Skip to main content

Noradrenergic–Dopaminergic Interactions Due to DSP-4–MPTP Neurotoxin Treatments: Iron Connection

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

The investigations of noradrenergic lesions and dopaminergic lesions have established particular profiles of functional deficits and accompanying alterations of biomarkers in brain regions and circuits. In the present account, the focus of these lesions is directed toward the effects upon dopaminergic neurotransmission and expression that are associated with the movement disorders and psychosis-like behavior. In this context, it was established that noradrenergic denervation, through administration of the selective noradrenaline (NA) neurotoxin, DSP-4, should be performed prior to the depletion of dopamine (DA) with the selective neurotoxin, MPTP. Employing this regime, it was shown that (i) following DSP-4 (50 mg/kg) pretreatment of C57/Bl6 mice, both the functional and neurochemical (DA loss) effects of MPTP (2 × 20 and 2 × 40 mg/kg) were markedly exacerbated, and (ii) following postnatal iron (Fe2+, 7.5 mg/kg, on postnatal days 19–12), pretreatment with DSP-4 followed by the lower 2 × 20 mg/kg MPTP dose induced even greater losses of motor behavior and striatal DA. As yet, the combination of NA-DA depletions, and even more so Fe2+–NA-DA depletion, has been considered to present a movement disorder aspect although studies exploring cognitive domains are lacking. With intrusion of iron overload into this formula, the likelihood of neuropsychiatric disorder, as well, unfolds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvord EC Jr, Forno LS (1992) Pathology. In: Koller WC (ed) Handbook of Parkinson’ disease. Marcel Dekker, New York, pp 255–284

    Google Scholar 

  • Andén N, Grabowska M (1976) Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur J Pharmacol 39(2):275–282

    Article  Google Scholar 

  • Archer T (1982) Serotonin and fear retention in the rat. J Comp Physiol Psychol 96:491–516

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A (2000) Effects of clonidine and adrenoceptor antagonists on motor activity in DSP-4-treated mice. I. Dose, time-and parameter-dependency. Neurotox Res 1:235–247

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A (2001) Effects of alpha-adrenoceptor agonists in chronic morphine administered DSP4-treated rats: evidence for functional cross-sensitization. Neurotox Res 3(5):411–432

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A (2003) An antihypokinesic action of alpha2-adrenoceptors upon MPTP-induced behaviour deficits in mice. J Neural Transm (Vienna) 110(2):183–200

    Google Scholar 

  • Archer T, Fredriksson A (2006) Influence of noradrenaline denervation on MPTP-induced deficits in mice. J Neural Transm (Vienna) (9):1119–229

    Article  Google Scholar 

  • Archer T, Fredriksson A (2007) Functional consequences of iron overload in catecholaminergic interactions: the Youdim factor. Neurochem Res 32(10):1625–1639

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A (2013) The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 24(3):393–406. doi:10.1007/s12640-013-9405-4

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Ogren SO, Johansson G, Ross SB (1982) DSP4-induced two-way active avoidance impairment: involvement of central and not peripheral noradrenaline depletion. Psychopharmacology 76:303–309

    Article  CAS  Google Scholar 

  • Archer T, Mohammed AK, Ross SB, Söderberg U (1983) T-maze learning, spontaneous activity and food intake recovery following systemic administration of the noradrenaline neurotoxin, DSP4. Pharmacol Biochem Behav 19:121–130

    Article  CAS  Google Scholar 

  • Archer T, Jonsson G, Ross SB (1984a) A parametric study of the effects of the noradrenaline neurotoxin DSP4 on avoidance acquisition and noradrenaline neurons in the CNS of the rat. Br J Pharmacol 82:249–257

    Article  CAS  Google Scholar 

  • Archer T, Ogren SO, Ross SB, Magnusson O (1984b) Retention deficits induced by acute p-chloroamphetamine following fear conditioning in the rat. Psychopharmacology 82(1–2):14–19

    CAS  PubMed  Google Scholar 

  • Archer T, Jonsson G, Ross SB (1985) Active and passive avoidance following the administration of systemic DSP4, xylamine, or p-chloroamphetamine. Behav Neural Biol 43:238–249

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A, Jonsson G, Lewander T, Mohammed AK, Ross SB, Söderberg U (1986a) Central noradrenaline depletion antagonizes aspects of d-amphetamine-induced hyperactivity in the rat. Psychopharmacology 88:141–146

