Skip to main content

The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 33(3):315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ et al (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69(10):1044–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B et al (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32(11):2384–2392

    Article  CAS  PubMed  Google Scholar 

  4. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD (2008) Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63(11):1022–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Majer M, Welberg LA, Capuron L, Pagnoni G, Raison CL, Miller AH (2008) IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun 22(6):870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB et al (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26(5):643–652

    Article  CAS  PubMed  Google Scholar 

  8. Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 19(2):105–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Targum SD, Fava M (2011) Fatigue as a residual symptom of depression. Innov Clin Neurosci 8(10):40–43

    Google Scholar 

  10. Rush AJ (2007) STAR*D: what have we learned? Am J Psychiatry 164(2):201–204

    Article  PubMed  Google Scholar 

  11. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337

    Article  CAS  PubMed  Google Scholar 

  12. Trivedi MH, Hollander E, Nutt D, Blier P (2008) Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J Clin Psychiatry 69(2):246–258

    Article  PubMed  Google Scholar 

  13. Morrow GR, Hickok JT, Roscoe JA, Raubertas RF, Andrews PL, Flynn PJ et al (2003) Differential effects of paroxetine on fatigue and depression: a randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. J Clin Oncol 21(24):4635–4641

    Article  CAS  PubMed  Google Scholar 

  14. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162

    Article  CAS  PubMed  Google Scholar 

  15. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler JM Jr, Case LD, Atkins J, Frizzell B, Sanders G, Griffin P et al (2007) A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy. Int J Radiat Oncol Biol Phys 69(5):1496–1501

    Article  CAS  PubMed  Google Scholar 

  17. Mar Fan HG, Clemons M, Xu W, Chemerynsky I, Breunis H, Braganza S et al (2008) A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer 16(6):577–583

    Article  PubMed  Google Scholar 

  18. Moraska AR, Sood A, Dakhil SR, Sloan JA, Barton D, Atherton PJ et al (2010) Phase III, randomized, double-blind, placebo-controlled study of long-acting methylphenidate for cancer-related fatigue: North Central Cancer Treatment Group NCCTG-N05C7 trial. J Clin Oncol 28(23):3673–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldsmith DRHE, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, Treadway MT, Felger JC, Miller AH (2016) Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun pii:S0889–1591(16)30070–8. doi:10.1016/j.bbi.2016.03.025

    Google Scholar 

  20. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X et al (in press) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry

    Google Scholar 

  21. Taylor JL, Grossberg SE (1998) The effects of interferon-alpha on the production and action of other cytokines. Semin Oncol 25(1 Suppl 1):23–29

    CAS  PubMed  Google Scholar 

  22. Sissolak G, Hoffbrand AV, Mehta AB, Ganeshaguru K (1992) Effects of interferon-alpha (IFN) on the expression of interleukin 1-beta (IL-1), interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF) in acute myeloid leukemia (AML) blasts. Leukemia 6(11):1155–1160

    Google Scholar 

  23. Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM et al (2007) Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry 62(11):1324–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raison CL, Borisov AS, Majer M, Drake DF, Pagnoni G, Woolwine BJ et al (2009) Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry 65(4):296–303

    Article  CAS  PubMed  Google Scholar 

  25. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH (2003) Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry 160(7):1342–1345

    Article  PubMed  Google Scholar 

  26. Donnelly S (1998) Patient management strategies for interferon alfa-2b as adjuvant therapy of high-risk melanoma. Oncol Nurs Forum 25(5):921–927

    CAS  PubMed  Google Scholar 

  27. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D et al (2003) Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry 54(9):906–914

    Article  CAS  PubMed  Google Scholar 

  28. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS et al (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344(13):961–966

    Article  CAS  PubMed  Google Scholar 

  29. Raison CL, Borisov AS, Broadwell SD, Capuron L, Woolwine BJ, Jacobson IM et al (2005) Depression during pegylated interferon-alpha plus ribavirin therapy: prevalence and prediction. J Clin Psychiatry 66(1):41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raison CL, Rye DB, Woolwine BJ, Vogt GJ, Bautista BM, Spivey JR et al (2010) Chronic interferon-alpha administration disrupts sleep continuity and depth in patients with hepatitis C: association with fatigue, motor slowing, and increased evening cortisol. Biol Psychiatry 68(10):942–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capuron L, Hauser P, Hinze-Selch D, Miller AH, Neveu PJ (2002) Treatment of cytokine-induced depression. Brain Behav Immun 16(5):575–580

