Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

This chapter explores the evidence supporting inflammation-associated depression. Data to date suggest a bidirectional relationship between inflammation and depression wherein one process can drive the other. A wealth of animal and clinical studies have demonstrated an association between concentrations of pro-inflammatory cytokines – specifically interleukin (IL)-1β, IL-6, and tumor necrosis factor-α – and depressive symptoms. There is also evidence that this pro-inflammatory state is accompanied by aberrant inflammation-related processes including platelet activation factor hyperactivity, oxidative and nitrosative stress, and damage to mitochondria. These complex and interrelated mechanisms can collectively contribute to negative neurobiological outcomes that may, in part, underlie the etiopathology of depression. Mounting evidence has shown a concomitant reduction in both depressive symptoms and pro-inflammatory cytokine concentrations following treatment with pharmacological anti-inflammatory interventions. Taken together, the reviewed preclinical and clinical findings may suggest the existence of a distinct inflammatory subtype of depression in which these patients exhibit unique biochemical and clinical features and may potentially experience improved clinical outcomes with inflammation-targeted pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang TL, Lin CC (2015) Advances in biomarkers of major depressive disorder. Adv Clin Chem 68:177–204

    Article  PubMed  Google Scholar 

  2. Lepine JP, Briley M (2011) The increasing burden of depression. Neuropsychiatr Dis Treat 7(Suppl 1):3–7

    PubMed  PubMed Central  Google Scholar 

  3. Greenberg PE et al (2015) The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry 76(2):155–162

    Article  PubMed  Google Scholar 

  4. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156(6):837–841

    Article  CAS  PubMed  Google Scholar 

  5. Nestler EJ et al (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52(6):503–528

    Article  PubMed  Google Scholar 

  6. Pryce CR et al (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29(4–5):649–674

    Article  PubMed  Google Scholar 

  7. Pollak DD, Rey CE, Monje FJ (2010) Rodent models in depression research: classical strategies and new directions. Ann Med 42(4):252–264

    Article  PubMed  Google Scholar 

  8. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wiborg O (2013) Chronic mild stress for modeling anhedonia. Cell Tissue Res 354(1):155–169

    Article  PubMed  Google Scholar 

  10. Micale V, Kucerova J, Sulcova A (2013) Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 354(1):309–330

    Article  PubMed  Google Scholar 

  11. Tsankova NM et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    Article  CAS  PubMed  Google Scholar 

  12. Naqvi TZ, Naqvi SS, Merz CN (2005) Gender differences in the link between depression and cardiovascular disease. Psychosom Med 67(Suppl 1):S15–S18

    Article  PubMed  Google Scholar 

  13. McCaffery JM et al (2009) Genetic predictors of depressive symptoms in cardiac patients. Am J Med Genet B Neuropsychiatr Genet 150B(3):381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steptoe A et al (2001) Acute mental stress elicits delayed increases in circulating inflammatory cytokine levels. Clin Sci (Lond) 101(2):185–192

    Article  CAS  Google Scholar 

  15. Persoons JH et al (1995) Acute stress affects cytokines and nitric oxide production by alveolar macrophages differently. Am J Respir Crit Care Med 152(2):619–624

    Article  CAS  PubMed  Google Scholar 

  16. Grippo AJ et al (2005) Chronic mild stress induces behavioral and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacology (Berl) 179(4):769–780

    Article  CAS  Google Scholar 

  17. Kubera M et al (1998) Effect of mild chronic stress, as a model of depression, on the immunoreactivity of C57BL/6 mice. Int J Immunopharmacol 20(12):781–789

    Article  CAS  PubMed  Google Scholar 

  18. Goshen I et al (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728

    Article  CAS  PubMed  Google Scholar 

  19. Pan Y et al (2006) Effects of icariin on hypothalamic-pituitary-adrenal axis action and cytokine levels in stressed Sprague–Dawley rats. Biol Pharm Bull 29(12):2399–2403

