Skip to main content

Endogenous Analgesia, Dependence, and Latent Pain Sensitization

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 20))

Abstract

Endogenous activation of µ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic, and aversive signs of physical withdrawal; this phenomenon requires N-methyl-d-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains the accelerator) and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization creates a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either (a) facilitating endogenous opioid analgesia, thus restricting LS within a state of remission, or (b) extinguishing LS altogether.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Matsumura S, Katano T, Mabuchi T, Takagi K, Xu L, Yamamoto A, Hattori K, Yagi T, Watanabe M, Nakazawa T, Yamamoto T, Mishina M, Nakai Y, Ito S (2005) Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. Eur J Neurosci 22:1445–1454

    PubMed  Google Scholar 

  • Aicher SA, Punnoose A, Goldberg A (2000) [micro]-Opioid receptors often colocalize with the substance P receptor (NK1) in the trigeminal dorsal horn. J Neurosci 20:4345–4354

    CAS  PubMed  Google Scholar 

  • Ainsworth L, Budelier K, Clinesmith M, Fiedler A, Landstrom R, Leeper BJ, Moeller L, Mutch S, O’Dell K, Ross J, Radhakrishnan R, Sluka KA (2006) Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120:182–187

    PubMed  Google Scholar 

  • Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci 20:4680–4685

    CAS  PubMed  Google Scholar 

  • Alkaitis MS, Solorzano C, Landry RP, Piomelli D, DeLeo JA, Romero-Sandoval EA (2010) Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain. PLoS ONE 5:e10891

    PubMed Central  PubMed  Google Scholar 

  • Aloisi AM, Lupo C, Carli G (1993) Effects of formalin-induced pain on exploratory behaviour in rabbits. NeuroReport 4:739–742

    CAS  PubMed  Google Scholar 

  • Anderson WS, Sheth RN, Bencherif B, Frost JJ, Campbell JN (2002) Naloxone increases pain induced by topical capsaicin in healthy human volunteers. Pain 99:207–216

    CAS  PubMed  Google Scholar 

  • Asiedu MN, Tillu DV, Melemedjian OK, Shy A, Sanoja R, Bodell B, Ghosh S, Porreca F, Price TJ (2011) Spinal protein kinase M zeta underlies the maintenance mechanism of persistent nociceptive sensitization. J Neurosci 31:6646–6653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M, Woolf CJ (2003) Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 24:818–830

    CAS  PubMed  Google Scholar 

  • Back SK, Lee J, Hong SK, Na HS (2006) Loss of spinal mu-opioid receptor is associated with mechanical allodynia in a rat model of peripheral neuropathy. Pain 123:117–126

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ (1990) Peptide transport systems for opiates across the blood-brain barrier. Am J Physiol 259:E1–10

    CAS  PubMed  Google Scholar 

  • Bardoni R, Tawfik VL, Wang D, Francois A, Solorzano C, Shuster SA, Choudhury P, Betelli C, Cassidy C, Smith K, de Nooij JC, Mennicken F, O’Donnell D, Kieffer BL, Woodbury CJ, Basbaum AI, MacDermott AB, Scherrer G (2014) Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81:1312–1327

    CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    CAS  PubMed  Google Scholar 

  • Benedetti F, Arduino C, Amanzio M (1999) Somatotopic activation of opioid systems by target directed expectations of analgesia. J Neuroscience 19:3639–3648

    Google Scholar 

  • Benrath J, Brechtel C, Martin E, Sandkuhler J (2004) Low doses of fentanyl block central sensitization in the rat spinal cord in vivo. Anesthesiology 100:1545–1551

    CAS  PubMed  Google Scholar 

  • Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM (1990) Pre- and postsynaptic distribution of mu, delta and kappa opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res 521:15–22

    CAS  PubMed  Google Scholar 

  • Bilsky EJ, Bernstein RN, Wang Z, Sadee W, Porreca F (1996) Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. J Pharmacol Exp Ther 277:484–490

    CAS  PubMed  Google Scholar 

  • Brennum J, Kaiser F, Dahl JB (2001) Effect of naloxone on primary and secondary hyperalgesia induced by the human burn injury model. Acta Anaesthesiol Scand 45:954–960

    CAS  PubMed  Google Scholar 

  • Bruehl S, Chung OY, Chont M (2010) Chronic pain-related changes in endogenous opioid analgesia: a case report. Pain 148:167–171

    PubMed Central  PubMed  Google Scholar 

  • Bruehl S, Chung OY, Ward P, Johnson B (2004) Endogenous opioids and chronic pain intensity: interactions with level of disability. Clin J Pain 20:283–292

    PubMed  Google Scholar 

  • Buchsbaum MS, Davis GC, Bunney WE (1977) Naloxone alters pain perception and somatosensory evoked potentials in humans. Nature 270:620

    CAS  PubMed  Google Scholar 

  • Cabanero D, Campillo A, Celerier E, Romero A, Puig MM (2009) Pronociceptive effects of remifentanil in a mouse model of postsurgical pain effect of a second surgery. Anesthesiology 111:1334–1345