    Article  CAS  PubMed  Google Scholar 

  32. Kitagami T, Yamada K, Miura H, Hashimoto R, Nabeshima T, Ohta T (2003) Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood–brain barrier. Brain Res 978(1–2):104–114

    Article  CAS  PubMed  Google Scholar 

  33. Kumai T, Tateishi T, Tanaka M, Watanabe M, Shimizu H, Kobayashi S (2000) Effect of interferon-alpha on tyrosine hydroxylase and catecholamine levels in the brain of rats. Life Sci 67(6):663–669

    Article  CAS  PubMed  Google Scholar 

  34. Kamata M, Higuchi H, Yoshimoto M, Yoshida K, Shimizu T (2000) Effect of single intracerebroventricular injection of alpha-interferon on monoamine concentrations in the rat brain. Eur Neuropsychopharmacol 10(2):129–132

    Article  CAS  PubMed  Google Scholar 

  35. Sato T, Suzuki E, Yokoyama M, Semba J, Watanabe S, Miyaoka H (2006) Chronic intraperitoneal injection of interferon-alpha reduces serotonin levels in various regions of rat brain, but does not change levels of serotonin transporter mRNA, nitrite or nitrate. Psychiatry Clin Neurosci 60(4):499–506

    Article  CAS  PubMed  Google Scholar 

  36. Shuto H, Kataoka Y, Horikawa T, Fujihara N, Oishi R (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747(2):348–351

    Article  CAS  PubMed  Google Scholar 

  37. Loftis JM, Hauser P, Macey TA, Lowe JD (2006) Can rodents be used to model interferon-alpha-induced depressive symptoms? Prog Neuropsychopharmacol Biol Psychiatry 30(7):1364–1365, author reply 1366

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Campbell IL, Zhang H (2008) Systemic interferon-alpha regulates interferon-stimulated genes in the central nervous system. Mol Psychiatry 13(3):293–301

    Article  CAS  PubMed  Google Scholar 

  39. Loftis JM, Wall JM, Pagel RL, Hauser P (2006) Administration of pegylated interferon-alpha-2a or -2b does not induce sickness behavior in Lewis rats. Psychoneuroendocrinology 31(10):1289–1294

    Article  CAS  PubMed  Google Scholar 

  40. Rosenzweig-Lipson S, Hesterberg P, Bergman J (1994) Observational studies of dopamine D1 and D2 agonists in squirrel monkeys. Psychopharmacology (Berl) 116(1):9–18

    Article  CAS  Google Scholar 

  41. McKinney WT Jr, Eising RG, Moran EC, Suomi SJ, Harlow HF (1971) Effects of reserpine on the social behavior of rhesus monkeys. Dis Nerv Syst 32(11):735–741

    CAS  PubMed  Google Scholar 

  42. Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, Hernandez CR et al (2013) Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 38(11):2179–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felger JC, Hernandez CR, Miller AH (2015) Levodopa reverses cytokine-induced reductions in striatal dopamine release. Int J Neuropsychopharmacol 18(4)

    Google Scholar 

  44. Nunes EJ, Randall PA, Estrada A, Epling B, Hart EE, Lee CA et al (2014) Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology (Berl) 231(4):727–736

    Article  CAS  Google Scholar 

  45. Vichaya EG, Hunt SC, Dantzer R (2014) Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice. Neuropsychopharmacology 39(12):2884–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeh KY, Shou SS, Lin YX, Chen CC, Chiang CY, Yeh CY (2015) Effect of Ginkgo biloba extract on lipopolysaccharide-induced anhedonic depressive-like behavior in male rats. Phytother Res 29(2):260–266

    Article  PubMed  Google Scholar 

  47. van Heesch F, Prins J, Konsman JP, Korte-Bouws GA, Westphal KG, Rybka J et al (2014) Lipopolysaccharide increases degradation of central monoamines: an in vivo microdialysis study in the nucleus accumbens and medial prefrontal cortex of mice. Eur J Pharmacol 725:55–63