    Article  CAS  PubMed  Google Scholar 

  20. You Z et al (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225(1):135–141

    Article  CAS  PubMed  Google Scholar 

  21. Li S et al (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82(17–18):934–942

    Article  CAS  PubMed  Google Scholar 

  22. Liu W et al (2013) Swimming exercise ameliorates depression-like behavior in chronically stressed rats: relevant to proinflammatory cytokines and IDO activation. Behav Brain Res 242:110–116

    Article  CAS  PubMed  Google Scholar 

  23. Chourbaji S et al (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23(3):587–594

    Article  CAS  PubMed  Google Scholar 

  24. Bartolomucci A et al (2003) Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28(4):540–558

    Article  CAS  PubMed  Google Scholar 

  25. Moller M et al (2013) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156–167

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Lazaro E et al (2011) Individual differences in chronically defeated male mice: behavioral, endocrine, immune, and neurotrophic changes as markers of vulnerability to the effects of stress. Stress 14(5):537–548

    Article  CAS  PubMed  Google Scholar 

  27. Patki G et al (2013) Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res 1539:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sukoff Rizzo SJ et al (2012) Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl Psychiatry 2, e199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Audet MC et al (2011) Social defeat promotes specific cytokine variations within the prefrontal cortex upon subsequent aggressive or endotoxin challenges. Brain Behav Immun 25(6):1197–1205

    Article  CAS  PubMed  Google Scholar 

  30. Rinwa P, Kumar A, Garg S (2013) Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One 8(4), e61052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song C, Zhang XY, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29(1):14–22

    Article  PubMed  CAS  Google Scholar 

  32. Ulloa JL et al (2010) Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration. Pharmacol Biochem Behav 97(2):213–221

    Article  CAS  PubMed  Google Scholar 

  33. Kaster MP et al (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426

    Article  CAS  PubMed  Google Scholar 

  34. Bonaccorso S et al (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90

    Article  CAS  PubMed  Google Scholar 

  35. Xia Z, DePierre JW, Nassberger L (1996) Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 34(1):27–37

    Article  CAS  PubMed  Google Scholar 

  36. Seidel A et al (1995) Cytokine production and serum proteins in depression. Scand J Immunol 41(6):534–538

    Article  CAS  PubMed  Google Scholar 

  37. Mohr DC et al (2001) Comparative outcomes for individual cognitive-behavior therapy, supportive-expressive group psychotherapy, and sertraline for the treatment of depression in multiple sclerosis. J Consult Clin Psychol 69(6):942–949

    Article  CAS  PubMed  Google Scholar 

  38. Brustolim D et al (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6(6):903–907

    Article  CAS  PubMed  Google Scholar 

  39. Maes M et al (1999) Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 20(4):370–379

    Article  CAS  PubMed  Google Scholar 

  40. Kubera M et al (2000) The effect of repeated amitriptyline and desipramine administration on cytokine release in C57BL/6 mice. Psychoneuroendocrinology 25(8):785–797

    Article  CAS  PubMed  Google Scholar 

  41. Kubera M et al (2000) Effects of repeated fluoxetine and citalopram administration on cytokine release in C57BL/6 mice. Psychiatry Res 96(3):255–266

    Article  CAS  PubMed  Google Scholar 

  42. Beurel E, Harrington LE, Jope RS (2013) Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry 73(7):622–630

    Article  CAS  PubMed  Google Scholar 

  43. Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129(5):625–637

    Article  CAS  PubMed  Google Scholar 

  44. Ferrari AJ et al (2013) Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med 43(3):471–481

    Article  CAS  PubMed  Google Scholar 

  45. Hurwitz EL, Morgenstern H (1999) Cross-sectional associations of asthma, hay fever, and other allergies with major depression and low-back pain among adults aged 20–39 years in the United States. Am J Epidemiol 150(10):1107–1116

