109–119

    Article  CAS  Google Scholar 

  • Maddox SA, Watts CS, Schafe GE (2014) DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala. Neurobiol Learn Mem 107:93–100

    Article  CAS  PubMed  Google Scholar 

  • Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, et al (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29:402–413

    Article  CAS  PubMed  Google Scholar 

  • Mamou CB, Gamache K, Nader K (2006) NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat Neurosci 9:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL, Krivanek JA (1970) Strychnine effects on discrimination learning in mice: effects of dose and time of administration. Physiol Behav 5:1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Merlo E, Freudenthal R, Maldonado H, Romano A (2005) Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn Mem 12:23–29

    Google Scholar 

  • Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT et al (2010) PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci 13:630–634

    Article  CAS  PubMed  Google Scholar 

  • Migues PV, Liu L, Archbold GEB, Einarsson EO, Wong J, Bonasia K et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36:3481–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milekic MH, Alberini CM (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36:521–525

    Article  CAS  PubMed  Google Scholar 

  • Miller RR, Marlin NA (1984) The physiology and semantics of consolidation: of mice and men. In: Weingartner H, Parker ES (eds) Memory consolidation: psychobiology of cognition. Erlbaum, Hillsdale, NJ, pp 85–109

    Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  CAS  PubMed  Google Scholar 

  • Miller RR, Springer AD (1973) Amnesia, consolidation, and retrieval. Psychol Rev 80:69–79

    Article  CAS  PubMed  Google Scholar 

  • Milton AL, Lee JLC, Butler VJ, Gardner R, Everitt BJ (2008) Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. J Neurosci 28:8230–8237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton AL, Merlo E, Ratano P, Gregory BL, Dumbreck JK, Everitt BJ (2013) Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J Neurosci 33:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160(3827):554–555

    Article  CAS  PubMed  Google Scholar 

  • Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324(5929):951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RGM, Inglis J, Ainge J a, Olverman HJ, Tulloch J, Dudai Y, et al (2006) Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50:479–489

    Article  CAS  PubMed  Google Scholar 

  • Müller GE, Pilzecker A (1900) Experimentelle Beitraege zur Lehre vom Gedaechtnis. Zeitschrift für Psychologie 1:1

    Google Scholar 

  • Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10:224–234

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara H, Kawato M (2010) The protein kinase Mζ network as a bistable switch to store neuronal memory. BMC Syst Biol 4:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olshavsky ME, Song BJ, Powell DJ, Jones CE, Monfils M-H, Lee HJ (2013) Updating appetitive memory during reconsolidation window: critical role of cue-directed behavior and amygdala central nucleus. Front Behav Neurosci 7, ArtID 186, 7

    Google Scholar 

  • Osan R, Tort AB, Amaral OB (2011) A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS One 6:e23113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Book 17

    Google Scholar 

  • Pedreira ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869

    Article  CAS  PubMed  Google Scholar 

  • Pedreira ME, Perez-Cuesta LM, Maldonado H (2002) Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J Neurosci 22:8305–8311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedreira ME, Pérez-Cuesta LM, Maldonado H (2004) Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn Mem 11:579–585

    Article  Google Scholar 

  • Perez-Cuesta LM, Maldonado H (2009) Memory reconsolidation and extinction in the crab: Mutual exclusion or coexistence? Learn Mem 16:714–721

    Article  Google Scholar 

  • Perrin G, Ferreira G, Meurisse M, Verdin S, Mouly A-M, Lévy F (2007) Social recognition memory requires protein synthesis after reactivation. Behav Neurosci 121:148–155

    Article  CAS  PubMed  Google Scholar 

  • Pickens CL, Golden SA, Adams-Deutsch T, Nair SG, Shaham Y (2009) Long-lasting incubation of conditioned fear in rats. Biol Psychiatry 65:881–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Radiske A, Rossato JI, Kohler CA, Gonzalez MC, Medina JH, Cammarota M (2015) Requirement for BDNF in the reconsolidation of fear extinction. J Neurosci 35:6570–6574

    Article  CAS  PubMed  Google Scholar 

  • Rao-Ruiz P, Rotaru DC, van der Loo RJ, Mansvelder HD, Stiedl O, Smit AB et al (2011) Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci 14:1302–1308

    Article  CAS  PubMed  Google Scholar 

  • Rehberg K, Bergado-Acosta JR, Koch JC, Stork O (2010) Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol Learn Mem 94:117–126