    Article  PubMed  CAS  Google Scholar 

  48. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reinert KR, Umphlet CD, Quattlebaum A, Boger HA (2014) Short-term effects of an endotoxin on substantia nigra dopamine neurons. Brain Res 1557:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian YY, An LJ, Jiang L, Duan YL, Chen J, Jiang B (2006) Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci 80(3):193–199

    Article  CAS  PubMed  Google Scholar 

  51. Lebena A, Vegas O, Gomez-Lazaro E, Arregi A, Garmendia L, Beitia G et al (2014) Melanoma tumors alter proinflammatory cytokine production and monoamine brain function, and induce depressive-like behavior in male mice. Behav Brain Res 272:83–92

    Article  CAS  PubMed  Google Scholar 

  52. Uomoto M, Nishibori M, Nakaya N, Takeuchi Y, Iwagaki H, Tanaka N et al (1998) Changes in monoamine turnover in the brain of cachectic mice bearing colon-26 tumor cells. J Neurochem 70(1):260–267

    Article  CAS  PubMed  Google Scholar 

  53. Grace AA (2002) Dopamine. In: Davis KL, Charney DS, Coyle JT, Nemeroff CB (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 119–132

    Google Scholar 

  54. Juengling FD, Ebert D, Gut O, Engelbrecht MA, Rasenack J, Nitzsche EU et al (2000) Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology (Berl) 152(4):383–389

    Article  CAS  Google Scholar 

  55. Spetsieris PG, Moeller JR, Dhawan V, Ishikawa T, Eidelberg D (1995) Visualizing the evolution of abnormal metabolic networks in the brain using PET. Comput Med Imaging Graph 19(3):295–306

    Article  CAS  PubMed  Google Scholar 

  56. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14(5):783–801

    Article  CAS  PubMed  Google Scholar 

  57. Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A et al (2002) Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry 159(5):746–754

    Article  PubMed  Google Scholar 

  58. Wichmann T, DeLong MR (1999) Oscillations in the basal ganglia. Nature 400(6745):621–622

    Article  CAS  PubMed  Google Scholar 

  59. Wichmann T, DeLong MR (2003) Functional neuroanatomy of the basal ganglia in Parkinson’s disease. Adv Neurol 91:9–18

    PubMed  Google Scholar 

  60. Harrison NA, Cercignani M, Voon V, Critchley HD (2015) Effects of inflammation on hippocampus and substantia nigra responses to novelty in healthy human participants. Neuropsychopharmacology 40(4):831–838

    Article  PubMed  Google Scholar 

  61. Harrison NA, Voon V, Cercignani M, Cooper EA, Pessiglione M, Critchley HD (2015) A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol Psychiatry

    Google Scholar 

  62. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442(7106):1042–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaasinen V, Nurmi E, Bruck A, Eskola O, Bergman J, Solin O et al (2001) Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 124(Pt 6):1125–1130

    Article  CAS  PubMed  Google Scholar 

  64. Kumakura Y, Cumming P (2009) PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist 15(6):635–650

    Article  CAS  PubMed  Google Scholar 

  65. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES et al (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49(8):853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumakura Y, Gjedde A, Danielsen EH, Christensen S, Cumming P (2006) Dopamine storage capacity in caudate and putamen of patients with early Parkinson’s disease: correlation with asymmetry of motor symptoms. J Cereb Blood Flow Metab 26(3):358–370

    Article  CAS  PubMed  Google Scholar 

  67. Miller AH, Jones JF, Drake DF, Tian H, Unger ER, Pagnoni G (2014) Decreased basal ganglia activation in subjects with chronic fatigue syndrome: association with symptoms of fatigue. PLoS One 9(5), e98156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T et al (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. In press

    Google Scholar 

  69. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14(9):609–625

    Article  CAS  PubMed  Google Scholar 

  70. Diekhof EK, Kaps L, Falkai P, Gruber O (2012) The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude – an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50(7):1252–1266

    Article  PubMed  Google Scholar 

  71. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M et al (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9(7):622–627

