Skip to main content

Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

The environment in which individuals develop and mature is critical for their physiological and psychological outcome; in particular, the intrauterine environment has reached far more clinical relevance given its potential influence on shaping brain function and thus mental health. Gestational stress and/or maternal infection during pregnancy has been related with an increased incidence of neuropsychiatric disorders, including depression and schizophrenia. In this framework, the use of animal models has allowed a formal and deep investigation of causal determinants. Despite disruption of circadian clocks often represents a hallmark of several neuropsychiatric disorders, the relationship between disruption of brain development and the circadian system has been scarcely investigated. Nowadays, there is an increasing amount of studies suggesting a link between circadian system malfunction, early-life insults and the appearance of neuropsychiatric diseases at adulthood. Here, we briefly review evidence from clinical literature and animal models suggesting that the exposure to prenatal insults, i.e. severe gestational stress or maternal immune activation, changes the foetal hormonal milieu increasing the circulating levels of both glucocorticoids and pro-inflammatory cytokines. These two biological events have been reported to affect genes expression in experimental models and critically interfere with brain development triggering and/or exacerbating behavioural anomalies in the offspring. Herein, we highlight the importance to unravel the individual components of the body circadian system that might also be altered by prenatal insults and that may be causally associated with the disruption of neural and endocrine developmental programming.

Eva M Marco and Elena Velarde: These authors contributed equally to the present manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler DA et al (2014) Circadian cycle-dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation. Neuroscience 275:305–313

    Article  CAS  PubMed  Google Scholar 

  • Agorastos A, Kellner M, Baker DG, Otte C (2014) When time stands still: an integrative review on the role of chronodisruption in posttraumatic stress disorder. Curr Opin Psychiatry 27:385–392

    Article  PubMed  Google Scholar 

  • Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 358:1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atcheson JB, Tyler FH (1975) Circadian rhythm: man and animals. In: Greep RO, Astwood EB (eds) Handbook of physiology. American Physiological Society, Washington, pp 127–134

    Google Scholar 

  • Bartlang MS, Oster H, Helfrich-Forster C (2015) Repeated psychosocial stress at night affects the circadian activity rhythm of male mice. J Biol Rhythms 30:228–241

    Article  PubMed  Google Scholar 

  • Basil P, Li Q, Dempster EL, Mill J, Sham PC, Wong CC, McAlonan GM (2014) Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl Psychiatry 4:e434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basta-Kaim A et al (2011) Hyperactivity of the hypothalamus-pituitary-adrenal axis in lipopolysaccharide-induced neurodevelopmental model of schizophrenia in rats: effects of antipsychotic drugs. Eur J Pharmacol 650:586–595

    Article  CAS  PubMed  Google Scholar 

  • Bedrosian TA, Fonken LK, Nelson RJ (2015) Endocrine effects of circadian disruption. Annu Rev Physiol (In press)

    Google Scholar 

  • Bedrosian TA, Nelson RJ (2013) Influence of the modern light environment on mood. Mol Psychiatry 18:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bellinger DL, Lubahn C, Lorton D (2008) Maternal and early life stress effects on immune function: relevance to immunotoxicology. J immunotoxicol 5:419–444

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B:23–26

    Article  PubMed  Google Scholar 

  • Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, Smeraldi E (2005) Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett 376:51–55

    Article  CAS  PubMed  Google Scholar 

  • Beydoun H, Saftlas AF (2008) Physical and mental health outcomes of prenatal maternal stress in human and animal studies: a review of recent evidence. Paediatr Perinat Epidemiol 22:438–466

    Article  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33:267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boksa P (2004) Animal models of obstetric complications in relation to schizophrenia. Brain Res Brain Res Rev 45:1–17

    Article  PubMed  Google Scholar 

  • Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24:881–897

    Article  PubMed  Google Scholar 

  • Borisenkov MF, Kosova AL, Kasyanova ON (2012) Impact of perinatal photoperiod on the chronotype of 11- to 18-year-olds in northern European Russia. Chronobiol Int 29:305–310

    Article  CAS  PubMed  Google Scholar 

  • Borniger JC, McHenry ZD, Abi Salloum BA, Nelson RJ (2014) Exposure to dim light at night during early development increases adult anxiety-like responses. Physiol Behav 133:99–106