    Article  CAS  PubMed  Google Scholar 

  46. de Miguel Diez J et al (2011) Psychiatric comorbidity in asthma patients. Associated factors. J Asthma 48(3):253–258

    Article  PubMed  Google Scholar 

  47. Prosser R, Carleton B, Smith A (2010) The comorbidity burden of the treated asthma patient population in British Columbia. Chronic Dis Can 30(2):46–55

    CAS  PubMed  Google Scholar 

  48. Matcham F et al (2013) The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology (Oxford) 52(12):2136–2148

    Article  Google Scholar 

  49. Celano CM, Huffman JC (2011) Depression and cardiac disease: a review. Cardiol Rev 19(3):130–142

    Article  PubMed  Google Scholar 

  50. Vancampfort D et al (2015) Type 2 diabetes in patients with major depressive disorder: a meta-analysis of prevalence estimates and predictors. Depress Anxiety 32(10):763–773

    Article  PubMed  Google Scholar 

  51. Ahlgren SS et al (2004) Development of a preliminary diabetes dietary satisfaction and outcomes measure for patients with type 2 diabetes. Qual Life Res 13(4):819–832

    Article  CAS  PubMed  Google Scholar 

  52. Sacco WP et al (2005) Depression in adults with type 2 diabetes: the role of adherence, body mass index, and self-efficacy. Health Psychol 24(6):630–634

    Article  PubMed  Google Scholar 

  53. Roberts RE et al (2003) Prospective association between obesity and depression: evidence from the Alameda County study. Int J Obes Relat Metab Disord 27(4):514–521

    Article  CAS  PubMed  Google Scholar 

  54. Nigatu YT et al (2015) The longitudinal joint effect of obesity and major depression on work performance impairment. Am J Public Health 105(5):e80–e86

    Article  PubMed  Google Scholar 

  55. Zalli A et al (2015) Low-grade inflammation predicts persistence of depressive symptoms. Psychopharmacology (Berl)

    Google Scholar 

  56. Vogelzangs N et al (2012) Association of depressive disorders, depression characteristics and antidepressant medication with inflammation. Transl Psychiatry 2, e79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Felger JC et al (2015) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry

    Google Scholar 

  58. Leonard BE (2015) Pain, depression and inflammation: are interconnected causative factors involved? Mod Trends Pharmacopsychiatry 30:22–35

    Article  Google Scholar 

  59. Young JJ, Bruno D, Pomara N (2014) A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord 169:15–20

    Article  CAS  PubMed  Google Scholar 

  60. Levine J et al (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40(4):171–176

    Article  CAS  PubMed  Google Scholar 

  61. Raison CL et al (2009) Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry 65(4):296–303

    Article  CAS  PubMed  Google Scholar 

  62. Pavon L et al (2006) Th2 cytokine response in major depressive disorder patients before treatment. J Neuroimmunol 172(1–2):156–165

    Article  CAS  PubMed  Google Scholar 

  63. Euteneuer F et al (2011) Depression, cytokines and experimental pain: evidence for sex-related association patterns. J Affect Disord 131(1–3):143–149

    Article  CAS  PubMed  Google Scholar 

  64. Fitzgerald P et al (2006) Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol Med 36(1):37–43

    Article  PubMed  Google Scholar 

  65. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150(3):736–744

    Article  CAS  PubMed  Google Scholar 

  66. Gharekhani A et al (2014) The effect of omega-3 fatty acids on depressive symptoms and inflammatory markers in maintenance hemodialysis patients: a randomized, placebo-controlled clinical trial. Eur J Clin Pharmacol 70(6):655–665

    Article  CAS  PubMed  Google Scholar 

  67. Mischoulon D et al (2015) A double-blind, randomized controlled clinical trial comparing eicosapentaenoic acid versus docosahexaenoic acid for depression. J Clin Psychiatry 76(1):54–61