    Article  CAS  PubMed  Google Scholar 

  72. Cunnington C, Channon KM (2010) Tetrahydrobiopterin: pleiotropic roles in cardiovascular pathophysiology. Heart 96(23):1872–1877

    Article  CAS  PubMed  Google Scholar 

  73. Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273(40):25804–25808

    Article  CAS  PubMed  Google Scholar 

  74. Li W, Knowlton D, Woodward WR, Habecker BA (2003) Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 86(3):774–783

    Article  CAS  PubMed  Google Scholar 

  75. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P et al (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 70(2):175–182

    Article  CAS  PubMed  Google Scholar 

  76. Hashimoto R, Nagatsu T, Ohta T, Mizutani M, Omura I (2004) Changes in the concentrations of tetrahydrobiopterin, the cofactor of tyrosine hydroxylase, in blood under physical stress and in depression. Ann N Y Acad Sci 1018:378–386

    Article  CAS  PubMed  Google Scholar 

  77. Candito M, Nagatsu T, Chambon P, Chatel M (1994) High-performance liquid chromatographic measurement of cerebrospinal fluid tetrahydrobiopterin, neopterin, homovanillic acid and 5-hydroxyindoleacetic acid in neurological diseases. J Chromatogr B Biomed Appl 657(1):61–66

    Article  CAS  PubMed  Google Scholar 

  78. Yokoyama K, Tajima M, Yoshida H, Nakayama M, Tokutome G, Sakagami H et al (2002) Plasma pteridine concentrations in patients with chronic renal failure. Nephrol Dial Transplant 17(6):1032–1036

    Article  CAS  PubMed  Google Scholar 

  79. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL et al (2013) Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 31:153–160

    Article  CAS  PubMed  Google Scholar 

  80. Zoller H, Schloegl A, Schroecksnadel S, Vogel W, Fuchs D (2012) Interferon-alpha therapy in patients with hepatitis C virus infection increases plasma phenylalanine and the phenylalanine to tyrosine ratio. J Interferon Cytokine Res 32(5):216–220

    Article  CAS  PubMed  Google Scholar 

  81. Felger JC, Hernandez CR, Miller AH. Levodopa reverses cytokine-induced reductions in striatal dopamine release. Int J Neuropsychopharmacol. accepted

    Google Scholar 

  82. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27(30):8138–8148

    Article  CAS  PubMed  Google Scholar 

  83. Kazumori H, Ishihara S, Rumi MA, Ortega-Cava CF, Kadowaki Y, Kinoshita Y (2004) Transforming growth factor-alpha directly augments histidine decarboxylase and vesicular monoamine transporter 2 production in rat enterochromaffin-like cells. Am J Physiol Gastrointest Liver Physiol 286(3):G508–G514

    Article  CAS  PubMed  Google Scholar 

  84. Guillot TS, Richardson JR, Wang MZ, Li YJ, Taylor TN, Ciliax BJ et al (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42(4):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moron JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM et al (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci 23(24):8480–8488

    CAS  PubMed  Google Scholar 

  86. Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31(10):2121–2131

    CAS  PubMed  Google Scholar 

  87. Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD (2005) p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280(16):15649–15658

    Article  CAS  PubMed  Google Scholar 

  88. Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35(13):2510–2520

    Google Scholar 

  89. Gelman BB, Spencer JA, Holzer CE 3rd, Soukup VM (2006) Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 1(4):410–420

    Article  PubMed  Google Scholar 

  90. Ferris MJ, Mactutus CF, Booze RM (2008) Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 32(5):883–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dantzer R, Walker AK (2014) Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm 121(8):925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dantzer R, O’Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36(3):426–436

    Article  CAS  PubMed  Google Scholar 

  93. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10

    Article  CAS  PubMed  Google Scholar 

  94. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403

    Article  CAS  PubMed  Google Scholar 

  95. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M et al (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90

    Article  CAS  PubMed  Google Scholar 

  96. Santamaria A, Flores-Escartin A, Martinez JC, Osorio L, Galvan-Arzate S, Pedraza-Chaverri J et al (2003) Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems. Free Radic Biol Med 35(4):418–427