    Article  CAS  Google Scholar 

  • Archer T, Jonsson G, Minor BG, Post C (1986b) Noradrenergic-serotonergic interactions and nociception in the rat. Eur J Pharmacol 120:295–307

    Article  CAS  Google Scholar 

  • Archer T, Kostrzewa RM, Beninger RJ, Palomo T (2011) Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions. Neurotox Res 19(2):211–234. doi:10.1007/s12640-010-9190-2

    Article  PubMed  Google Scholar 

  • Aulakh CS, Hill JL, Lesch KP, Murphy DL (1992) Functional subsensitivity of 5-hydroxytryptamine1C or alpha 2 adrenergic heteroreceptors mediating clonidine-induced growth hormone release in the Fawn-Hooded rat strain relative to the Wistar rat strain. J Pharmacol Exp Ther 262(3):1038–1043

    CAS  PubMed  Google Scholar 

  • Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI, Finkelstein DI (2014) Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener 9:27. doi:10.1186/1750-1326-9-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bello NT, Yeh CY, Verpeut JL, Walters AL (2014) Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity. PLoS ONE 9(4):e93610. doi:10.1371/journal.pone.0093610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava HN, Perlow MJ (1988) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on striatal dopamine receptors in C57BL/6 mice. Toxicol Lett 40(3):219–224

    Article  CAS  Google Scholar 

  • Bing G, Zhang Y, Watanabe Y, McEwen BS, Stone EA (1994) Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res 668(1–2):261–265

    Article  CAS  Google Scholar 

  • Blesa J, Juri C, Collantes M, Peñuelas I, Prieto E, Iglesias E, Martí-Climent J, Arbizu J, Zubieta JL, Rodríguez-Oroz MC, García-García D, Richter JA, Cavada C, Obeso JA (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol Dis 38(3):456–463. doi:10.1016/j.nbd.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  • Brami-Cherrier K, Anzalone A, Ramos M, Forne I, Macciardi F, Imhof A, Borrelli E (2014) Epigenetic reprogramming of cortical neurons through alteration of dopaminergic circuits. Mol Psychiatry 19(11):1193–1200. doi:10.1038/mp.2014.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubak AN, Redmond DE Jr, Elsworth JD, Roth RH, Collier TJ, Bjugstad KB, Blanchard BC, Sladek JR Jr (2015) A potential compensatory role for endogenous striatal tyrosine hydroxylase-positive neurons in a nonhuman primate model of Parkinson’s disease. Cell Transpl 24(4):673–680. doi:10.3727/096368915X687741

    Article  Google Scholar 

  • Bugajski J, Gadek-Michalska A, Ołowska A, Borycz J, Głód R, Bugajski AJ (1995) Adrenergic regulation of the hypothalamic-pituitary-adrenal axis under basal and social stress conditions. J Physiol Pharmacol 46(3):297–312

    CAS  PubMed  Google Scholar 

  • Connolly AT, Jensen AL, Bello EM, Netoff TI, Baker KB, Johnson MD, Vitek JL (2015) Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity. J Neurosci 35(15):6231–6240. doi:10.1523/JNEUROSCI.4137-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska J, Nowak P, Brus R (2008) Reactivity of 5-HT1A receptor in adult rats after neonatal noradrenergic neurons’ lesion–implications for antidepressant-like action. Brain Res 1239:66–76. doi:10.1016/j.brainres.2008.08.054

    Article  CAS  PubMed  Google Scholar 

  • Date I, Notter MF, Felten SY, Felten DL (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res 526(1):156–160

    Article  CAS  Google Scholar 

  • de Lima MN, Presti-Torres J, Caldana F, Grazziotin MM, Scalco FS, Guimarães MR, Bromberg E, Franke SI, Henriques JA, Schröder N (2007) Desferoxamine reverses neonatal iron-induced recognition memory impairment in rats. Eur J Pharmacol 570(1–3):111–114

    Article  Google Scholar 

  • Dolphin A, Jenner P, Marsden CD (1976a) Noradrenaline synthesis from L-DOPA in rodents and its relationship to motor activity. Pharmacol Biochem Behav 5(4):431–439

    Article  CAS  Google Scholar 

  • Dolphin A, Elliott PN, Jenner P (1976b) The irritant properties of dopamine-beta-hydroxylase inhibitors in relation to their effects on L-dopa-induced locomotor activity. J Pharm Pharmacol 28(10):782–785