    Article  PubMed  Google Scholar 

  68. Dashti-Khavidaki S et al (2014) Effects of omega-3 fatty acids on depression and quality of life in maintenance hemodialysis patients. Am J Ther 21(4):275–287

    Article  PubMed  Google Scholar 

  69. Sinn N et al (2012) Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr 107(11):1682–1693

    Article  CAS  PubMed  Google Scholar 

  70. Tajalizadekhoob Y et al (2011) The effect of low-dose omega 3 fatty acids on the treatment of mild to moderate depression in the elderly: a double-blind, randomized, placebo-controlled study. Eur Arch Psychiatry Clin Neurosci 261(8):539–549

    Article  PubMed  Google Scholar 

  71. Rondanelli M et al (2010) Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: a double-blind, placebo-controlled, randomized clinical trial. J Am Coll Nutr 29(1):55–64

    Article  CAS  PubMed  Google Scholar 

  72. Rondanelli M et al (2011) Long chain omega 3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J Nutr Health Aging 15(1):37–44

    Article  CAS  PubMed  Google Scholar 

  73. Freeman MP et al (2011) Omega-3 fatty acids for major depressive disorder associated with the menopausal transition: a preliminary open trial. Menopause 18(3):279–284

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lesperance F et al (2011) The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry 72(8):1054–1062

    Article  CAS  PubMed  Google Scholar 

  75. Mischoulon D et al (2009) A double-blind, randomized controlled trial of ethyl-eicosapentaenoate for major depressive disorder. J Clin Psychiatry 70(12):1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Clayton EH et al (2009) Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur J Clin Nutr 63(8):1037–1040

    Article  CAS  PubMed  Google Scholar 

  77. Nemets H et al (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163(6):1098–1100

    Article  PubMed  Google Scholar 

  78. Su KP et al (2003) Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 13(4):267–271

    Article  CAS  PubMed  Google Scholar 

  79. Wiggs LD et al (1991) Mortality among workers exposed to external ionizing radiation at a nuclear facility in Ohio. J Occup Med 33(5):632–637

    CAS  PubMed  Google Scholar 

  80. Haberka M et al (2013) Effects of n-3 polyunsaturated fatty acids on depressive symptoms, anxiety and emotional state in patients with acute myocardial infarction. Pharmacol Rep 65(1):59–68

    Article  CAS  PubMed  Google Scholar 

  81. Freeman MP et al (2008) Omega-3 fatty acids and supportive psychotherapy for perinatal depression: a randomized placebo-controlled study. J Affect Disord 110(1–2):142–148

    Article  CAS  PubMed  Google Scholar 

  82. Gertsik L et al (2012) Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J Clin Psychopharmacol 32(1):61–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lopresti AL et al (2015) Curcumin and major depression: a randomised, double-blind, placebo-controlled trial investigating the potential of peripheral biomarkers to predict treatment response and antidepressant mechanisms of change. Eur Neuropsychopharmacol 25(1):38–50

    Article  CAS  PubMed  Google Scholar 

  84. Lopresti AL et al (2014) Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord 167:368–375

    Article  CAS  PubMed  Google Scholar 

  85. Iyengar RL et al (2013) NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med 126(11):1017 e11-8

    Google Scholar 

  86. Mendlewicz J et al (2006) Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 21(4):227–231

    Article  PubMed  Google Scholar 

  87. Muller N et al (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684

    Article  CAS  PubMed  Google Scholar 

  88. Abbasi SH et al (2012) Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord 141(2–3):308–314

    Article  CAS  PubMed  Google Scholar 

  89. Akhondzadeh S et al (2009) Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety 26(7):607–611

    Article  CAS  PubMed  Google Scholar 

  90. Nery FG et al (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23(2):87–94

    Article  CAS  PubMed  Google Scholar 

  91. Ertenli I et al (2012) Infliximab, a TNF-alpha antagonist treatment in patients with ankylosing spondylitis: the impact on depression, anxiety and quality of life level. Rheumatol Int 32(2):323–330