    Article  CAS  PubMed  Google Scholar 

  97. Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tavares RG, Tasca CI, Santos CES, Alves LB, Porciuncula LO, Emanuelli T et al (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627

    Article  CAS  PubMed  Google Scholar 

  99. Tavares RG, Schmidt AP, Abud J, Tasca CI, Souza DO (2005) In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem Res 30(4):439–444

    Article  CAS  PubMed  Google Scholar 

  100. Guillemin GJ, Croitoru-Lamoury J, Dormont D, Armati PJ, Brew BJ (2003) Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 41(4):371–381

    Article  PubMed  Google Scholar 

  101. Guillemin GJ (2012) Quinolinic acid: neurotoxicity. FEBS J 279(8):1355

    Article  CAS  PubMed  Google Scholar 

  102. Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21(4):149–154

    Article  CAS  PubMed  Google Scholar 

  103. Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm 114(1):33–41

    Article  PubMed  Google Scholar 

  104. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070

    Article  CAS  PubMed  Google Scholar 

  105. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H (2008) Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett 432(3):232–236

    Article  CAS  PubMed  Google Scholar 

  106. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation 9:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414

    CAS  PubMed  Google Scholar 

  108. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031

    Article  CAS  PubMed  Google Scholar 

  109. Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90

    Article  CAS  PubMed  Google Scholar 

  110. Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78(4):967–975

    Article  CAS  PubMed  Google Scholar 

  111. Bower JE, Ganz PA, Aziz N, Fahey JL (2002) Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med 64(4):604–611

    Article  PubMed  Google Scholar 

  112. Miller AH, Ancoli-Israel S, Bower JE, Capuron L, Irwin MR (2008) Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol 26(6):971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Skalla K et al (2002) Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol 20(2):485–493

    Article  CAS  PubMed  Google Scholar 

  114. Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56(11):819–824

    Article  CAS  PubMed  Google Scholar 

  115. Raison CL, Felger JC, Miller AH (2013) Inflammation and treatment resistance in major depression: a perfect storm. Psychiatric Times

    Google Scholar 

  116. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ et al (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38(3):377–385

    Article  CAS  PubMed  Google Scholar 

  117. Sugawara Y, Akechi T, Shima Y, Okuyama T, Akizuki N, Nakano T et al (2002) Efficacy of methylphenidate for fatigue in advanced cancer patients: a preliminary study. Palliat Med 16(3):261–263

    Article  PubMed  Google Scholar 

  118. Pucci E, Branas P, D’Amico R, Giuliani G, Solari A, Taus C (2007) Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst Rev (Online) (1):CD002818

    Google Scholar 

  119. Stankoff B, Waubant E, Confavreux C, Edan G, Debouverie M, Rumbach L et al (2005) Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology 64(7):1139–1143

    Article  CAS  PubMed  Google Scholar 

  120. Bruera E, Yennurajalingam S, Palmer JL, Perez-Cruz PE, Frisbee-Hume S, Allo JA et al (2013) Methylphenidate and/or a nursing telephone intervention for fatigue in patients with advanced cancer: a randomized, placebo-controlled, phase II trial. J Clin Oncol 31(19):2421–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A et al (2006) Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367(9504):29–35

    Article  CAS  PubMed  Google Scholar 

  123. Zunszain PA, Hepgul N, Pariante CM (2013) Inflammation and depression. Curr Top Behav Neurosci 14:135–151

    Article  CAS  PubMed  Google Scholar 

  124. Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA et al (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 24(12):1852–1859

    Article  CAS  PubMed  Google Scholar 

  125. Douglas TD, Jinnah HA, Bernhard D, Singh RH (2013) The effects of sapropterin on urinary monoamine metabolites in phenylketonuria. Mol Genet Metab 109(3):243–250

    Article  CAS  PubMed  Google Scholar 

  126. Burton BK, Bausell H, Katz R, Laduca H, Sullivan C (2010) Sapropterin therapy increases stability of blood phenylalanine levels in patients with BH4-responsive phenylketonuria (PKU). Mol Genet Metab 101(2–3):110–114

    Article  CAS  PubMed  Google Scholar 

  127. Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A et al (2009) Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr 154(5):700–707