    Article  CAS  PubMed  Google Scholar 

  • Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  CAS  PubMed  Google Scholar 

  • Brinks V, van der Mark MH, de Kloet ER, Oitzl MS (2007) Differential MR/GR activation in mice results in emotional states beneficial or impairing for cognition. Neural plasticity 2007:90163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AS, Susser ES (2002) In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 8:51–57

    Article  PubMed  Google Scholar 

  • Budge H, Stephenson T, Symonds ME (2007) Maternal nutrient restriction is not equivalent to maternal biological stress. Curr Drug Targets 8:888–893

    Article  CAS  PubMed  Google Scholar 

  • Cambras T, Canal MM, Cernuda-Cernuda R, Garcia-Fernandez JM, Diez-Noguera A (2015) Darkness during early postnatal development is required for normal circadian patterns in the adult rat. Chronobiol Int 32:178–186

    Article  CAS  PubMed  Google Scholar 

  • Castrogiovanni P, Iapichino S, Pacchierotti C, Pieraccini F (1998) Season of birth in psychiatry. A review Neuropsychobiology 37:175–181

    Article  CAS  PubMed  Google Scholar 

  • Catalani A, Alema GS, Cinque C, Zuena AR, Casolini P (2011) Maternal corticosterone effects on hypothalamus-pituitary-adrenal axis regulation and behavior of the offspring in rodents. Neurosci Biobehav Rev 35:1502–1517

    Article  CAS  PubMed  Google Scholar 

  • Ciarleglio CM, Axley JC, Strauss BR, Gamble KL, McMahon DG (2011a) Perinatal photoperiod imprints the circadian clock. Nat Neurosci 14:25–27

    Article  CAS  PubMed  Google Scholar 

  • Ciarleglio CM, Resuehr HE, McMahon DG (2011b) Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 197:8–16

    Article  CAS  PubMed  Google Scholar 

  • Cirulli F, Francia N, Berry A, Aloe L, Alleva E, Suomi SJ (2009) Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev 33:573–585

    Article  CAS  PubMed  Google Scholar 

  • Coe CL, Kramer M, Kirschbaum C, Netter P, Fuchs E (2002) Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys. J Clin Endocrinol Metab 87:675–681

    Article  CAS  PubMed  Google Scholar 

  • Crowley SJ, Cain SW, Burns AC, Acebo C, Carskadon MA (2015) Increased sensitivity of the circadian system to light in early/mid puberty. J Clin Endocrinol Metab jc20152775

    Google Scholar 

  • Dabkowska M, Rybakowski J (1994) Stress, depression and schizophrenia in view of psychoimmunology. Psychiatr Pol 28:23–32

    CAS  PubMed  Google Scholar 

  • Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57:571–585

    Article  CAS  PubMed  Google Scholar 

  • Davis FC, Gorski RA (1985) Development of hamster circadian rhythms. I. Within-litter synchrony of mother and pup activity rhythms at weaning. Biol Reprod 33:353–362

    Article  CAS  PubMed  Google Scholar 

  • Davis FC, Reppert SM (2001) Development of mammalian circadian rhythms. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology, vol 12., Circadian ClocksKluwer Academic/Plenum Publishers, New York, pp 247–290

    Chapter  Google Scholar 

  • de Kloet ER (2003) Hormones, brain and stress. Endocr Regul 37:51–68

    PubMed  Google Scholar 

  • de Kloet ER, Karst H, Joëls M (2008) Corticosteroid hormones in the central stress response: Quick-and-slow. Front Neuroendocrinol 29:268–272

    Article  PubMed  CAS  Google Scholar 

  • Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130:165–183

    Article  CAS  PubMed  Google Scholar 

  • El-Hennamy R, Mateju K, Bendova Z, Sosniyenko S, Sumova A (2008) Maternal control of the fetal and neonatal rat suprachiasmatic nucleus. J Biol Rhythms 23:435–444

    Article  PubMed  Google Scholar 

  • Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

    Article  CAS  PubMed  Google Scholar 

  • Erren TC, Koch MS, Gross JV, Reiter RJ, Meyer-Rochow VB (2012) A possible role of perinatal light in mood disorders and internal cancers: reconciliation of instability and latitude concepts. Neuro Endocrinol Lett 33:314–317