    Article  CAS  PubMed  Google Scholar 

  92. Raison CL et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mocking RJ et al (2012) Biological effects of add-on eicosapentaenoic acid supplementation in diabetes mellitus and co-morbid depression: a randomized controlled trial. PLoS One 7(11), e49431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. da Silva TM et al (2008) Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord 111(2–3):351–359

    Article  PubMed  CAS  Google Scholar 

  95. Mischoulon D et al (2008) A double-blind dose-finding pilot study of docosahexaenoic acid (DHA) for major depressive disorder. Eur Neuropsychopharmacol 18(9):639–645

    Article  CAS  PubMed  Google Scholar 

  96. Peet M, Horrobin DF (2002) A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 59(10):913–919

    Article  CAS  PubMed  Google Scholar 

  97. Mozaffari-Khosravi H et al (2013) Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: a randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 23(7):636–644

    Article  CAS  PubMed  Google Scholar 

  98. Bergman J et al (2013) Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 36(3):73–77

    Article  CAS  PubMed  Google Scholar 

  99. Meyer BJ et al (2013) Improvement of major depression is associated with increased erythrocyte DHA. Lipids 48(9):863–868

    Article  CAS  PubMed  Google Scholar 

  100. Antypa N et al (2012) Effects of omega-3 fatty acid supplementation on mood and emotional information processing in recovered depressed individuals. J Psychopharmacol 26(5):738–743

    Article  PubMed  CAS  Google Scholar 

  101. Giltay EJ, Geleijnse JM, Kromhout D (2011) Effects of n-3 fatty acids on depressive symptoms and dispositional optimism after myocardial infarction. Am J Clin Nutr 94(6):1442–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rees AM, Austin MP, Parker GB (2008) Omega-3 fatty acids as a treatment for perinatal depression: randomized double-blind placebo-controlled trial. Aust N Z J Psychiatry 42(3):199–205

    Article  PubMed  Google Scholar 

  103. Grenyer BF et al (2007) Fish oil supplementation in the treatment of major depression: a randomised double-blind placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 31(7):1393–1396

    Article  CAS  PubMed  Google Scholar 

  104. Freeman MP et al (2006) Randomized dose-ranging pilot trial of omega-3 fatty acids for postpartum depression. Acta Psychiatr Scand 113(1):31–35

    Article  CAS  PubMed  Google Scholar 

  105. Llorente AM et al (2003) Effect of maternal docosahexaenoic acid supplementation on postpartum depression and information processing. Am J Obstet Gynecol 188(5):1348–1353

    Article  CAS  PubMed  Google Scholar 

  106. Marangell LB et al (2003) A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry 160(5):996–998

    Article  PubMed  Google Scholar 

  107. Lucas M et al (2009) Ethyl-eicosapentaenoic acid for the treatment of psychological distress and depressive symptoms in middle-aged women: a double-blind, placebo-controlled, randomized clinical trial. Am J Clin Nutr 89(2):641–651

    Article  CAS  PubMed  Google Scholar 

  108. Bot M et al (2010) Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus: a randomized, double-blind placebo-controlled study. J Affect Disord 126(1–2):282–286

    Article  CAS  PubMed  Google Scholar 

  109. Silvers KM et al (2005) Randomised double-blind placebo-controlled trial of fish oil in the treatment of depression. Prostaglandins Leukot Essent Fatty Acids 72(3):211–218

    Article  CAS  PubMed  Google Scholar 

  110. Keck PE Jr et al (2006) Double-blind, randomized, placebo-controlled trials of ethyl-eicosapentanoate in the treatment of bipolar depression and rapid cycling bipolar disorder. Biol Psychiatry 60(9):1020–1022

    Article  CAS  PubMed  Google Scholar 

  111. Bot M et al (2011) Supplementation with eicosapentaenoic omega-3 fatty acid does not influence serum brain-derived neurotrophic factor in diabetes mellitus patients with major depression: a randomized controlled pilot study. Neuropsychobiology 63(4):219–223

