Skip to main content

The Self-administration of Analgesic Drugs in Experimentally Induced Chronic Pain

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 20))

Abstract

Systemically and centrally delivered opioids have been comprehensively studied for their effects both in analgesic and addiction models for many decades, primarily in subjects with presumptive normal sensory thresholds. The introduction of disease-based models of persistent hypersensitivity enabled chronic evaluation of opioid analgesic pharmacology under the specific state of chronic pain. These studies have largely (but not uniformly) reported reduced opioid analgesic potency and efficacy under conditions of chronic pain. A comparatively limited set of studies has evaluated the impact of experimentally induced chronic pain on self-administration patterns of opioid and non-opioid analgesics. Similarly, these studies have primarily (but not exclusively) found that responding for opioids is reduced under conditions of chronic pain. Additionally, such experiments have also demonstrated that the condition of chronic pain evokes self-administration or conditioned place preference for non-opioid analgesics. The consensus is that the chronic pain alters responding for opioid and non-opioid analgesics in a manner seemingly related to their respective antiallodynic/antihyperalgesic properties under the specific state of chronic pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Colpaert FC, De Witte P, Maroli AN, Awouters F, Niemegeers CJE, Janssen PAJ (1980) Self-administration of the analgesic suprofen in arthritic rats: evidence of Mycobacterium butyricum-induced arthritis as an experimental model of chronic pain. Life Sci 27:921–928

    Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral neuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  CAS  PubMed  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Decosterd I, Allchorne A, Woolf CJ (2002) Progressive tactile hypersensitivity after a peripheral nerve crush: non-noxious mechanical stimulus-induced neuropathic pain. Pain 100(1–2):155–162

    Article  PubMed  Google Scholar 

  • Wacnik PW, Eikmeier LJ, Ruggles TR, Ramnaraine ML, Walcheck BK, Beitz AJ, Wilcox GL (2001) Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J. Neurosci. 21(23):9355–9366

    CAS  PubMed  Google Scholar 

  • Sasamura T, Nakamura S, Iida Y, Fujii H, Murata J, Saiki I, Nojima H, Kuraishi Y (2002) Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol 441(3):185–191

    Article  CAS  PubMed  Google Scholar 

  • Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94(3):293–304

    Article  CAS  PubMed  Google Scholar 

  • Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F (2003) A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology 24(6):797–805

    Article  CAS  PubMed  Google Scholar 

  • Kehl LJ, Trempe TM, Hargreaves KM (2000) A new animal model for assessing mechanisms and management of muscle hyperalgesia. Pain 85(3):333–343

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Mus Nerve 24(1):37–46

    Article  CAS  Google Scholar 

  • Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA (2013) An overview of animal models of pain: disease models and outcome measures. J Pain Symp Manage 14(11):1255–1269

    Google Scholar 

  • Wang LX, Wang ZJ (2003) Animal and cellular models of chronic pain. Adv Drug Deliv Rev 55(8):949–965

    Article  CAS  PubMed  Google Scholar 

  • Hylden JL, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194(2–3):135–143

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Price DD, Mayer DJ (1995) Experimental mononeuropathy reduces the antinociceptive effects of morphine: implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain. Pain 61(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Bian D, Nichols ML, Ossipov MH, Lai J, Porreca F (1995) Characterization of the antiallodynic efficacy of morphine in a model of neuropathic pain in rats. NeuroReport 6(15):1981–1984

    Article  CAS  PubMed  Google Scholar 

  • Yaksh TL, Pogrel JW, Lee YW, Chaplan SR (1995) Reversal of nerve ligation-induced allodynia by spinal alpha-2 adrenoceptor agonists. J Pharmacol Exp Ther 272(1):207–214

    CAS  PubMed  Google Scholar 

  • Ossipov MH, Lopez Y, Bian D, Nichols ML, Porreca F (1997) Synergistic antinociceptive interactions of morphine and clonidine in rats with nerve-ligation injury. Anesthesiology 86(1):197–204

    Article  Google Scholar 

  • Nichols ML, Bian D, Ossipov MH, Lai J, Porreca F (1995) Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neuropathic pain in rats. J Pharmacol Exp Ther 275(3):1339–1345

    CAS  PubMed  Google Scholar 

  • Fairbanks CA, Nguyen HO, Grocholski BM, Wilcox GL (2000) Moxonidine, a selective imidazoline-alpha2—adrenergic receptor agonist, produces spinal synergistic antihyperalgesia with morphine in nerve-injured mice. Anesthesiology 93(3):765–773