    CAS  PubMed  Google Scholar 

  • Calza L, Pozza M, Arletti R, Manzini E, Hokfelt T (2000) Long-lasting regulation of galanin, opioid, and other peptides in dorsal root ganglia and spinal cord during experimental polyarthritis. Exp Neurol 164:333–343

    CAS  PubMed  Google Scholar 

  • Campillo A, Cabanero D, Romero A, Garcia-Nogales P, Puig MM (2011) Delayed postoperative latent pain sensitization revealed by the systemic administration of opioid antagonists in mice. Eur J Pharmacol 657:89–96

    CAS  PubMed  Google Scholar 

  • Cesselin F, Bourgoin S, Clot AM, Hamon M, Le Bars D (1989) Segmental release of Met-enkephalin-like material from the spinal cord of rats, elicited by noxious thermal stimuli. Brain Res 484:71–77

    CAS  PubMed  Google Scholar 

  • Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang H, Tracey KJ, Maier SF, Watkins LR (2001) A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 94:231–244

    CAS  PubMed  Google Scholar 

  • Chai B, Guo W, Wei F, Dubner R, Ren K (2012) Trigeminal-rostral ventromedial medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury. Mol Pain 8:78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang HM, Berde CB, Holz GGt, Steward GF, Kream RM (1989) Sufentanil, morphine, met-enkephalin, and kappa-agonist (U-50,488H) inhibit substance P release from primary sensory neurons: a model for presynaptic spinal opioid actions. Anesthesiology 70:672–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chavkin C, McLaughlin JP, Celver JP (2001) Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 60:20–25

    CAS  PubMed  Google Scholar 

  • Chetkovich DM, Sweatt JD (1993) nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem 61:1933–1942

    CAS  PubMed  Google Scholar 

  • Chillingworth NL, Morham SG, Donaldson LF (2006) Sex differences in inflammation and inflammatory pain in cyclooxygenase-deficient mice. Am J Physiol Regul Integr Comp Physiol 291:R327–R334

    CAS  PubMed  Google Scholar 

  • Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christie MJ, Chesher GB (1982) Physical dependence on physiologically released endogenous opiates. Life Sci 30:1173–1177

    CAS  PubMed  Google Scholar 

  • Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, Hoebel BG (2002) Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 10:478–488

    CAS  PubMed  Google Scholar 

  • Connor M, Traynor J (2010) Constitutively active mu-opioid receptors. Methods Enzymol 484:445–469

    CAS  PubMed  Google Scholar 

  • Conti AC, Maas JW Jr, Muglia LM, Dave BA, Vogt SK, Tran TT, Rayhel EJ, Muglia LJ (2007) Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain. Neuroscience 146:713–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y, Hu X, Wieskopf JS, Mogil JS, Storm DR, Wang ZJ, McCarson KE, Taylor BK (2013) Constitutive mu-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341:1394–1399

    CAS  PubMed  Google Scholar 

  • Corder GF (2013) Injury establishes constitutive mu-opioid receptor activity leading to lasting endogenous analgesia and dependence. Dissertation, University of Kentucky

    Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A 86:7321–7325

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Felice M, Sanoja R, Wang R, Vera-Portocarrero L, Oyarzo J, King T, Ossipov MH, Vanderah TW, Lai J, Dussor GO, Fields HL, Price TJ, Porreca F (2011) Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain 152:2701–2709

    PubMed Central  PubMed  Google Scholar 

  • Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl JB (2002a) A randomized study of the effects of single-dose gabapentin versus placebo on postoperative pain and morphine consumption after mastectomy. Anesthesiology 97:560–564

    CAS  PubMed  Google Scholar 

  • Dirks J, Petersen KL, Dahl JB (2003) The heat/capsaicin sensitization model: a methodologic study. J Pain 4:122–128

    PubMed  Google Scholar 

  • Dirks J, Petersen KL, Rowbotham MC, Dahl JB (2002b) Gabapentin suppresses cutaneous hyperalgesia following heat-capsaicin sensitization. Anesthesiology 97:102–107

    CAS  PubMed  Google Scholar 

  • Divin MF, Bradbury FA, Carroll FI, Traynor JR (2009) Neutral antagonist activity of naltrexone and 6beta-naltrexol in naive and opioid-dependent C6 cells expressing a mu-opioid receptor. Br J Pharmacol 156:1044–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doolen S, Blake CB, Smith BN, Taylor BK (2012) Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons. Mol Pain 8:56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drdla R, Gassner M, Gingl E, Sandkuhler J (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325:207–210

    CAS  PubMed  Google Scholar 

  • Duggan AW, North RA (1983) Electrophysiology of opioids. Pharmacol Rev 35:219–281

    CAS  PubMed  Google Scholar 

  • El-Sobky A, Dostrovsky JO, Wall PD (1976) Lack of effect of naloxone on pain perception in humans. Nature 263:783–784