    PubMed  Google Scholar 

  • Eskandari F, Sternberg EM (2002) Neural-immune interactions in health and disease. Ann N Y Acad Sci 966:20–27

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Goff DC, Henderson DC (2007) Inflammation and schizophrenia. Expert Rev Neurother 7:789–796

    Article  CAS  PubMed  Google Scholar 

  • Fortier ME, Joober R, Luheshi GN, Boksa P (2004) Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 38:335–345

    Article  PubMed  Google Scholar 

  • Fortier ME, Luheshi GN, Boksa P (2007) Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res 181:270–277

    Article  PubMed  Google Scholar 

  • Foster RG, Roenneberg T (2008) Human responses to the geophysical daily, annual and lunar cycles. Curr Biol 18:R784–R794

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32:1136–1151

    Article  CAS  PubMed  Google Scholar 

  • Gayle DA, Beloosesky R, Desai M, Amidi F, Nunez SE, Ross MG (2004) Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. Am J Physiol Regul Integr Comp Physiol 286:R1024–R1029

    Article  CAS  PubMed  Google Scholar 

  • Gibson EM, Wang C, Tjho S, Khattar N, Kriegsfeld LJ (2010) Experimental ‘jet lag’ inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS ONE 5:e15267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48:903–917

    Article  CAS  PubMed  Google Scholar 

  • Gotz AA, Stefanski V (2007) Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring. Physiol Behav 90:108–115

    Article  PubMed  CAS  Google Scholar 

  • Green NH, Jackson CR, Iwamoto H, Tackenberg MC, McMahon DG (2015) Photoperiod programs dorsal raphe serotonergic neurons and affective behaviors. Curr Biol 25:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings M, O’Neill JS, Maywood ES (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–198

    Article  CAS  PubMed  Google Scholar 

  • Honma K, Honma S (2009) The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci 30:1707–1717

    Article  PubMed  Google Scholar 

  • Houdek P, Sumova A (2014) In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS ONE 9:e107360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyman SL, Arndt TL, Rodier PM (2006) Environmental agents and autism: once and future associations Intern Rev Res. Ment Retard 30:171–194

    Google Scholar 

  • Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24:433–456

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L (2014) Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Compr Physiol 4:715–738

    Google Scholar 

  • Karatsoreos IN (2014) Links between circadian rhythms and psychiatric disease. Front Behav Neurosci 8:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Karrow NA (2006) Activation of the hypothalamic–pituitary–adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine–immune axis during fetal and neonatal development: Lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav Immun 20:144–158

    Article  CAS  PubMed  Google Scholar 

  • Koehl M, Darnaudéry M, Dulluc J, Van Reeth O, Moal ML, Maccari S (1999) Prenatal stress alters circadian activity of hypothalamo–pituitary–adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 40:302–315

    Article  CAS  PubMed  Google Scholar 

  • Koenig JI et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Kovacikova Z, Sladek M, Laurinova K, Bendova Z, Illnerova H, Sumova A (2005) Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus. Brain Res 1064:83–89

    Article  CAS  PubMed  Google Scholar 

  • Labrecque N, Cermakian N (2015) Circadian clocks in the immune system. J Biol Rhythms 30:277–290

    Article  CAS  PubMed  Google Scholar 

  • Laviola G, Adriani W, Rea M, Aloe L, Alleva E (2004a) Social withdrawal, neophobia, and stereotyped behavior in developing rats exposed to neonatal asphyxia. Psychopharmacology 175:196–205

    Article  CAS  PubMed  Google Scholar 

  • Laviola G, Ognibene E, Romano E, Adriani W, Keller F (2009) Gene-environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes. Neurosci Biobehav Rev 33:560–572

    Article  CAS  PubMed  Google Scholar 

  • Laviola G et al (2004b) Beneficial effects of enriched environment on adolescent rats from stressed pregnancies. Eur J Neurosci 20:1655–1664

    Article  PubMed  Google Scholar 

  • Lazinski MJ, Shea AK, Steiner M (2008) Effects of maternal prenatal stress on offspring development: a commentary. Arch Women’s Ment Health 11:363–375