    Article  CAS  PubMed  Google Scholar 

  • Ren ZY, Liu MM, Xue YX, Ding ZB, Xue LF, Zhai SD, et al (2013) A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology 38:778–790

    Article  PubMed  CAS  Google Scholar 

  • Rescorla RA,Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning II. Appleton-Century-Crofts, New York, pp 64–99

    Google Scholar 

  • Rescorla RA, Heth CD (1975) Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process 1:88–96

    Article  CAS  PubMed  Google Scholar 

  • Ribot T (1881) Les Maladies de la Memoire. Appleton-Century-Crofts, New York

    Google Scholar 

  • Robinson MJ, Franklin KB (2010) Reconsolidation of a morphine place preference: impact of the strength and age of memory on disruption by propranolol and midazolam. Behav Brain Res 213:201–207

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJF, Ross EC, Franklin KBJ (2011) The effect of propranolol dose and novelty of the reactivation procedure on the reconsolidation of a morphine place preference. Behav Brain Res 216:281–284

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ortiz CJ, Bermudez-Rattoni F (2007) Memory Reconsolidation or Updating Consolidation? Neural Plast Mem From Genes to Brain Imaging at http://www.ncbi.nlm.nih.gov/pubmed/21204424

  • Rodriguez-Ortiz CJ, la Cruz V De, Gutiérrez R, Bermudez-Rattoni F (2005) Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained. Learn Mem 12:533–537

    Article  Google Scholar 

  • Rodriguez-Ortiz CJ, Garcia-DeLaTorre P, Benavidez E, Ballesteros MA, Bermudez-Rattoni F (2008) Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiol Learn Mem 89:352–359

    Article  CAS  PubMed  Google Scholar 

  • Romero-Granados R, Fontan-Lozano A, Delgado-Garcia JM, Carrion AM (2010) From learning to forgetting: behavioral, circuitry, and molecular properties define the different functional states of the recognition memory trace. Hippocampus 20:584–595

    Article  CAS  Google Scholar 

  • Rose JK, Rankin CH (2006) Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. J Neurosci 26:11582–11587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA et al (2016) Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca(2+) channels, and calcineurin. Sci Rep 6:22771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor TC (2008) PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40

    Google Scholar 

  • Sacktor TC (2011) How does PKMζ maintain long-term memory? Nat Rev Neurosci 12:9–15

    Article  CAS  PubMed  Google Scholar 

  • Sacktor TC, Fenton AA (2012) Appropriate application of ZIP for PKMζ inhibition, LTP reversal, and memory erasure. Hippocampus 22:645–647

    Article  PubMed  CAS  Google Scholar 

  • Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E (1993) Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc. Natl. Acad. Sci. USA 90:8342–8346

    Article  CAS  Google Scholar 

  • Sangha S, Scheibenstock A, Lukowiak K (2003) Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J Neurosci 23:8034–8040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sara SJ (2000) Retrieval and Reconsolidation: Toward a Neurobiology of Remembering. Learn Mem 7:73–84

    Article  CAS  Google Scholar 

  • Sartor GC, Aston-Jones G (2014) Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology 39:1059–1065

    Article  PubMed  Google Scholar 

  • Schiller D, Monfils M-H, Raio CM, Johnson DC, Ledoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiller D, Kanen JW, LeDoux JE, Monfils M-H, Phelps EA (2013) Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. PNAS Proc Natl Acad Sci United States Am 110:20040–20045

    Article  CAS  Google Scholar 

  • Schneider AM, Sherman W (1968) Amnesia: a function of the temporal relation of footshock to electroconvulsive shock. Science 159(3811):219–21

    Article  CAS  PubMed  Google Scholar 

  • Schwabe L, Nader K, Wolf OT, Beaudry T, Pruessner JC (2012) Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry 71:380–386

    Article  CAS  PubMed  Google Scholar 

  • Serrano P, Friedman EL, Kenney J, Taubenfeld SM, Zimmerman JM, Hanna J, et al (2008) PKMζ maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol 6:2698–2706

    Article  PubMed Central  CAS  Google Scholar 

  • Shema R, Haramati S, Ron S, Hazvi S, Chen A, Sacktor TC et al (2011) Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex. Science 331:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Sierra RO, Cassini LF, Santana F, Crestani AP, Duran JM, Haubrich J, et al (2013) Reconsolidation may incorporate state-dependency into previously consolidated memories. Learn Mem 20:379–87