    Article  CAS  PubMed  Google Scholar 

  128. Utz JR, Lorentz CP, Markowitz D, Rudser KD, Diethelm-Okita B, Erickson D et al (2012) START, a double blind, placebo-controlled pharmacogenetic test of responsiveness to sapropterin dihydrochloride in phenylketonuria patients. Mol Genet Metab 105(2):193–197

    Article  CAS  PubMed  Google Scholar 

  129. Stahl SM (2007) Novel therapeutics for depression: L-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS Spectr 12(10):739–744

    Article  PubMed  Google Scholar 

  130. Shintaku H (2002) Disorders of tetrahydrobiopterin metabolism and their treatment. Curr Drug Metab 3(2):123–131

    Article  CAS  PubMed  Google Scholar 

  131. Papakostas GI, Mischoulon D, Shyu I, Alpert JE, Fava M (2010) S-adenosyl methionine (SAMe) augmentation of serotonin reuptake inhibitors for antidepressant nonresponders with major depressive disorder: a double-blind, randomized clinical trial. Am J Psychiatry 167(8):942–948

    Article  PubMed  Google Scholar 

  132. Godfrey PS, Toone BK, Carney MW, Flynn TG, Bottiglieri T, Laundy M et al (1990) Enhancement of recovery from psychiatric illness by methylfolate. Lancet 336(8712):392–395

    Article  CAS  PubMed  Google Scholar 

  133. Ginsberg LD, Oubre AY, Daoud YA (2011) L-methylfolate plus SSRI or SNRI from treatment initiation compared to SSRI or SNRI monotherapy in a major depressive episode. Innov Clin Neurosci 8(1):19–28

    PubMed  PubMed Central  Google Scholar 

  134. Pan L, McKain BW, Madan-Khetarpal S, McGuire M, Diler RS, Perel JM et al (2011) GTP-cyclohydrolase deficiency responsive to sapropterin and 5-HTP supplementation: relief of treatment-refractory depression and suicidal behaviour. BMJ Case Rep 2011

    Google Scholar 

  135. Sato H, Uematsu M, Endo W, Nakayama T, Kobayashi T, Hino-Fukuyo N et al (2014) Early replacement therapy in a first Japanese case with autosomal recessive guanosine triphosphate cyclohydrolase I deficiency with a novel point mutation. Brain Dev 36(3):268–271

    Article  PubMed  Google Scholar 

  136. Gilbody S, Lewis S, Lightfoot T (2007) Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 165(1):1–13

    Article  PubMed  Google Scholar 

  137. Gilbody S, Lightfoot T, Sheldon T (2007) Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health 61(7):631–637

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fava M, Borus JS, Alpert JE, Nierenberg AA, Rosenbaum JF, Bottiglieri T (1997) Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry 154(3):426–428

    Article  CAS  PubMed  Google Scholar 

  139. Papakostas GI, Petersen T, Mischoulon D, Green CH, Nierenberg AA, Bottiglieri T et al (2004) Serum folate, vitamin B12, and homocysteine in major depressive disorder, Part 2: predictors of relapse during the continuation phase of pharmacotherapy. J Clin Psychiatry 65(8):1096–1098

    Article  CAS  PubMed  Google Scholar 

  140. Papakostas GI, Petersen T, Mischoulon D, Ryan JL, Nierenberg AA, Bottiglieri T et al (2004) Serum folate, vitamin B12, and homocysteine in major depressive disorder, Part 1: predictors of clinical response in fluoxetine-resistant depression. J Clin Psychiatry 65(8):1090–1095

    Article  CAS  PubMed  Google Scholar 

  141. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J et al (2009) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182(5):3202–3212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N et al (2008) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522

    Google Scholar 

  144. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS et al (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67(2):139–145

    Google Scholar 

  145. Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66(5):522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR et al (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134(Pt 7):2057–2073

    Article  PubMed  PubMed Central  Google Scholar 

  147. Meisner F, Scheller C, Kneitz S, Sopper S, Neuen-Jacob E, Riederer P et al (2008) Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology 33(9):2228–2236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. Felger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Felger, J.C. (2016). The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_13

Download citation

Publish with us

Policies and ethics