    CAS  PubMed  Google Scholar 

  • Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, Koch M, Kessler P, Hentsch D, Birling MC, Koutsourakis M, Vasseur L, Veinante P, Kieffer BL, Massotte D (2014) A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct (in press)

    Google Scholar 

  • Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE (2014) Skin beta-Endorphin Mediates Addiction to UV Light. Cell 157:1527–1534

    CAS  PubMed  Google Scholar 

  • Ferrari LF, Bogen O, Levine JD (2010) Nociceptor subpopulations involved in hyperalgesic priming. Neuroscience 165:896–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frid M, Singer G, Oei T, Rana C (1981) Reactions to ischemic pain: interactions between individual, situational and naloxone effects. Psychopharmacology 73:116–119

    CAS  PubMed  Google Scholar 

  • Fuchs PN, Roza C, Sora I, Uhl G, Raja SN (1999) Characterization of mechanical withdrawal responses and effects of mu-, delta- and kappa-opioid agonists in normal and mu-opioid receptor knockout mice. Brain Res 821:480–486

    CAS  PubMed  Google Scholar 

  • Gabra BH, Kessler FK, Ritter JK, Dewey WL, Smith FL (2007) Decrease in N-methyl-D-aspartic acid receptor-NR2B subunit levels by intrathecal short-hairpin RNA blocks group I metabotropic glutamate receptor-mediated hyperalgesia. J Pharmacol Exp Ther 322:186–194

    CAS  PubMed  Google Scholar 

  • Gao YJ, Ji RR (2010a) Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia. J Neurochem 115:505–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao YJ, Ji RR (2010b) Targeting astrocyte signaling for chronic pain. Neurother J Am Soc Exp Neurother 7:482–493

    CAS  Google Scholar 

  • Glaum SR, Miller RJ, Hammond DL (1994) Inhibitory actions of delta 1-, delta 2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci 14:4965–4971

    CAS  PubMed  Google Scholar 

  • Goff JR, Burkey AR, Goff DJ, Jasmin L (1998) Reorganization of the spinal dorsal horn in models of chronic pain: correlation with behaviour. Neuroscience 82:559–574

    CAS  PubMed  Google Scholar 

  • Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci 20:RC110

    Google Scholar 

  • Gracely RH, Dubner R, Wolskee PJ, Deeter WR (1983) Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature 306:264–265

    Google Scholar 

  • Green PG, Chen X, Alvarez P, Ferrari LF, Levine JD (2011) Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain 152:2549–2556

    PubMed Central  PubMed  Google Scholar 

  • Grevert P, Goldstein A (1978) Endorphins: naloxone fails to alter experimental pain or mood in humans. Science 199:1093

    CAS  PubMed  Google Scholar 

  • Guan Y, Yuan F, Carteret AF, Raja SN (2010) A partial L5 spinal nerve ligation induces a limited prolongation of mechanical allodynia in rats: an efficient model for studying mechanisms of neuropathic pain. Neurosci Lett 471:43–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo W, Zou S, Guan Y, Ikeda T, Tal M, Dubner R, Ren K (2002) Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci 22:6208–6217

    CAS  PubMed  Google Scholar 

  • Hatashita S, Sekiguchi M, Kobayashi H, Konno S, Kikuchi S (2008) Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine 33:1344–1351

    PubMed  Google Scholar 

  • He Y, Tian X, Hu X, Porreca F, Wang ZJ (2012) Negative reinforcement reveals non-evoked ongoing pain in mice with tissue or nerve injury. J Pain 13:598–607

    PubMed Central  PubMed  Google Scholar 

  • Heinke B, Gingl E, Sandkuhler J (2011) Multiple targets of mu-opioid receptor-mediated presynaptic inhibition at primary afferent Adelta- and C-fibers. J Neurosci 31:1313–1322

    CAS  PubMed  Google Scholar 

  • Herz A, Millan MJ (1988) Endogenous opioid peptides in the descending control of nociceptive responses of spinal dorsal horn neurons. Prog Brain Res 77:263–273

    CAS  PubMed  Google Scholar 

  • Hori Y, Endo K, Takahashi T (1992) Presynaptic inhibitory action of enkephalin on excitatory transmission in superficial dorsal horn of rat spinal cord. J Physiol 450:673–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376

    CAS  PubMed  Google Scholar 

  • Hurley RW, Hammond DL (2000) The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation. J Neurosci 20:1249–1259

    CAS  PubMed  Google Scholar 

  • Hurley RW, Hammond DL (2001) Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury. J Neurosci 21:2536–2545

    CAS  PubMed  Google Scholar 

  • Iadarola MJ, Brady LS, Draisci G, Dubner R (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35:313–326

    CAS  PubMed  Google Scholar 

  • Iadarola MJ, Tang J, Costa E, Yang HY (1986) Analgesic activity and release of [MET5]enkephalin-Arg6-Gly7-Leu8 from rat spinal cord in vivo. Eur J Pharmacol 121:39–48