    Article  CAS  Google Scholar 

  • Dooley DJ, Bittiger H, Hauser KL, Bischoff SL, Waldmeier PC (1983a) Alteration of central alpha-2 and beta-adrenergic receptors in the rat after DSP4, a delective noradrenergic neurotoxin. Neuroscience 9:889–898

    Article  CAS  Google Scholar 

  • Dooley DJ, Mogilnicka E, Delini-Stula A, Waechter F, Truog A, Wood J (1983b) Functional supersensitivity to adrenergic agonists in the rat after DSP-4, a selective noradrenergic neurotoxin. Psychopharmacology 81:1–5

    Article  CAS  Google Scholar 

  • Dornelles AS, Garcia VA, de Lima MN, Vedana G, Alcalde LA, Bogo MR, Schröder N (2010) mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem Res 35(4):564–571. doi:10.1007/s11064-009-0100-z

    Article  CAS  PubMed  Google Scholar 

  • Fagherazzi EV, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, Busato SB, Hallak JE, Zuardi AW, Crippa JA, Schröder N (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology 219(4):1133–1140. doi:10.1007/s00213-011-2449-3

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Bassi L, Torracca MT, Alessandrì MG, Scalori V, Corsini GU (1996) Region-and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. Neurodegeneration. 5(3):241–249

    Article  CAS  Google Scholar 

  • Fornai F, Alessandrì MG, Torracca MT, Bassi L, Corsini GU (1997) Effects of noradrenergic lesions on MPTP/MPP + kinetics and MPTP nigrostriatel dopamine depletions. J Pharmacol Exp Ther 283:100–107

    CAS  PubMed  Google Scholar 

  • Fornai F, Giorgi FS, Gesi M, Chen K, Alessrì MG, Shih JC (2001) Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse 39(3):213–221

    Article  CAS  Google Scholar 

  • Fowler CJ, Thorell G, Sundström E, Archer T (1988) Norepinephrine-stimulated inositol phospholipid breakdown in the rat cerebral cortex following serotoninergic lesion. J Neural Transm 73(3):205–215

    Article  CAS  Google Scholar 

  • Fox ME, Studebaker RI, Swofford NJ, Wightman RM (2015) Stress and drug dependence differentially modulate norepinephrine signaling in animals with varied HPA axis function. Neuropsychopharmacology 40(7):1752–1761. doi:10.1038/npp.2015.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson A, Archer T (1994) MPTP-induced behavioral and biochemical deficits: a parametric analysis. J Neural Transm 7:123–132

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T (2000) Effects of clonidine and α-adrenoceptor antagonists on motor activity in DSP4-treated mice. II. Interactions with apomorphine. Neurotox Res 1:249–259

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T (2003) Effect of postnatal iron administration on MPTP-induced behavioral deficits and neurotoxicity: behavioral enhancement by l-dopa-MK-801 co-administration. Behav Brain Res 139:31–46

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T (2006) Subchronic administration of haloperidol influences the functional deficits of postnatal iron administration in mice. Neurotox Res 9(4):305–312

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T (2007) Postnatal iron overload destroys NA-DA functional interactions. J Neural Transm. 114(2):195–203

    Article  CAS  Google Scholar 

  • Fredriksson A, Plaznik A, Sundström E, Jonsson G, Archer T (1990) MPTP-induced hyperactivity in mice: reversal by l-dopa. Pharmacol Toxicol 67:295–301

    Article  CAS  Google Scholar 

  • Fredriksson A, Palomo T, Chase TN, Archer T (1999) Tolerance to a suprathreshold dose of l-dopa in MPTP mice: effects of glutamate antagonists. J Neural Transm 106:283–300

    Article  CAS  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2001) Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Rel Disord 7:97–105

    Article  CAS  Google Scholar 

  • Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994a) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration. J Pharmacol Exp Ther 270(3):1000–1007

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RE (1994b) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2: central administration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270(3):1008–1014

    CAS  PubMed  Google Scholar 

  • Goldstein LB (2006) Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx 3(4):451–457

    Article  CAS  Google Scholar 

  • Goshima Y, Misu Y, Arai N, Misugi K (1991) Nanomolar l-dopa facilitates release of dopamine via presynaptic beta-adrenoceptors: comparative studies on the actions in striatal slices from control and1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57 black mice, an animal model for Parkinson’s disease. Jpn J Pharmacol 55(1):93–100