    Article  Google Scholar 

  • Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2007) Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res 1156:152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine S (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. Influence Matern Factors Ann NY Acad Sci 746:275–288; discussion 289–293

    Google Scholar 

  • Levine S (2000) Influence of psychological variables on the activity of the hypothalamic-pituitary-adrenal axis. Eur J Pharmacol 405:149–160

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-L, Lin S-Y, Wang S (2012) Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats. Brain Behav Immun 26:459–468

    Article  CAS  PubMed  Google Scholar 

  • Lowe GC, Luheshi GN, Williams S (2008) Maternal infection and fever during late gestation are associated with altered synaptic transmission in the hippocampus of juvenile offspring rats. Am J Physiol Regul Integr Comp Physiol 295:R1563–R1571

    Article  CAS  PubMed  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(1):S232–S240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente E, Brito ML, Machado P, Gonzalez MC (2002) Effect of prenatal stress on the hormonal response to acute and chronic stress and on immune parameters in the offspring. J Physiol Biochem 58:143–149

    Article  CAS  PubMed  Google Scholar 

  • Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27:119–127

    Article  CAS  PubMed  Google Scholar 

  • Maccari S, Morley-Fletcher S (2007) Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations Psychoneuroendocrinology 32(1):S10–S15

    Article  CAS  PubMed  Google Scholar 

  • MacLaughlin SM, McMillen IC (2007) Impact of periconceptional undernutrition on the development of the hypothalamo-pituitary-adrenal axis: does the timing of parturition start at conception? Curr Drug Targets 8:880–887

    Article  CAS  PubMed  Google Scholar 

  • Macri S, Zoratto F, Laviola G (2011) Early-stress regulates resilience, vulnerability and experimental validity in laboratory rodents through mother-offspring hormonal transfer. Neurosci Biobehav Rev 35:1534–1543

    Article  CAS  PubMed  Google Scholar 

  • Mairesse J et al (2013) Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. Int J Neuropsychopharmacol 16:323–338

    Article  CAS  PubMed  Google Scholar 

  • Malek ZS, Sage D, Pevet P, Raison S (2007) Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology 148:5165–5172

    Article  CAS  PubMed  Google Scholar 

  • Marco EM, Llorente R, Lopez-Gallardo M, Mela V, Llorente-Berzal A, Prada C, Viveros MP (2015) The maternal deprivation animal model revisited. Neurosci Biobehav Rev 51:151–163

    Article  PubMed  Google Scholar 

  • Marco EM, Macri S, Laviola G (2011) Critical age windows for neurodevelopmental psychiatric disorders: evidence from animal models. Neurotox Res 19:286–307

    Article  PubMed  Google Scholar 

  • Martinac M, Pehar D, Karlovic D, Babic D, Marcinko D, Jakovljevic M (2014) Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder. Acta Clin Croat 53:55–71

    Google Scholar 

  • Mastorci F et al (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203

    Article  PubMed  Google Scholar 

  • Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12:197–210

    Article  PubMed  Google Scholar 

  • Mendez N et al (2012) Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS ONE 7:e42713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendlewicz J (2009) Disruption of the circadian timing systems: molecular mechanisms in mood disorders. CNS Drugs 23(2):15–26

    Article  CAS  PubMed  Google Scholar 

  • Mendoza J (2007) Circadian clocks: setting time by food. J Neuroendocrinol 19:127–137

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J (2009) Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav Brain Res 204:322–334

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Fatemi SH (2009) In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 33:1061–1079

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2006a) Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 20:378–388

    Article  CAS  PubMed  Google Scholar 

  • Meyer U et al (2006b) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill J, Petronis A (2008) Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 49:1020–1030

    Article  PubMed  Google Scholar 

  • Missault S et al (2014) The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model. Brain Behav Immun 42:138–146

    Article  CAS  PubMed  Google Scholar 

  • Mittal VA, Ellman LM, Cannon TD (2008) Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull 34:1083–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Mongrain V, Paquet J, Dumont M (2006) Contribution of the photoperiod at birth to the association between season of birth and diurnal preference. Neurosci Lett 406:113–116

    Article  CAS  PubMed  Google Scholar 

  • Monteleone P, Martiadis V, Maj M (2011) Circadian rhythms and treatment implications in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:1569–1574

