Skip to main content

Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression

  • Chapter
  • First Online:
Book cover Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wohleb ES, McKim DB, Sheridan JF, Godbout JP (2015) Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 8:447

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289(1):429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole SW, Conti G, Arevalo JM, Ruggiero A, Heckman JJ, Suomi SJ (2012) Transcriptional modulation of the developing immune system by early life social adversity. Proc Natl Acad Sci U S A 109:20578–20583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E, Kobor MS, Reader BF, Sheridan JF, Cole SW (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110(41):16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci Off J Soc Neurosci 33(34):13820–13833

    Article  CAS  Google Scholar 

  8. Avitsur R, Stark JL, Sheridan JF (2001) Social stress induces glucocorticoid resistance in subordinate animals. Horm Behav 39(4):247–257

    Article  CAS  PubMed  Google Scholar 

  9. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59

    Article  CAS  PubMed  Google Scholar 

  10. Hermann G, Tovar CA, Beck M, Allen C, Sheridan JF (1993) Restraint stress differentially affects the pathogenesis of an experimental influenza viral infection in three inbred strains of mice. J Neuroimmunol 47(1):83–93

    Article  CAS  PubMed  Google Scholar 

  11. Hermann G, Beck M, Sheridan JF (1995) Stress-induced glucocorticoid response modulates mononuclear cell trafficking during an experimental influenza viral infection. J Neuroimmunol 56(2):179–186

    Article  CAS  PubMed  Google Scholar 

  12. Johnson JD, O’Connor KA, Deak T, Stark M, Watkins LR, Maier SF (2002) Prior stressor exposure sensitizes LPS-induced cytokine production. Brain Behav Immun 16(4):461–476

    Article  CAS  PubMed  Google Scholar 

  13. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45

    Article  CAS  PubMed  Google Scholar 

  14. Herman JP, Adams D, Prewitt C (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61(2):180–190

    Article  CAS  PubMed  Google Scholar 

  15. Koo JW, Duman RS (2009) Interleukin-1 receptor null mutant mice show decreased anxiety-like behavior and enhanced fear memory. Neurosci Lett 456(1):39–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima Lde S, Avellar MC, Sapolsky RM, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci Off J Soc Neurosci 26(14):3813–3820

    Article  CAS  Google Scholar 

  17. Ramirez K, Niraula A, Sheridan JF (2016) GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain Behav Immun 51:154–168

    Article  CAS  PubMed  Google Scholar 

  18. Kinsey SG, Bailey MT, Sheridan JF, Padgett DA, Avitsur R (2007) Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain Behav Immun 21(4):458–466

    Article  PubMed  Google Scholar 

  19. Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF (2011) β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci Off J Soc Neurosci 31(17):6277–6288

    Article  CAS  Google Scholar 

  20. Stark JL, Avitsur R, Padgett DA, Campbell KA, Beck M, Sheridan JF (2001) Social stress induces glucocorticoid resistance in macrophages. Am J Physiol Regul Integr Comp Physiol 280(649–6):R1799–R1805

    CAS  PubMed  Google Scholar 

  21. Avitsur R, Powell N, Padgett DA, Sheridan JF (2009) Social interactions, stress, and immunity. Immunol Allergy Clin N Am 29(2):285–293

    Article  Google Scholar 

  22. Hanke ML, Powell ND, Stiner LM, Bailey MT, Sheridan JF (2012) Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun 26(7):1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dahl J, Ormstad H, Aass HC, Sandvik L, Malt UF, Andreassen OA (2016) Recovery from major depressive disorder episode after non-pharmacological treatment is associated with normalized cytokine levels. doi:10.1111/acps.12576

    Google Scholar 

  25. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  26. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. doi:10.1038/mp.2016.3

    PubMed  Google Scholar 

  27. Ramirez K (2015) Neuroimmunological responses to social isolation. Odovtos – Int J Dent Sci 17(1):8–11. doi:http://dx.doi.org/10.15517/ijds.v0i0.22032

  28. Russo SJ, Nestler E (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosc 14(9):609–625

    Article  CAS  Google Scholar 

  29. Janssen DGA, Caniato RN, Verster JC, Baune BT (2010) A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol Clin Exp 25(3):201–215

    Article  CAS  Google Scholar 

  30. Kenis G, Maes M (2002) Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol 5(4):401–412

    Article  CAS  PubMed  Google Scholar 

  31. Engler H, Engler A, Bailey MT, Sheridan JF (2005) Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice. J Neuroimmunol 163(1-2):110–119