    Article  CAS  PubMed  Google Scholar 

  112. Carney RM et al (2009) Omega-3 augmentation of sertraline in treatment of depression in patients with coronary heart disease: a randomized controlled trial. JAMA 302(15):1651–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bot M et al (2011) Inflammation and treatment response to sertraline in patients with coronary heart disease and comorbid major depression. J Psychosom Res 71(1):13–17

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sanmukhani J et al (2014) Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res 28(4):579–585

    Article  CAS  PubMed  Google Scholar 

  115. Fields C et al (2012) Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. Am J Geriatr Psychiatry 20(6):505–513

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sharpley CF, Agnew LL (2011) Cytokines and depression: findings, issues, and treatment implications. Rev Neurosci 22(3):295–302

    Article  CAS  PubMed  Google Scholar 

  117. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    CAS  PubMed  Google Scholar 

  118. Plata-Salaman CR, Ilyin SE (1997) Interleukin-1beta (IL-1beta)-induced modulation of the hypothalamic IL-1beta system, tumor necrosis factor-alpha, and transforming growth factor-beta1 mRNAs in obese (fa/fa) and lean (Fa/Fa) Zucker rats: implications to IL-1beta feedback systems and cytokine-cytokine interactions. J Neurosci Res 49(5):541–550

    Article  CAS  PubMed  Google Scholar 

  119. Jehn CF et al (2010) Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer. Integr Cancer Ther 9(3):270–275

    Article  CAS  PubMed  Google Scholar 

  120. Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77(6):1690–1694

    CAS  PubMed  Google Scholar 

  121. Himmerich H et al (2006) Successful antidepressant therapy restores the disturbed interplay between TNF-alpha system and HPA axis. Biol Psychiatry 60(8):882–888

    Article  CAS  PubMed  Google Scholar 

  122. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5–6):519–525

    Article  CAS  PubMed  Google Scholar 

  123. Catena-Dell'Osso M et al (2013) Inflammation, serotonin and major depression. Curr Drug Targets 14(5):571–577

    Article  PubMed  Google Scholar 

  124. Pemberton LA et al (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17(10):589–595

    Article  CAS  PubMed  Google Scholar 

  125. Zalcman S et al (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643(1–2):40–49

    Article  CAS  PubMed  Google Scholar 

  126. Hurst SM, Collins SM (1994) Mechanism underlying tumor necrosis factor-alpha suppression of norepinephrine release from rat myenteric plexus. Am J Physiol 266(6 Pt 1):G1123–G1129

    CAS  PubMed  Google Scholar 

  127. Ando T, Dunn AJ (1999) Mouse tumor necrosis factor-alpha increases brain tryptophan concentrations and norepinephrine metabolism while activating the HPA axis in mice. Neuroimmunomodulation 6(5):319–329

    Article  CAS  PubMed  Google Scholar 

  128. Moron JA et al (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci 23(24):8480–8488

    CAS  PubMed  Google Scholar 

  129. Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm (Vienna) 114(1):33–41

    Article  Google Scholar 

  130. Shuto H et al (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747(2):348–351

    Article  CAS  PubMed  Google Scholar 

  131. Kitagami T et al (2003) Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood–brain barrier. Brain Res 978(1–2):104–114

    Article  CAS  PubMed  Google Scholar 

  132. Viviani B et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23(25):8692–8700

    CAS  PubMed  Google Scholar 

  133. Hu S et al (2000) Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 7(3):153–159

    Article  CAS  PubMed  Google Scholar 

  134. Hayley S et al (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135(3):659–678

    Article  CAS  PubMed  Google Scholar 

  135. Kaneko N et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31(12):2619–2626

    Article  CAS  PubMed  Google Scholar 

  136. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31

    Article  CAS  PubMed  Google Scholar 

  138. Pavol MA et al (1995) Pattern of neurobehavioral deficits associated with interferon alfa therapy for leukemia. Neurology 45(5):947–950