    Article  CAS  PubMed  Google Scholar 

  • Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20

    Article  PubMed  Google Scholar 

  • Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O, Maccari S (2003a) Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res 989:246–251

    Article  CAS  PubMed  Google Scholar 

  • Morley-Fletcher S, Rea M, Maccari S, Laviola G (2003b) Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. Euro J Neurosci 18:3367–3374

    Article  Google Scholar 

  • Mukherjee S et al (2010) Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natale V, Di Milia L (2011) Season of birth and morningness: comparison between the northern and southern hemispheres. Chronobiol Int 28:727–730

    Article  PubMed  Google Scholar 

  • Nicolaides NC, Charmandari E, Chrousos GP, Kino T (2014) Circadian endocrine rhythms: the hypothalamic–pituitary–adrenal axis and its actions. Ann NY Acad Sci 1318:71–80

    Article  CAS  PubMed  Google Scholar 

  • Nievergelt CM et al (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakova M, Prasko J, Latalova K, Sladek M, Sumova A (2015) The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord 17:303–314

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, O’Connor TG, Glover V (2009) Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Dev Neurosci 31:285–292

    Article  PubMed  CAS  Google Scholar 

  • Oitzl MS, Champagne DL, van der Veen R, de Kloet ER (2010) Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 34:853–866

    Article  CAS  PubMed  Google Scholar 

  • Oitzl MS, de Kloet ER, Joels M, Schmid W, Cole TJ (1997) Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Euro J Neurosci 9:2284–2296

    Article  CAS  Google Scholar 

  • Okamura H, Yamaguchi S, Yagita K (2002) Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309:47–56

    Article  CAS  PubMed  Google Scholar 

  • Olejnikova L, Polidarova L, Pauslyova L, Sladek M, Sumova A (2015) Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease. Chronobiol Int 32:531–547

    Article  CAS  PubMed  Google Scholar 

  • Pang D, Syed S, Fine P, Jones PB (2009) No association between prenatal viral infection and depression in later life–a long-term cohort study of 6152 subjects. Can J Psychiatry 54:565–570

    Article  PubMed  Google Scholar 

  • Partonen T et al (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238

    Article  CAS  PubMed  Google Scholar 

  • Patterson PH (2007) Neuroscience. Maternal effects on schizophrenia risk. Science 318:576–577

    Article  CAS  PubMed  Google Scholar 

  • Pearce BD (2001) Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 6:634–646

    Article  CAS  PubMed  Google Scholar 

  • Perlman JM (2001) Neurobehavioral deficits in premature graduates of intensive care–potential medical and neonatal environmental risk factors. Pediatrics 108:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Polidarova L, Olejnikova L, Pauslyova L, Sladek M, Sotak M, Pacha J, Sumova A (2014) Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol 306:G346–G356

    Article  CAS  PubMed  Google Scholar 

  • Powell WT, LaSalle JM (2015) Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet R1:R1–R9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29:649–674

    Article  PubMed  Google Scholar 

  • Pyter LM, Nelson RJ (2006) Enduring effects of photoperiod on affective behaviors in Siberian hamsters (Phodopus sungorus). Behav Neurosci 120:125–134

    Article  PubMed  Google Scholar 

  • Reppert SM, Uhl GR (1987) Vasopressin messenger ribonucleic acid in supraoptic and suprachiasmatic nuclei: appearance and circadian regulation during development. Endocrinology 120:2483–2487

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Stec I, Wiegers GJ, Labeur MS, Linthorst AC, Arzt E, Holsboer F (1994) Prenatal immune challenge alters the hypothalamic-pituitary-adrenocortical axis in adult rats. J Clin Investig 93:2600–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice F, Jones I, Thapar A (2007) The impact of gestational stress and prenatal growth on emotional problems in offspring: a review. Acta Psychiatr Scand 115:171–183

    Article  CAS  PubMed  Google Scholar 

  • Ridley RM (1994) The psychology of perserverative and stereotyped behaviour. Prog Neurobiol 44:221–231