    CAS  PubMed  Google Scholar 

  • Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662

    CAS  PubMed  Google Scholar 

  • Illing S, Mann A, Schulz S (2014) Heterologous regulation of agonist-independent mu-opioid receptor phosphorylation by protein kinase C. Br J Pharmacol 171:1330–1340

    CAS  PubMed  Google Scholar 

  • Jeftinija S (1988) Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at mu-opioid receptor sites. Brain Res 460:260–268

    CAS  PubMed  Google Scholar 

  • Jessell TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551

    CAS  PubMed  Google Scholar 

  • Ji RR (2004) Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Current Drug Targets-Inflamm Allergy 3:299–303

    CAS  Google Scholar 

  • Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119

    CAS  PubMed  Google Scholar 

  • Ji RR, Gereau RW IV, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60:135–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    CAS  PubMed  Google Scholar 

  • Ji RR, Xu ZZ, Strichartz G, Serhan CN (2011) Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci 34:599–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hokfelt T (1995) Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci 15:8156–8166

    CAS  PubMed  Google Scholar 

  • Joseph EK, Levine JD (2010) Hyperalgesic priming is restricted to isolectin B4-positive nociceptors. Neuroscience 169:431–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jungkunz G, Engel RR, King UG, Kuss HJ (1983) Endogenous opiates increase pain tolerance after stress in humans. Psychiatry Res 8:13–18

    CAS  PubMed  Google Scholar 

  • Kaur M, Liguori A, Lang W, Rapp SR, Fleischer AB Jr, Feldman SR (2006) Induction of withdrawal-like symptoms in a small randomized, controlled trial of opioid blockade in frequent tanners. J Am Acad Dermatol 54:709–711

    PubMed  Google Scholar 

  • Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J Official Publ Fed Am Soc Exp Biol 15:598–611

    CAS  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    CAS  PubMed  Google Scholar 

  • Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401

    CAS  PubMed  Google Scholar 

  • Kern D, Plantevin F, Bouhassira D (2008) Effects of morphine on the experimental illusion of pain produced by a thermal grill. Pain 139:653–659

    CAS  PubMed  Google Scholar 

  • Kest B, Palmese CA, Hopkins E, Adler M, Juni A, Mogil JS (2002) Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 115:463–469

    CAS  PubMed  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    CAS  PubMed  Google Scholar 

  • King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F (2009) Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 12:1364–1366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M (1999) Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol 518(Pt 3):803–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? [see comments]. Trends Neurosci 22:122–127

    CAS  PubMed  Google Scholar 

  • Kondo I, Marvizon JC, Song B, Salgado F, Codeluppi S, Hua XY, Yaksh TL (2005) Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci 25:3651–3660

    CAS  PubMed  Google Scholar 

  • Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15:186–191

    CAS  PubMed  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40:775–784

    CAS  PubMed  Google Scholar 

  • Lam H, Maga M, Pradhan A, Evans CJ, Maidment NT, Hales TG, Walwyn W (2011) Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking beta-arrestin 2. Mol Pain 7:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lane-Ladd SB, Pineda J, Boundy VA, Pfeuffer T, Krupinski J, Aghajanian GK, Nestler EJ (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J Neurosci 17:7890–7901

    CAS  PubMed  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    PubMed Central  PubMed  Google Scholar 

  • Law PY, Erickson-Herbrandson LJ, Zha QQ, Solberg J, Chu J, Sarre A, Loh HH (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem 280:11152–11164

    CAS  PubMed  Google Scholar 

  • Le Roy C, Laboureyras E, Gavello-Baudy S, Chateauraynaud J, Laulin JP, Simonnet G (2011) Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization Via a NMDA-dependent process. J Pain 12:1069–1079

    PubMed  Google Scholar 

  • Leurs R, Smit MJ, Alewijnse AE, Timmerman H (1998) Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 23:418–422

    CAS  PubMed  Google Scholar 

  • Lever IJ, Pezet S, McMahon SB, Malcangio M (2003) The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Molecular and cellular neurosciences 24:259–270

    CAS  PubMed  Google Scholar 

  • Levine JD, Gordon NC, Fields HL (1979) Naloxone dose dependently produces analgesia and hyperalgesia in postoperative pain. Nature 278:740–741

    CAS  PubMed  Google Scholar 

  • Levine JD, Gordon NC, Jones RT, Fields HL (1978) The narcotic antagonist naloxone enhances clinical pain. Nature 272:826–827

    CAS  PubMed  Google Scholar 

  • Li S, Lee ML, Bruchas MR, Chan GC, Storm DR, Chavkin C (2006) Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses. Mol Pharmacol 70:1742–1749

    Google Scholar 

  • Li XY, Ko HG, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330:1400–1404

    CAS  PubMed  Google Scholar 

  • Lian B, Vera-Portocarrero L, King T, Ossipov MH, Porreca F (2010) Opioid-induced latent sensitization in a model of non-inflammatory viscerosomatic hypersensitivity. Brain Res 1358:64–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liauw J, Wu LJ, Zhuo M (2005) Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J Neurophysiol 94:878–882