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Sakashita Y (1999) Differential effects of intrathecally administered morphine and its interaction with cholecystokinin-B antagonist on thermal hyperalgesia following two models of experimental mononeuropathy in the rat. Anesthesiology 90(5):1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Wacnik PW, Wilcox GL, Clohisy DR, Ramnaraine ML, Eikmeier LJ, Beitz AJ (2000) Animal models of cancer pain. In: Pain research and clinical management: proceedings of the ninth world congress on pain

    Google Scholar 

  • Yaksh TL (2002) Future advances in pain pharmacology: what does the present say about the future? Proc West Pharmacol Soc 45:211–218

    Google Scholar 

  • Petraschka M, Li S, Gilbert T, Westenbroek R, Bruchas M, Schreiber S, Lowe J, Low M, Pintar J, Chavkin C (2007) The absence of endogenous beta-endorphin selectively blocks phosphorylation and desensitization of mu opioid receptors following partial sciatic nerve ligation. Neuroscience 146(4):1795–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol. Sci 363(1507):3113–3123

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballantyne JC, LaForge KS (2007) Opioid dependence and addiction during opioid treatment of chronic pain. Pain 129(3):235–255

    Article  CAS  PubMed  Google Scholar 

  • Bailey JA, Hurley RW, Gold MS (2010) Crossroads of pain and addiction. Pain Medicine 11(11):1803–1818

    Article  PubMed  Google Scholar 

  • Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96(14):7687–7692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16(11):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Zieglgansberger W, Berthele A, Tolle TR (2005) Understanding neuropathic pain. CNS Spectr 10(4):298–308

    PubMed  Google Scholar 

  • Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22(3):122–127

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister F, Wuttke W (1975) Further studies on self-administration of antipyretic analgesics and combination of antipyretic analgesics with codeine in rhesus monkeys. J Pharmacol Exp Ther 193(3):870–875

    CAS  PubMed  Google Scholar 

  • Colpaert FC, Meert T, De Witte P, Schmitt P (1982) Further evidence validating adjuvant arthritis as an experimental model of chronic pain in the rat. Life Sci 31(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC, Tarayre JP, Alliaga M, Bruins Slot LA, Attal N, Koek W (2001) Opiate self-administration as a measure of chronic nociceptive pain in arthritic rats. Pain 91(1–2):33–45

    Google Scholar 

  • Lyness WH, Smith FL, Heavner JE, Iacono CU, Garvin RD (1989) Morphine self-administration in the rat during adjuvant-induced arthritis. Life Sci 45(23):2217–2224

    Article  CAS  PubMed  Google Scholar 

  • Lee YW, Chaplan SR, Yaksh TL (1995) Systemic and supraspinal, but not spinal, opiates suppress allodynia in a rat neuropathic pain model. Neurosci Lett 199(2):111–114

    Article  CAS  PubMed  Google Scholar 

  • Kupers R, Gybels J (1995) The consumption of fentanyl is increased in rats with nociceptive but not with neuropathic pain. Pain 60(2):137–141

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ, Kim SA, Eisenach JC (2006) Clonidine maintains intrathecal self-administration in rats following spinal nerve ligation. Pain 125(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM, Schmidt WJ (1995) N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci Lett 193(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • King T, Vera-Portocarrero L, Guterrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F (2009) Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 12(11):1364–1366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenach JC, Rauck RL, Curry R (2003) Intrathecal, but not intravenous adenosine reduces allodynia in patients with neuropathic pain. Pain 105(1–2):65–70

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ, Kim SA, Buechler NL, Porreca F, Eisenach JC (2007) Opioid self-administration in the nerve-injured rat: relevance of antiallodynic effects to drug consumption and effects of intrathecal analgesics. Anesthesiology 106(2):312–322

    Article  CAS  PubMed  Google Scholar 

  • Wade CL, Krumenacher P, Kitto KF, Peterson CD, Wilcox GL, Fairbanks CA (2013) Effect of chronic pain on fentanyl self-administration in mice. PLoS ONE 8(11):e79239

    Article  PubMed Central  PubMed  Google Scholar 

  • Wade CL, Kitto KF, Schuster DJ, Peterson CD, Koob GF, Fairbanks CA (2012) Fentanyl self-administration in sickle cell anemia- and CFA-induced chronic pain. Pain in sickle cell disease: basic and clinical sciences, pre-conference symposium to the American Pain Society 16 May

    Google Scholar 

  • Gutierrez T, Crystal JD, Zvonok AM, Makriyannis A, Hohmann AG (2011) Self-medication of a cannabinoid CB(2) agonist in an animal model of neuropathic pain. Pain 152(9):1976–1987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He Y, Tian X, Hu X, Porreca F, Wang ZJ (2012) Negative reinforcement reveals non-evoked ongoing pain in mice with tissue or nerve injury. J Pain 13(6):598–607

    Article  PubMed Central  PubMed  Google Scholar 

  • Navratilova E, Xie JY, King, T, Porreca F (2013) Evaluation of reward from pain relief. Ann NY Acad Sci 1282:1–11