    Article  CAS  PubMed  Google Scholar 

  • Roman E, Karlsson O (2013) Increased anxiety-like behavior but no cognitive impairments in adult rats exposed to constant light conditions during perinatal development. Ups J Med Sci 118:222–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence Antipsychotics Neuropsychopharmacol 32:1791–1804

    Article  CAS  Google Scholar 

  • Romero E, Guaza C, Castellano B, Borrell J (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15:372–383

    Article  CAS  PubMed  Google Scholar 

  • Roybal K et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Nat Acad Sci USA 104:6406–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samsom JN, Wong AH (2015) Schizophrenia and depression co-morbidity: what we have learned from animal models. Front Psychiatry 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuelsson AM, Jennische E, Hansson HA, Holmang A (2006) Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 290:R1345–R1356

    Article  CAS  PubMed  Google Scholar 

  • Savalli G, Diao W, Schulz S, Todtova K, Pollak DD (2014) Diurnal oscillation of amygdala clock gene expression and loss of synchrony in a mouse model of depression. Int J Neuropsychopharmacol 18

    Google Scholar 

  • Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217

    Article  CAS  PubMed  Google Scholar 

  • Seron-Ferre M et al (2013) Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms. PLoS ONE 8:e57710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seron-Ferre M, Valenzuela GJ, Torres-Farfan C (2007) Circadian clocks during embryonic and fetal development. Birth Defects Res C Embryo Today 81:204–214

    Article  CAS  PubMed  Google Scholar 

  • Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B:35–38

    Article  PubMed  Google Scholar 

  • Shibata S, Moore RY (1987) Development of neuronal activity in the rat suprachiasmatic nucleus. Brain Res 431:311–315

    Article  CAS  PubMed  Google Scholar 

  • Smith BN, Sollars PJ, Dudek FE, Pickard GE (2001) Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 16:25–38

    Article  CAS  PubMed  Google Scholar 

  • Spiga F, Walker JJ, Terry JR, Lightman SL (2011) HPA Axis-Rhythms. In: Comprehensive Physiology. Wiley, Hoboken

    Google Scholar 

  • Takao M, Kurachi T, Kato H (2009) Photoperiod at birth does not modulate the diurnal preference in asian population. Chronobiol Int 26:1470–1477

    Article  PubMed  Google Scholar 

  • Talge NM, Neal C, Glover V (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48:245–261

    Article  PubMed  Google Scholar 

  • Tohmi M, Tsuda N, Watanabe Y, Kakita A, Nawa H (2004) Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin. Neurosci Res 50:67–75

    Article  CAS  PubMed  Google Scholar 

  • Tonetti L, Fabbri M, Martoni M, Natale V (2012) Season of birth and mood seasonality in late childhood and adolescence. Psychiatry Res 195:66–68

    Article  PubMed  Google Scholar 

  • Tuchscherer M, Kanitz E, Otten W, Tuchscherer A (2002) Effects of prenatal stress on cellular and humoral immune responses in neonatal pigs. Vet Immunol Immunopathol 86:195–203

    Article  CAS  PubMed  Google Scholar 

  • Vilches N et al (2014) Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS ONE 9:e91313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward IL, Stehm KE (1991) Prenatal stress feminizes juvenile play patterns in male rats. Physiol Behav 50:601–605

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y et al (2004) Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats. Neurosci Res 48:345–353

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (2002) Can the behaviour abnormalities induced by gestational stress in rats be prevented or reversed? Stress 5:167–176

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Weirnert D (2005) Ontogenic development of the mammalian circadian system. Chronobiol Int 22:179–205

    Article  Google Scholar 

  • Wingenfeld K, Wolf OT (2011) HPA axis alterations in mental disorders: impact on memory and its relevance for therapeutic interventions. CNS Neurosci Ther 17:714–722

    Article  CAS  PubMed  Google Scholar 

  • Wischhof L, Irrsack E, Osorio C, Koch M (2015) Prenatal LPS-exposure–a neurodevelopmental rat model of schizophrenia–differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 57:17–30

    Article  CAS  PubMed  Google Scholar 

  • Zuena AR et al (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS ONE 3:e2170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The editorial help of Stella Falsini is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eva M. Marco or Giovanni Laviola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marco, E.M., Velarde, E., Llorente, R., Laviola, G. (2015). Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_419

Download citation

Publish with us

Policies and ethics