    Article  CAS  Google Scholar 

  • Hallman H, Jonsson G (1984) Pharmacological modifications of the neurotoxic action of the noradrenaline neurotoxin DSP4 on central noradrenaline neurons. Eur J Pharmacol 103(3–4):269–278

    Article  CAS  Google Scholar 

  • Hallman H, Sundström E, Jonsson G (1984) Effects of the noradrenaline neurotoxin DSP 4 on monoamine neurons and their transmitter turnover in rat CNS. J Neural Transm. 60(2):89–102

    Article  CAS  Google Scholar 

  • Hare DJ, Adlard PA, Doble PA, Finkelstein DI (2013) Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics 5(2):91–109. doi:10.1039/c2mt20164j

    Article  CAS  PubMed  Google Scholar 

  • Heal DJ, Butler SA, Prow MR, Buckett WR (1993) Quantification of alpha 2-adrenoceptors in rat brain after short-term DSP-4 lesioning. Eur J Pharmacol 249:37–41

    Article  CAS  Google Scholar 

  • Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10(3):171–183

    Article  CAS  Google Scholar 

  • Hornykiewizc O, Kish SJ (1987) Biochemical pathophysiology of Parkinsin’s disease. Adv Neurol 45P:19–34

    Google Scholar 

  • Hurko O, Boudonck K, Gonzales C, Hughes ZA, Jacobsen JS, Reinhart PH, Crowther D (2010) Ablation of the locus coeruleus increases oxidative stress in tg-2576 transgenic but not wild-type mice. Int J Alzheimers Dis 2010:864625. doi:10.4061/2010/864625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson G, Hallman H (1982) Response of central monoamine neurons following an early neurotoxic lesion. Bibl Anat 23:76–92

    Google Scholar 

  • Jonsson G, Hallman H, Ponzio F, Ross SB (1981) (N-[2-chloroethyl]-N-ethyl-2-bromobenzylamine)—a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188

    Article  CAS  Google Scholar 

  • Jonsson G, Hallman H, Sundström E (1982) Effects of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenaline neurons in the rat. Neuroscience 7(11):2895–2907

    Article  CAS  Google Scholar 

  • Jonsson G, Sundström E, Mefford I, Olson L, Johnson S, Freedman R, Hoffer B (1985) Electrophysiological and neurochemical correlates of the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in the mouse. Naunyn Schmiedebergs Arch Pharmacol 331(1):1–6

    Article  CAS  Google Scholar 

  • Kostowski W (1979) Two noradrenergic systems in the brain and their interactions with other monoaminergic neurons. Pol J Pharmacol Pharm 31(4):425–436

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM (2009) Evolution of neurotoxins: from research modalities to clinical realities (Chapter 1: Unit 1.18). Curr Protoc Neurosci. doi:10.1002/0471142301.ns0118s46

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Kostrzewa FP, Brus R, Nowak P (2011) Stereotypic progressions in psychotic behavior. Neurotox Res 19(2):243–252. doi:10.1007/s12640-010-9192-0

    Article  PubMed  Google Scholar 

  • Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36(3):201–206

    Google Scholar 

  • Lategan AJ, Marien MR, Colpaert FC (1992) Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study. Life Sci 50(14):995–999

    Article  CAS  Google Scholar 

  • Lavich IC, de Freitas BS, Kist LW, Falavigna L, Dargél VA, Köbe LM, Aguzzoli C, Piffero B, Florian PZ, Bogo MR, de Lima MN, Schröder N (2015) Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation. Neuroscience 301:542–552. doi:10.1016/j.neuroscience.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  • Liang KC, Chen LL, Huang TE (1995) The role of amygdala norepinephrine in memory formation: involvement in the memory enhancing effect of peripheral epinephrine. Chin J Physiol 38(2):81–91

    CAS  PubMed  Google Scholar 

  • Lindgren H, Demirbugen M, Bergqvist F, Lane EL, Dunnett SB (2014) The effect of additional noradrenergic and serotonergic depletion on a lateralised choice reaction time task in rats with nigral 6-OHDA lesions. Exp Neurol 253:52–62. doi:10.1016/j.expneurol.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  • Liu YP, Huang TS, Tung CS, Lin CC (2015a) Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle. Prog Neuropsychopharmacol Biol Psychiatry 56:81–90. doi:10.1016/j.pnpbp.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yue F, Tang R, Tao G, Pan X, Zhu L, Kung HF, Chan P (2015b) Progressive loss of striatal dopamine terminals in MPTP-induced acute parkinsonism in cynomolgus monkeys using vesicular monoamine transporter type 2 PET imaging ([(18)F]AV-133). Neurosci Bull 30(3):409–416. doi:10.1007/s12264-013-1374-3