    Article  CAS  PubMed  Google Scholar 

  139. Malaguarnera M et al (1998) Interferon alpha-induced depression in chronic hepatitis C patients: comparison between different types of interferon alpha. Neuropsychobiology 37(2):93–97

    Article  CAS  PubMed  Google Scholar 

  140. Caraceni A et al (1998) Neurotoxicity of interferon-alpha in melanoma therapy: results from a randomized controlled trial. Cancer 83(3):482–489

    Article  CAS  PubMed  Google Scholar 

  141. Raison CL et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403

    Article  CAS  PubMed  Google Scholar 

  142. Schaefer M et al (2002) Interferon alpha (IFNalpha) and psychiatric syndromes: a review. Prog Neuropsychopharmacol Biol Psychiatry 26(4):731–746

    Article  CAS  PubMed  Google Scholar 

  143. Brydon L et al (2009) Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans. Brain Behav Immun 23(2):217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Strike PC, Wardle J, Steptoe A (2004) Mild acute inflammatory stimulation induces transient negative mood. J Psychosom Res 57(2):189–194

    Article  PubMed  Google Scholar 

  145. Geubelle F (1956) Spectrophotometric semi-micro method for the determination of the hemoglobin-oxyhemoglobin ratio in the blood. Clin Chim Acta 1(3):225–228

    Article  CAS  PubMed  Google Scholar 

  146. Dowlati Y et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  147. Setiawan E et al (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72(3):268–275

    Article  PubMed  PubMed Central  Google Scholar 

  148. Maes M et al (1990) Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 24(3):115–120

    Article  PubMed  Google Scholar 

  149. Maes M et al (2012) Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Prog Neuropsychopharmacol Biol Psychiatry 36(1):169–175

    Article  PubMed  Google Scholar 

  150. Maes M et al (1993) Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression. Psychiatry Res 49(2):151–165

    Article  CAS  PubMed  Google Scholar 

  151. Gabbay V et al (2010) The possible role of the kynurenine pathway in adolescent depression with melancholic features. J Child Psychol Psychiatry 51(8):935–943

    Article  PubMed  PubMed Central  Google Scholar 

  152. Maes M et al (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721

    Article  CAS  PubMed  Google Scholar 

  153. Tang CZ et al (2015) Elevated serum levels of neopterin at admission predicts depression after acute ischemic stroke: a 6-month follow-up study. Mol Neurobiol

    Google Scholar 

  154. Andreazza AC (2012) Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. Mol Biosyst 8(10):2503–2512

    Article  CAS  PubMed  Google Scholar 

  155. Liu T et al (2015) A meta-analysis of oxidative stress markers in depression. PLoS One 10(10), e0138904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Mazereeuw G et al (2015) A meta-analysis of lipid peroxidation markers in major depression. Neuropsychiatr Dis Treat 11:2479–2491

    PubMed  PubMed Central  Google Scholar 

  157. Black CN et al (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175

    Article  CAS  PubMed  Google Scholar 

  158. Maes M et al (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20(3):127–150

    Article  CAS  PubMed  Google Scholar 

  159. Shao L et al (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Suomalainen A et al (1992) Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J Clin Invest 90(1):61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gardner A, Boles RG (2008) Mitochondrial energy depletion in depression with somatization. Psychother Psychosom 77(2):127–129

    Article  PubMed  Google Scholar 

  162. Chang CC et al (2015) Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 10(5), e0125855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rodenburg W et al (2008) Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression. BMC Genomics 9:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785

    Article  CAS  PubMed  Google Scholar 

  165. Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239

    Article  CAS  PubMed  Google Scholar 

  166. Martin-Subero M et al (2016) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr 21(2):184–198

    Article  PubMed  Google Scholar 

  167. Mazereeuw G et al (2013) Platelet activating factors in depression and coronary artery disease: a potential biomarker related to inflammatory mechanisms and neurodegeneration. Neurosci Biobehav Rev 37(8):1611–1621