    Article  Google Scholar 

  • Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, et al (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 35:4190–4202

    Article  CAS  PubMed  Google Scholar 

  • Soeter M, Kindt M (2015) An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biol Psychiatry. doi:10.1016/j.biopsych.2015.04.006

    Article  PubMed  Google Scholar 

  • Spear NE (1973) Retrieval of memory in animals. Psychol Rev 80:163–194

    Article  Google Scholar 

  • Spear N, Mueller C (1984) Consolidation as a function of retrieval. In: Weingarten H, Parker E (eds) Memory consolidation: psychobiology of cognition. Erlbaum, London, pp 111–147

    Google Scholar 

  • Squire LR, Cohen NH, Nadel L (1984) The medial temporal region and memory consolidation: a new hypothesis. In: Weingartner H, Parker E (eds) Memory consolidation. Erlbaum, Hillsdale, NJ, pp 185–210

    Google Scholar 

  • Stern SA, Alberini CM (2013) Mechanisms of memory enhancement. Wiley Interdiscip Rev Syst Biol Med 5:37–53

    Article  CAS  PubMed  Google Scholar 

  • Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J Neurosci 25:4485–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    Article  CAS  PubMed  Google Scholar 

  • Taubenfeld SM, Milekic MH, Monti B, Alberini CM (2001) The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci 4:813–818

    Article  CAS  PubMed  Google Scholar 

  • Thomas KL, Arroyo M, Everitt BJ (2003) Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur J Neurosci 17:1964–1972

    Article  Google Scholar 

  • Thomas KL, Hall J, Everitt BJ (2002) Cellular imaging with zif268 expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. Eur J Neurosci 16:1789–1796

    Article  Google Scholar 

  • Tronel S, Sara SJ (2002) Mapping of olfactory memory circuits: Region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn Mem 9:105–111

    Article  Google Scholar 

  • Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275

    Article  CAS  PubMed  Google Scholar 

  • Tronson NC, Wiseman SL, Olausson P, Taylor JR (2006) Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 9:167–169

    Article  CAS  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Hobson JA (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425:8–12

    Article  CAS  Google Scholar 

  • Wang S-H, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61:49–79

    Article  PubMed  Google Scholar 

  • Wang SH, Ostlund SB, Nader K, Balleine BW (2005) Consolidation and reconsolidation of incentive learning in the amygdala. J Neurosci 25:830–835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang S-H, Oliveira Alvares L de, Nader K (2009) Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat Neurosci 12: 905–912

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang TY, Xin J, Li T, Yu H, Li N, et al (2012) Differential involvement of brain-derived neurotrophic factor in reconsolidation and consolidation of conditioned taste aversion memory. PLoS One 7:e49942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells AM, Arguello AA, Xie X, Blanton MA, Lasseter HC, Reittinger AM, et al (2013) Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 38:753–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells AM, Xie X, Higginbotham JA, Arguello AA, Healey KL, Blanton M, Fuchs RA, et al (2015) Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 41(3):675–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winters BD, Tucci MC, DaCosta-Furtado M (2009) Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learn Mem 16: 545–553

    Article  Google Scholar 

  • Winters BD, Tucci MC, Jacklin DL, Reid JM, Newsome J, et al (2011) On the dynamic nature of the engram: evidence for circuit-level reorganization of object memory traces following reactivation. Neurosci 31:17719–28

    Article  CAS  PubMed  Google Scholar 

  • Wirkner J, Low A, Hamm AO, Weymar M (2015) New learning following reactivation in the human brain: targeting emotional memories through rapid serial visual presentation. Neurobiol Learn Mem 119:63–68

    Article  PubMed  Google Scholar 

  • Xue Y-X, Luo Y-X, Wu P, Shi H-S, Xue L-F, Chen C et al (2012) A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J C, Wallach J S, Del Vecchio M, Wilder E L, Zhou H, Quinn W G, Tully T (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79(1):49-58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Nader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haubrich, J., Nader, K. (2016). Memory Reconsolidation. In: Clark, R.E., Martin, S. (eds) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, vol 37. Springer, Cham. https://doi.org/10.1007/7854_2016_463

Download citation

Publish with us

Policies and ethics