    Article  CAS  Google Scholar 

  • Marien M, Briley M, Colpaert F (1993) Noradrenaline depletion exacerbates MPTP-induced striatal dopamine loss in mice. Eur J Pharmacol 236(3):487–489

    Article  CAS  Google Scholar 

  • Mathai A, Ma Y, Paré JF, Villalba RM, Wichmann T, Smith Y (2015) Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 138(Pt 4):946–962. doi:10.1093/brain/awv018

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagai Y, Minamimoto T, Ando K, Obayashi S, Ito H, Ito N, Suhara T (2012) Correlation between decreased motor activity and dopaminergic degeneration in the ventrolateral putamen in monkeys receiving repeated MPTP administrations: a positron emission tomography study. Neurosci Res 73(1):61–67. doi:10.1016/j.neures.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Nishi K, Kondo T, Narabayashi H (1991) Destruction of norepinephrine terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice reduces locomotor activity induced by l-dopa. Neurosci Lett 123(2):244–247

    Article  CAS  Google Scholar 

  • Nowak P, Nitka D, Kwieciński A, Jośko J, Drab J, Pojda-Wilczek D, Kasperski J, Kostrzewa RM, Brus R (2009) Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists. Pharmacol Rep 61(2):311–318

    Article  CAS  Google Scholar 

  • O’Donohue TL, Crowley WR, Jacobowitz DM (1979) Biochemical mapping of the noradrenergic ventral bundle projection sites: evidence for a noradrenergic–dopaminergic interaction. Brain Res 172(1):87–100

    Article  Google Scholar 

  • Pain S, Gochard A, Bodard S, Gulhan Z, Prunier-Aesch C, Chalon S (2013) Toxicity of MPTP on neurotransmission in three mouse models of Parkinson’s disease. Exp Toxicol Pathol 65(5):689–694. doi:10.1016/j.etp.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  • Persson T, Waldeck B (1970) Further studies on the possible interaction between dopamine and noradrenaline containing neurons in the brain. Eur J Pharmacol 11(3):315–320

    Article  CAS  Google Scholar 

  • Pifl C, Kish SJ, Hornykiewicz O (2012) Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Mov Disord 27(13):1618–1624. doi:10.1002/mds.25109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pifl C, Hornykiewicz O, Blesa J, Adánez R, Cavada C, Obeso JA (2013) Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: relation to severity of parkinsonism. J Neurochem 125(5):657–662. doi:10.1111/jnc.12162

    Article  CAS  PubMed  Google Scholar 

  • Ponzio F, Hallman H, Jonsson G (1981) Noradrenaline and dopamine interaction in rat brain during development. Med Bull 59:161–169

    CAS  Google Scholar 

  • Post C, Persson ML, Archer T, Minor BG, Danysz W, Sundström E (1987) Increased antinociception by alpha-adrenoceptor drugs after spinal cord noradrenaline depletion. Eur J Pharmacol 137(1):107–116

    Article  CAS  Google Scholar 

  • Rényi L, Archer T, Minor BG, Tandberg B, Fredriksson A, Ross SB (1986) The inhibition of the cage-leaving response–a model for studies of the serotonergic neurotransmission in the rat. J Neural Transm. 65(3–4):193–210

    Article  Google Scholar 

  • Roczniak W, Wróbel J, Dolczak L, Nowak P (2013) Influence of central noradrenergic system lesion on the serotoninergic 5-HT3 receptor mediated analgesia in rats. Adv Clin Exp Med 22(5):629–638

    PubMed  Google Scholar 

  • Roczniak W, Babuśka-Roczniak M, Kwapuliński J, Brodziak-Dopierała B, Widuchowski W, Cipora E, Nowak P, Oświęcimska JM (2015) The effect of central noradrenergic system lesion on dopamine (DA) and serotonin (5-HT) synthesis rate following administration of 5-HT3 receptor ligands in chosen parts of the rat brain. Pharmacol Rep 67(1):146–151. doi:10.1016/j.pharep.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  • Ross SB (1976) Long-term effects of N-2-chlororethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurons in rat brain and heart. Br J Pharmacol 58:521–527