    Article  CAS  PubMed  Google Scholar 

  168. Adibhatla RM, Dempsy R, Hatcher JF (2008) Integration of cytokine biology and lipid metabolism in stroke. Front Biosci 13:1250–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kita Y et al (2006) Biochemical properties and pathophysiological roles of cytosolic phospholipase A2s. Biochim Biophys Acta 1761(11):1317–1322

    Article  CAS  PubMed  Google Scholar 

  170. Thivierge M, Rola-Pleszczynski M (1992) Platelet-activating factor enhances interleukin-6 production by alveolar macrophages. J Allergy Clin Immunol 90(5):796–802

    Article  CAS  PubMed  Google Scholar 

  171. Rola-Pleszczynski M et al (1993) Differential regulation of cytokine and cytokine receptor genes by PAF, LTB4 and PGE2. J Lipid Mediat 6(1–3):175–181

    CAS  PubMed  Google Scholar 

  172. Mazereeuw G et al (2015) Platelet activating factors are associated with depressive symptoms in coronary artery disease patients: a hypothesis-generating study. Neuropsychiatr Dis Treat 11:2309–2314

    PubMed  PubMed Central  Google Scholar 

  173. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163(3):560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Moylan S et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62

    Article  CAS  PubMed  Google Scholar 

  175. Maes M et al (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    Article  CAS  PubMed  Google Scholar 

  176. Maes M et al (2013) Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J Affect Disord 149(1–3):23–29

    Article  CAS  PubMed  Google Scholar 

  177. Maes M et al (2011) IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 135(1–3):414–418

    Article  CAS  PubMed  Google Scholar 

  178. Moniczewski A et al (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep 67(3):560–568

    Article  CAS  PubMed  Google Scholar 

  179. Jimenez-Fernandez S et al (2015) Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis., J Clin Psychiatry

    Google Scholar 

  180. Vavakova M, Durackova Z, Trebaticka J (2015) Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev 2015:898393

    Article  PubMed  PubMed Central  Google Scholar 

  181. Novak EA, Mollen KP (2015) Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 3:62

    Article  PubMed  PubMed Central  Google Scholar 

  182. De La Garza R 2nd et al (2005) Recombinant human interferon-alpha does not alter reward behavior, or neuroimmune and neuroendocrine activation in rats. Prog Neuropsychopharmacol Biol Psychiatry 29(5):781–792

    Article  CAS  Google Scholar 

  183. Marques-Deak AH et al (2007) Cytokine profiles in women with different subtypes of major depressive disorder. J Psychiatr Res 41(1–2):152–159

    Article  CAS  PubMed  Google Scholar 

  184. Steptoe A, Kunz-Ebrecht SR, Owen N (2003) Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med 33(4):667–674

    Article  CAS  PubMed  Google Scholar 

  185. Stubner S et al (1999) Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett 259(3):145–148

    Article  CAS  PubMed  Google Scholar 

  186. Brambilla F, Maggioni M (1998) Blood levels of cytokines in elderly patients with major depressive disorder. Acta Psychiatr Scand 97(4):309–313

    Article  CAS  PubMed  Google Scholar 

  187. Lotrich FE et al (2007) Depression following pegylated interferon-alpha: characteristics and vulnerability. J Psychosom Res 63(2):131–135

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fornaro M et al (2013) Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J Affect Disord 145(3):300–307

    Article  CAS  PubMed  Google Scholar 

  189. Baudez JC et al (2013) The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials. Water Res 47(1):173–180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista L. Lanctôt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, C.S., Adibfar, A., Herrmann, N., Gallagher, D., Lanctôt, K.L. (2016). Evidence for Inflammation-Associated Depression. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_2

Download citation

Publish with us

Policies and ethics