    CAS  PubMed  Google Scholar 

  • Liu JG, Prather PL (2001) Chronic exposure to mu-opioid agonists produces constitutive activation of mu-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment. Mol Pharmacol 60:53–62

    CAS  PubMed  Google Scholar 

  • Liu JG, Ruckle MB, Prather PL (2001) Constitutively active mu-opioid receptors inhibit adenylyl cyclase activity in intact cells and activate G-proteins differently than the agonist [D-Ala2, N-MePhe4, Gly-ol5]enkephalin. J Biol Chem 276:37779–37786

    CAS  PubMed  Google Scholar 

  • Lu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC (2003) Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical ‘barrel’ map development. Nat Neurosci 6:939–947

    CAS  PubMed  Google Scholar 

  • Luo C, Seeburg PH, Sprengel R, Kuner R (2008) Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain 140:358–367

    CAS  PubMed  Google Scholar 

  • Lutz PE, Kieffer BL (2013) Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36:195–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mann A, Illing S, Miess E, Schulz S (2014) Different Mechanisms of Homologous and Heterologous mu-Opioid Receptor Phosphorylation. British J Pharmacol (in press)

    Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    CAS  PubMed  Google Scholar 

  • Marker CL, Lujan R, Loh HH, Wickman K (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 25:3551–3559

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Xie W, Ma L, Ueda H (2008) Pharmacological switch in Abeta-fiber stimulation-induced spinal transmission in mice with partial sciatic nerve injury. Mol Pain 4:25

    PubMed Central  PubMed  Google Scholar 

  • Mazei-Robison MS, Nestler EJ (2012) Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2:a012070

    Google Scholar 

  • Meye FJ, van Zessen R, Smidt MP, Adan RA, Ramakers GM (2012) Morphine withdrawal enhances constitutive mu-opioid receptor activity in the ventral tegmental area. J Neurosci 32:16120–16128

    CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    CAS  PubMed  Google Scholar 

  • Millan MJ, Morris BJ, Colpaert FC, Herz A (1987) A model of chronic pain in the rat: high-resolution neuroanatomical approach identifies alterations in multiple opioid systems in the periaqueductal grey. Brain Res 416:349–353

    CAS  PubMed  Google Scholar 

  • Morley JE, Levine AS (1980) Stress-Induced Eating Is Mediated through Endogenous Opiates. Science 209:1259–1261

    CAS  PubMed  Google Scholar 

  • Mousa SA, Machelska H, Schafer M, Stein C (2002) Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. J Neuroimmunol 126:5–15

    CAS  PubMed  Google Scholar 

  • Navani DM, Sirohi S, Madia PA, Yoburn BC (2011) The role of opioid antagonist efficacy and constitutive opioid receptor activity in the opioid withdrawal syndrome in mice. Pharmacol Biochem Behav 99:671–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    CAS  PubMed  Google Scholar 

  • Nielsen MD, Chan GC, Poser SW, Storm DR (1996) Differential regulation of type I and type VIII Ca2 + -stimulated adenylyl cyclases by Gi-coupled receptors in vivo. J Biol Chem 271:33308–33316

    CAS  PubMed  Google Scholar 

  • Noble F, Coric P, Turcaud S, Fournie-Zaluski MC, Roques BP (1994) Assessment of physical dependence after continuous perfusion into the rat jugular vein of the mixed inhibitor of enkephalin-degrading enzymes, RB 101. Eur J Pharmacol 253:283–287

    CAS  PubMed  Google Scholar 

  • Noguchi K, Dubner R, Ruda MA (1992) Preproenkephalin mRNA in spinal dorsal horn neurons is induced by peripheral inflammation and is co-localized with Fos and Fos-related proteins. Neuroscience 46:561–570

    CAS  PubMed  Google Scholar 

  • Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Investig 120:3779–3787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    CAS  PubMed  Google Scholar 

  • Parada CA, Vivancos GG, Tambeli CH, Cunha FQ, Ferreira SH (2003) Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Proc Natl Acad Sci USA 100:2923–2928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira MP, Werner MU, Ringsted TK, Rowboth MC, Taylor BK, Dahl JB (2013) Does naloxone reinstate secondary hyperalgesia in humans after resolution of a burn injury? A placebo-controlled, double-blind, randomized, cross-over study. PloS One 8:e64608

    Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    CAS  PubMed  Google Scholar 

  • Posner J, Burke CA (1985) The effects of naloxone on opiate and placebo analgesia in healthy volunteers. Psychopharmacology 87:468–472

    Google Scholar 

  • Qiu S, Chen T, Koga K, Guo YY, Xu H, Song Q, Wang JJ, Descalzi G, Kaang BK, Luo JH, Zhuo M, Zhao MG (2013) An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Sig 6:ra34

    Google Scholar 

  • Raehal KM, Lowery JJ, Bhamidipati CM, Paolino RM, Blair JR, Wang D, Sadee W, Bilsky EJ (2005) In vivo characterization of 6beta-naltrexol, an opioid ligand with less inverse agonist activity compared with naltrexone and naloxone in opioid-dependent mice. J Pharmacol Exp Ther 313:1150–1162