    Article  CAS  PubMed  Google Scholar 

  32. Avitsur R, Stark JL, Dhabhar FS, Sheridan JF (2002) Social stress alters splenocyte phenotype and function. J Neuroimmunol 132(1-2):66–71

    Article  CAS  PubMed  Google Scholar 

  33. Quan N, Avitsur R, Stark JL, He L, Lai W, Dhabhar F, Sheridan JF (2003) Molecular mechanisms of glucocorticoid resistance in splenocytes of socially stressed male mice. J Neuroimmunol 137(1-2):51–58

    Article  CAS  PubMed  Google Scholar 

  34. Gadek-Michalska A, Borycz J, Bugajski J (1994) Pituitary-adrenocortical responsiveness to histaminergic stimulation during social stress of crowding in rats. Agents Actions 41:C80–C81

    Article  CAS  PubMed  Google Scholar 

  35. Antonioli M, Rybka J, Carvalho LA (2012) Neuroimmune endocrine effects of antidepressants. Neuropsychiatr Dis Treat 8:65–83

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnes PJ, Adcock IM (2009) Glucocorticoid resistance in inflammatory diseases. Lancet 373:1905–1917

    Article  CAS  PubMed  Google Scholar 

  37. Meduri GU, Yates CR (2004) Systemic inflammation-associated glucocorticoid resistance and outcome of ARDS. Ann N Y Acad Sci 1024:24–53

    Article  CAS  PubMed  Google Scholar 

  38. Miller GE, Murphy ML, Cashman R, Ma R, Ma J, Arevalo JM, Kobor MS, Cole SW (2014) Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain Behav Immun 41:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jankord R, Zhang R, Flak JN, Solomon MB, Albertz J, Herman JP (2010) Stress activation of IL-6 neurons in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 299(1):343–351

    Article  Google Scholar 

  40. Ghorbel MT, Sharman G, Leroux M, Barrett T, Donovan DM, Becker KG, Murphy D (2003) Microarray analysis reveals interleukin-6 as a novel secretory product of the hypothalamo-neurohypophyseal system. J Biol Chem 278(21):19280–19285

    Article  CAS  PubMed  Google Scholar 

  41. Jankord R, Turk JR, Schadt JC, Casati J, Ganjam VK, Price EM, Keisler DH, Laughlin MH (2007) Sex difference in link between interleukin-6 and stress. Endocrinology 148(8):3758–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, Sheridan JF, Godbout JP (2014) Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry 75(12):970–981

    Article  CAS  PubMed  Google Scholar 

  43. Sheehan TP, Chambers R, Andrew R, David S (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Rev 46(1):71–117

    Article  PubMed  Google Scholar 

  44. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125(1):1–6

    Article  CAS  PubMed  Google Scholar 

  45. Van Bokhoven P, Oomen CA, Hoogendijk WJ, Smit AB, Lucassen PJ, Spijker S (2011) Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci 33(10):1833–1840

    Article  PubMed  Google Scholar 

  46. Ramirez K, Shea DT, McKim DB, Reader BF, Sheridan JF (2015) Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance. Brain Behav Immun 46:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bailey MT, Kierstein S, Sharma S, Spaits M, Kinsey SG, Tliba O, Amrani Y, Sheridan JF, Panettieri RA, Haczku A (2009) Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. J Immunol 182(12):7888–7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 107(6):2669–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Christoffel DJ, Golden SA, Dumitriu D, Robison AJ, Janssen WG, Ahn HF, Krishnan V, Reyes CM, Han MH, Ables JL, Eisch AJ, Dietz DM, Ferguson D, Neve RL, Greengard P, Kim Y, Morrison JH, Russo SJ (2011) IkB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci Off J Soc Neurosci 31(1):314–321

    Article  CAS  Google Scholar 

  50. Ozaktay AC, Kallakuri ST, Tsuneo Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN (2006) Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15(10):1529–1537

    Article  PubMed  Google Scholar 

  51. McKim DB, Niraula A, Tarr AJ, Wohleb ES, Sheridan JF, Godbout JP (2016) Neuroinflammatory dynamics underlie memory impairments after repeated social defeat. J Neurosci 36(9):2590–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bian Y, Pan Z, Hou Z, Huang C, Li W, Zhao B (2012) Learning, memory, and glial cell changes following recovery from chronic unpredictable stress. Brain Res Bull 88:471–476