    Article  CAS  Google Scholar 

  • Ross SB, Renyi L (1976) On the long-lasting inhibitory effect of N-(2-chlororethyl)-N-ethyl-2-bromobenzylamine (DSP4) on the active uptake of noradrenaline. J Pharm Pharmacol 28:458–459

    Article  CAS  Google Scholar 

  • Ross SB, Stenfors C (2015) DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res 27(1):15–30. doi:10.1007/s12640-014-9482-z

    Article  CAS  PubMed  Google Scholar 

  • Schendzielorz N, Oinas JP, Myöhänen TT, Reenilä I, Raasmaja A, Männisto PT (2013) Catechol-O-Methyltransferase (COMT) protein expression and activity after dopaminergic and noadrenergic lesions of rat brain. PLoS ONE: e61392. doi:10.1371/journal.pone.0061392

    Article  CAS  Google Scholar 

  • Schultz W, Studer A, Jonsson G, Sundström E, Mefford I (1985) Deficits in behavioral initiation and execution processes in monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism. Neurosci Lett 59(2):225–232

    Article  CAS  Google Scholar 

  • Shannak K, Rajput A, Rozdilsky B, Kish S, Gilbert J, Hornykiewicz O (1994) Noradrenaline, dopamine and serotonin levels and metabolism in the human hypothalamus: observations in Parkinson’s disease and normal subjects. Brain Res 639(1):33–41

    Article  CAS  Google Scholar 

  • Shin E, Rogers JT, Devoto P, Björklund A, Carta M (2014) Noradrenaline neuron degeneration contributes to motor impairments and development of l-dopa-induced dyskinesia in a rat model of Parkinson’s disease. Exp Neurol 257:25–38. doi:10.1016/j.expneurol.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  • Silva PF, Garcia VA, Dornelles Ada S, Silva VK, Maurmann N, Portal BC, Ferreira RD, Piazza FC, Roesler R, Schröder N (2012) Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42–49. doi:10.1016/j.neuroscience.2011.10.038

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129(3):339–345

    Article  CAS  Google Scholar 

  • Sundström E, Luthman J, Jonsson G, Goldstein M (1987) Determination of monoamines by use of liquid chromatography with electrochemical detection in the study of selective monoamine neurotoxins. Life Sci 41(7):857–860

    Article  Google Scholar 

  • Tassin JP, Trovero F, Hervé D, Blanc G, Glowinski J (1992) Biochemical and behavioural consequences of interactions between dopaminergic and noradrenergic systems in rat prefrontal cortex. Neurochem Int 20(Suppl):225S–230S

    Article  CAS  Google Scholar 

  • Tian L, Xia Y, Flores HP, Campbell MC, Moerlein SM, Perlmutter JS (2015) Neuroimaging analysis of the dopamine basis for apathetic behaviors in an MPTP-lesioned primate model. PLoS ONE 10(7):e0132064. doi:10.1371/journal.pone.0132064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong J, Hornykiewicz O, Kish SJ (2007) Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol 63(12):1724–1728

    Article  Google Scholar 

  • Uehara S, Uno Y, Inoue T, Murayama N, Shimizu M, Sasaki E, Yamazaki H (2015) Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus). Drug Metab Dispos 43(5):735–742. doi:10.1124/dmd.115.063594

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Wang T, Sun YN, Han LN, Li LB, Li Z, Wu ZH, Huang C, Liu J (2014) Additional noradrenergic depletion aggravates forelimb akinesia and abnormal subthalamic nucleus activity in a rat model of Parkinson’s disease. Life Sci 119:18–27. doi:10.1016/j.lfs.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  • You LH, Li F, Wang L, Zhao SE, Wang SM, Zhang LL, Zhang LH, Duan XL, Yu P, Chang YZ (2015) Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease. Neuroscience 284:234–246. doi:10.1016/j.neuroscience.2014.09.071

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Arraf Z (2004) Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 46(8):1130–1140

    Article  CAS  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101(26):9843–9848

    Article  CAS  Google Scholar 

  • Zuddas A, Vaglini F, Fornai F, Corsini GU (1992) Selective lesion of the nigrostriatal dopaminergic pathway by MPTP and acetaldehyde or diethyldithiocarbamate. Neurochem Int 20(Suppl):287S–293S

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Archer, T. (2015). Noradrenergic–Dopaminergic Interactions Due to DSP-4–MPTP Neurotoxin Treatments: Iron Connection. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_411

Download citation

Publish with us

Policies and ethics