    CAS  PubMed  Google Scholar 

  • Ravn P, Frederiksen R, Skovsen AP, Christrup LL, Werner MU (2012) Prediction of pain sensitivity in healthy volunteers. J Pain Res 5:313–326

    PubMed Central  PubMed  Google Scholar 

  • Ravn P, Secher EL, Skram U, Therkildsen T, Christrup LL, Werner MU (2013) Morphine- and buprenorphine-induced analgesia and antihyperalgesia in a human inflammatory pain model: a double-blind, randomized, placebo-controlled, five-arm crossover study. J Pain Res 6:23–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rees H, Sluka KA, Lu Y, Westlund KN, Willis WD (1996) Dorsal root reflexes in articular afferents occur bilaterally in a chronic model of arthritis in rats. J Neurophysiol 76:4190–4193

    CAS  PubMed  Google Scholar 

  • Reichling DB, Levine JD (2009) Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32:611–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivat C, Laboureyras E, Laulin JP, Le Roy C, Richebe P, Simonnet G (2007) Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 32:2217–2228

    Google Scholar 

  • Rivat C, Laulin JP, Corcuff JB, Celerier E, Pain L, Simonnet G (2002) Fentanyl enhancement of carrageenan-induced long-lasting hyperalgesia in rats: prevention by the N-methyl-D-aspartate receptor antagonist ketamine. Anesthesiology 96:381–391

    CAS  PubMed  Google Scholar 

  • Ruscheweyh R, Wilder-Smith O, Drdla R, Liu XG, Sandkuhler J (2011) Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. Mol Pain 7:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadee W, Wang D, Bilsky EJ (2005) Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76:1427–1437

    CAS  PubMed  Google Scholar 

  • Sally EJ, Xu H, Dersch CM, Hsin LW, Chang LT, Prisinzano TE, Simpson DS, Giuvelis D, Rice KC, Jacobson AE, Cheng K, Bilsky EJ, Rothman RB (2010) Identification of a novel “almost neutral” micro-opioid receptor antagonist in CHO cells expressing the cloned human mu-opioid receptor. Synapse 64:280–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandkuhler J, Gruber-Schoffnegger D (2012) Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 12:18–27

    PubMed Central  PubMed  Google Scholar 

  • Schepers RJ, Mahoney JL, Gehrke BJ, Shippenberg TS (2008a) Endogenous kappa-opioid receptor systems inhibit hyperalgesia associated with localized peripheral inflammation. Pain 138:423–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schepers RJ, Mahoney JL, Shippenberg TS (2008b) Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception. Pain 136:320–330

    CAS  PubMed  Google Scholar 

  • Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137:1148–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider SP, Eckert WA 3rd, Light AR (1998) Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J Neurophysiol 80:2954–2962

    CAS  PubMed  Google Scholar 

  • Schoell ED, Bingel U, Eippert F, Yacubian J, Christiansen K, Andresen H, May A, Buechel C (2010) The effect of opioid receptor blockade on the neural processing of thermal stimuli. PLoS One 5:e12344

    Google Scholar 

  • Schweinhardt P, Sauro KM, Bushnell MC (2008) Fibromyalgia: a disorder of the brain? Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 14:415–421

    Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 366:381–416

    CAS  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    CAS  PubMed  Google Scholar 

  • Sevcik MA, Jonas BM, Lindsay TH, Halvorson KG, Ghilardi JR, Kuskowski MA, Mukherjee P, Maggio JE, Mantyh PW (2006) Endogenous opioids inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. Gastroenterology 131:900–910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoblock JR, Maidment NT (2006) Constitutively active micro opioid receptors mediate the enhanced conditioned aversive effect of naloxone in morphine-dependent mice. Neuropsychopharmacology 31:171–177 (official publication of the American College of Neuropsychopharmacology)

    CAS  PubMed  Google Scholar 

  • Shoblock JR, Maidment NT (2007) Enkephalin release promotes homeostatic increases in constitutively active mu opioid receptors during morphine withdrawal. Neuroscience 149:642–649

    CAS  PubMed  Google Scholar 

  • Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2 + -stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53:79–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirohi S, Dighe SV, Madia PA, Yoburn BC (2009) The relative potency of inverse opioid agonists and a neutral opioid antagonist in precipitated withdrawal and antagonism of analgesia and toxicity. J Pharmacol Exp Ther 330:513–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skjelbred P, Lokken P (1983) Effects of naloxone on post-operative pain and steroid-induced analgesia. Br J Clin Pharmacol 15:221–226

    Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46

    CAS  PubMed  Google Scholar 

  • Solway B, Bose SC, Corder G, Donahue RR, Taylor BK (2011) Tonic inhibition of chronic pain by neuropeptide Y. Proc Natl Acad Sci USA 108:7224–7229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song B, Marvizon JC (2003a) Dorsal horn neurons firing at high frequency, but not primary afferents, release opioid peptides that produce micro-opioid receptor internalization in the rat spinal cord. J Neurosci 23:9171–9184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song B, Marvizon JC (2003b) Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J Neurosci 23:1847–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spike RC, Puskar Z, Sakamoto H, Stewart W, Watt C, Todd AJ (2002) MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur J Neurosci 15:1306–1316