    Article  PubMed  Google Scholar 

  53. Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22(6):1442–1454

    Article  CAS  PubMed  Google Scholar 

  54. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, Fleshner M (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135(4):1295–1307

    Article  CAS  PubMed  Google Scholar 

  55. Kopp BL, Wick D, Herman JP (2013) Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex. Physiol Behav 122:246–252

    Article  CAS  PubMed  Google Scholar 

  56. Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV et al (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24:1058–1068

    Article  CAS  PubMed  Google Scholar 

  57. Blandino P Jr, Barnum CJ, Solomon LG, Larish Y, Lankow BS, Deak T (2009) Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL1 and microglial markers after acute stress. Brain Behav Immun 23:958–968

    Article  CAS  PubMed  Google Scholar 

  58. Kollack-Walker S, Watson SJ, Akil H (1997) Social stress in hamsters: defeat activates specific neurocircuits within the brain. J Neurosci Off J Soc Neurosci 17(22):8842–8855

    CAS  Google Scholar 

  59. Martinez M, Calvo-Torrent A, Herbert J (2002) Mapping brain response to social stress in rodents with c-fos expression: a review. Stress 5(1):3–13

    Article  CAS  PubMed  Google Scholar 

  60. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  CAS  PubMed  Google Scholar 

  61. Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP mediated microglial process out growth. J Neurosci 34:10511–10527

    Article  PubMed  Google Scholar 

  62. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18

    Article  CAS  PubMed  Google Scholar 

  63. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135:755s–765s

    CAS  PubMed  Google Scholar 

  65. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A et al (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  CAS  PubMed  Google Scholar 

  67. McGavern DB, Kang SS (2011) Illuminating viral infections in the nervous system. Nat Rev Immunol 11:318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ataka K, Asakawa A, Nagaishi K, Kaimoto K, Sawada A, Hayakawa Y et al (2013) Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS ONE 8, e81744

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M (2014) Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partials ciatic nerve ligation in mice. Pain 155:1762–1772

    Article  CAS  PubMed  Google Scholar 

  70. Brevet M, Kojima H, Asakawa A, Atsuchi K, Ushikai M, Ataka K, Inui A, Kimura H, Sevestre H, Fujimiya M (2010) Chronic foot-shock stress potentiates the influx of bone marrow-derived microglia into hippocampus. J Neurosci Res 88:1890–1897

    CAS  PubMed  Google Scholar 

  71. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulated white matter of depressed suicides. Brain Behav Immun 42:50–59

    Article  CAS  PubMed  Google Scholar 

  72. Gilman SE, Trinh NH, Smoller JW, Fava M, Murphy JM, Breslau J (2013) Psychosocial stressors and the prognosis of major depression: a test of Axis IV. Psychol Med 43:303–316

    Article  CAS  PubMed  Google Scholar 

  73. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    Article  CAS  PubMed  Google Scholar 

  74. McLaughlin KA, Conron KJ, Koenen KC, Gilman SE (2010) Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychol Med 40:1647–1658

    Article  CAS  PubMed  Google Scholar 

  75. Engler H, Bailey MT, Engler A, Stiner-Jones LM, Quan N, Sheridan JF (2008) Interleukin 1 receptor type1-deficient mice fail to develop social stress-associated glucocorticoid resistance in the spleen. Psychoneuroendocrinology 33:108–117

    Article  CAS  PubMed  Google Scholar 

  76. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. J Neurosci 29:2089–2102

    Article  PubMed  Google Scholar 

  77. Kerfoot SM, D’Mello C, Nguyen H, Ajuebor MN, Kubes P, Le T et al (2006) TNF-alpha-secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 43:154–162

    Article  PubMed  Google Scholar 

  78. Jurgens HA, Johnson R (2012) Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp Neurol 233(1):40–48

    Article  PubMed  Google Scholar 

  79. Sawicki CM, McKim DB, Wohleb ES, Jarrett BL, Reader BF, Norden DM, Godbout JP, Sheridan JF (2015) Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience 302:151–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We want to thank Dr. Michael Weber for his critical reading of the manuscript. These studies were supported by NIH grants R01-MH093473 and R01-MH097243 to JFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Sheridan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramirez, K., Fornaguera-Trías, J., Sheridan, J.F. (2016). Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_25

Download citation

Publish with us

Policies and ethics