    CAS  PubMed  Google Scholar 

  • Stacher G, Abatzi TA, Schulte F, Schneider C, Stacher-Janotta G, Gaupmann G, Mittelbach G, Steinringer H (1988) Naloxone does not alter the perception of pain induced by electrical and thermal stimulation of the skin in healthy humans. Pain 34:271–276

    Google Scholar 

  • Stanfa L, Dickenson A (1995) Spinal opioid systems in inflammation. Inflamm Res 44:231–241

    Google Scholar 

  • Stanfa LC, Sullivan AF, Dickenson AH (1992) Alterations in neuronal excitability and the potency of spinal mu, delta and kappa opioids after carrageenan-induced inflammation. Pain 50:345–354

    CAS  PubMed  Google Scholar 

  • Stein C, Lang LJ (2009) Peripheral mechanisms of opioid analgesia. Curr Opin Pharmacol 9:3–8

    CAS  PubMed  Google Scholar 

  • Suarez-Roca H, Maixner W (1992) Morphine produces a multiphasic effect on the release of substance P from rat trigeminal nucleus slices by activating different opioid receptor subtypes. Brain Res 579:195–203

    CAS  PubMed  Google Scholar 

  • Sufka KJ (1994) Conditioned place preference paradigm: a novel approach for analgesic drug assessment against chronic pain. Pain 58:355–366

    CAS  PubMed  Google Scholar 

  • Summer GJ, Puntillo KA, Miaskowski C, Green PG, Levine JD (2007) Burn injury pain: the continuing challenge. J Pain 8:533–548

    PubMed  Google Scholar 

  • Tambeli CH, Levine JD, Gear RW (2009) Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord. Pain 143:228–232

    PubMed Central  PubMed  Google Scholar 

  • Taylor BK, Peterson MA, Basbaum AI (1997) Continuous intravenous infusion of naloxone does not change behavioral, cardiovascular, or inflammatory responses to subcutaneous formalin in the rat. Pain 69:171–177

    CAS  PubMed  Google Scholar 

  • Terman GW, Eastman CL, Chavkin C (2001) Mu opiates inhibit long-term potentiation induction in the spinal cord slice. J Neurophysiol 85:485–494

    CAS  PubMed  Google Scholar 

  • Tillu DV, Gebhart GF, Sluka KA (2008) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136:331–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torsney C (2011) Inflammatory pain unmasks heterosynaptic facilitation in lamina I neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 31:5158–5168

    CAS  PubMed  Google Scholar 

  • Torsney C, MacDermott AB (2006) Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 26:1833–1843

    CAS  PubMed  Google Scholar 

  • Trafton JA, Basbaum AI (2004) [d-Ala2, N-MePhe4, Gly-ol5]enkephalin-induced internalization of the micro opioid receptor in the spinal cord of morphine tolerant rats. Neuroscience 125:541–543

    CAS  PubMed  Google Scholar 

  • Walker EA, Sterious SN (2005) Opioid antagonists differ according to negative intrinsic efficacy in a mouse model of acute dependence. Br J Pharmacol 145:975–983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walwyn W, Evans CJ, Hales TG (2007) Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 27:5092–5104

    CAS  PubMed  Google Scholar 

  • Wang D, Raehal KM, Bilsky EJ, Sadee W (2001a) Inverse agonists and neutral antagonists at mu opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J Neurochem 77:1590–1600

    CAS  PubMed  Google Scholar 

  • Wang D, Raehal KM, Lin ET, Lowery JJ, Kieffer BL, Bilsky EJ, Sadee W (2004) Basal signaling activity of mu opioid receptor in mouse brain: role in narcotic dependence. J Pharmacol Exp Ther 308:512–520

    CAS  PubMed  Google Scholar 

  • Wang D, Sun X, Sadee W (2007) Different effects of opioid antagonists on mu-, delta-, and kappa-opioid receptors with and without agonist pretreatment. J Pharmacol Exp Ther 321:544–552

    CAS  PubMed  Google Scholar 

  • Wang GD, Zhuo M (2002) Synergistic enhancement of glutamate-mediated responses by serotonin and forskolin in adult mouse spinal dorsal horn neurons. J Neurophysiol 87:732–739

    CAS  PubMed  Google Scholar 

  • Wang H, Xu H, Wu LJ, Kim SS, Chen T, Koga K, Descalzi G, Gong B, Vadakkan KI, Zhang X, Kaang BK, Zhuo M (2011) Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain. Sci Transl Med 3:65ra63

    Google Scholar 

  • Wang Z, Bilsky EJ, Porreca F, Sadee W (1994) Constitutive mu opioid receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci 54:PL339–350

    Google Scholar 

  • Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, Hruby VJ, Malan TP Jr, Lai J, Porreca F (2001b) Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J Neurosci 21:1779–1786

    CAS  PubMed  Google Scholar 

  • Wei F, Qiu CS, Kim SJ, Muglia L, Maas JW, Pineda VV, Xu HM, Chen ZF, Storm DR, Muglia LJ, Zhuo M (2002) Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases. Neuron 36:713–726

    CAS  PubMed  Google Scholar 

  • Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, Xu H, Shum FW, Jia YH, Zhuo M (2006) Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci 26:851–861

    CAS  PubMed  Google Scholar 

  • Werner MU, Lassen B, Kehlet H (2002a) Analgesic effects of dexamethasone in burn injury. Reg Anesth Pain Med 27:254–260

    CAS  PubMed  Google Scholar 

  • Werner MU, Lassen B, Pedersen JL, Kehlet H (2002b) Local cooling does not prevent hyperalgesia following burn injury in humans. Pain 98:297–303

    PubMed  Google Scholar 

  • Werner MU, Perkins F, Holte K, Pedersen JL, Kehlet H (2001) Effects of gabapentin in acute inflammatory pain in humans. Reg Anesth Pain Med 26:322–328

    Google Scholar 

  • Werner MU, Petersen KL, Rowbotham MC, Dahl JB (2013) Healthy volunteers can be phenotyped using cutaneous sensitization pain models. PLoS ONE 8:e62733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CE (2010) N-Methyl-D-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain 148:237–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released peptides on primate spinothalamic tract cells. J Neurosci 4:741–750

    CAS  PubMed  Google Scholar 

  • Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, Muglia LJ, Storm DR (1999) Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23:787–798

    CAS  PubMed  Google Scholar 

  • Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–15

    PubMed Central  PubMed  Google Scholar 

  • Woolf CJ, Costigan M (1999) Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA 96:7723–7730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    CAS  PubMed  Google Scholar 

  • Xia ZG, Refsdal CD, Merchant KM, Dorsa DM, Storm DR (1991) Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 6:431–443

    CAS  PubMed  Google Scholar 

  • Xu H, Partilla JS, Wang X, Rutherford JM, Tidgewell K, Prisinzano TE, Bohn LM, Rothman RB (2007) A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) mu-opioid agonists on cellular markers related to opioid tolerance and dependence. Synapse 61:166–175

    CAS  PubMed  Google Scholar 

  • Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28:7445–7453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaksh TL (1987) Opioid receptor systems and the endorphins: a review of their spinal organization. J Neurosurg 67:157–176

    CAS  PubMed  Google Scholar 

  • Yaksh TL, Al-Rodhan NR, Jensen TS (1988) Sites of action of opiates in production of analgesia. Prog Brain Res 77:371–394

    CAS  PubMed  Google Scholar 

  • Yaksh TL, Elde RP (1981) Factors governing release of methionine enkephalin-like immunoreactivity from mesencephalon and spinal cord of the cat in vivo. J Neurophysiol 46:1056–1075

    CAS  PubMed  Google Scholar 

  • Yoo JH, Bailey A, Borsodi A, Toth G, Matifas A, Kieffer BL, Kitchen I (2014) Knockout subtraction autoradiography: A novel ex vivo method to detect heteromers finds sparse KOP receptor/DOP receptor heterodimerization in the brain. Eur J Pharmacol 731C:1–7

    Google Scholar 

  • Yoshimura M, North RA (1983) Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 305:529–530

    CAS  PubMed  Google Scholar 

  • Yu XM, Sessle BJ, Vernon H, Hu JW (1994) Administration of opiate antagonist naloxone induces recurrence of increased jaw muscle activities related to inflammatory irritant application to rat temporomandibular joint region. J Neurophysiol 72:1430–1433

    CAS  PubMed  Google Scholar 

  • Zachariou V, Liu R, LaPlant Q, Xiao G, Renthal W, Chan GC, Storm DR, Aghajanian G, Nestler EJ (2008) Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies. Biol Psychiatry 63:1013–1021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuo M (2012) Targeting neuronal adenylyl cyclase for the treatment of chronic pain. Drug Discovery Today 17:573–582

    CAS  PubMed  Google Scholar 

  • Zhou HY, Chen SR, Chen H, Pan HL (2010) Opioid-induced long-term potentiation in the spinal cord is a presynaptic event. J Neurosci 30:4460–4466

    Google Scholar 

  • Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Charles Anderson for construction of Fig. 10 in Illustrator and Howard Fields and Tony Yaksh for helpful discussions. This work was supported by NIH grants F31DA032496 (G.C.), K02DA19656 (B.K.T.), and R21DA38248 (B.K.T.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley K. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, B.K., Corder, G. (2014). Endogenous Analgesia, Dependence, and Latent Pain Sensitization. In: Taylor, B., Finn, D. (eds) Behavioral Neurobiology of Chronic Pain. Current Topics in Behavioral Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_351

Download citation

Publish with us

Policies and ethics