    Google Scholar 

  • Ozaki S, Narita M, Narita M, Ozaki M, Khotib J, Suzuki T (2004) Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of the morphine-induced rewarding effect in mice with sciatic nerve ligation. J Neurochem 88(6):1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Niikura K, Narita M, Narita M, Nakamura A, Okutsu D, Ozeki A, Kurahashi K, Kobayashi Y, Suzuki M, Suzuki T (2008) Direct evidence for the involvement of endogenous beta-endorphin in the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state. Neurosci Lett 435(3):257–262

    Article  CAS  PubMed  Google Scholar 

  • Betourne A, Familiades J, Lacassagne L, Halley H, Cazales M, Ducommun B, Lassalle JM, Zajac JM, Frances B (2008) Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Neuroscience 157(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kishimoto Y, Misawa M (1996) Formalin- and carrageenan-induced inflammation attenuates place preferences produced by morphine, methamphetamine and cocaine. Life Sci 59(19):1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Kishimoto Y, Ise Y, Yajima Y, Isawa K, Suzuki T (2005) Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Narita M, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T (2002) Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem 82(5):1192–1198

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Narita M, Narita M, Iino M, Miyoshi K, Suzuki T (2003) Suppression of the morphine-induced rewarding effect and G-protein activation in the lower midbrain following nerve injury in the mouse: involvement of G-protein-coupled receptor kinase 2. Neurosci Lett 116(1):89–97

    Article  CAS  Google Scholar 

  • Cahill CM, Xue L, Grenier P, Magnussen C, Lecour S, Olmstead MC (2013) Changes in morphine reward in a model of neuropathic pain. Behav Pharmacol 24(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Low LA, Millecamps M, Seminowicz DA, Naso L, Thompson SJ, Stone LS, Bushnell MC (2012) Nerve injury causes long-term attentional deficits in rats. Neurosci Lett 529(2):103–107

    Article  CAS  PubMed  Google Scholar 

  • Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS (2011) Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci 31(20):7540–7550

    Article  CAS  PubMed  Google Scholar 

  • Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, Szyf M (2013) Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Molecular Pain 9(21)

    Google Scholar 

  • Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS (2013) Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PLoS ONE 8(1):e55259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tracey I, Bushnell MC (2009) How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain 10(11):1113–1120

    Article  PubMed  Google Scholar 

  • Schweinhardt P, Bushnell MC (2010) Pain imaging in health and disease–how far have we come? J Clin Investig 120(11):3788–3797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12(11):652–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13(5):177–184

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (1996) Under siege: the brain on opiates. Neuron 16(5):897–900

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Funada M, Suzuki T (2001) Regulations of opioid dependence by opioid receptor types. Pharmacol Ther 89(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Castonguay A, Taylor AJ, Murphy N, Ghogha A, DeKoninck Y, Evans CJ, Cahill CM (2013) Chronic pain leads to glial activation throughout the limbic system and disruption in mesolimbic dopaminergic system that interferes with opioid reward. Society for Neuroscience Abstracts Monday 11 Nov

    Google Scholar 

  • Baliki MN, Geha PY, Fields HL, Apkarian AV (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66(1):149–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baliki MN, Mansour A, Baria AT, Huang L, Berger SE, Fields HL, Apkarian V (2013) Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J Neurosci 33(41):16383–16393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Nat Acad Sci USA 109(50):20709–20713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16(15):4707–4715

    CAS  PubMed  Google Scholar 

  • Ewan EE, Martin TJ (2011) Rewarding electrical brain stimulation in rats after peripheral nerve injury: decreased facilitation by commonly abused prescription opioids. Anesthesiology 115(6):1271–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez G, Shizgal P (2009) Dynamic changes in dopamine tone during self-stimulation of the ventral tegmental area in rats. Behav Brain Res 198(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Walsh TD (1984) Oral morphine in chronic cancer pain. Pain 18(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Marks RM, Sachar EJ (1973) Undertreatment of medical inpatients with narcotic analgesics. Ann Intern Med 78(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Weissman DE, Haddox JD (1989) Opioid pseudoaddiction–an iatrogenic syndrome. Pain 36(3):363–366

    Article  CAS  PubMed  Google Scholar 

  • Kirsh KL, Whitcomb LA, Donaghy K, Passik SD (2002) Abuse and addiction issues in medically ill patients with pain: attempts at clarification of terms and empirical study. Clin J Pain 18(4 Suppl):S52–S60

    Article  PubMed  Google Scholar 

  • Weissman DE (2005) Pseudoaddiction #69. J Palliative Med 8(6):1283–1284

    Article  Google Scholar 

  • Lusher J, Elander J, Bevan D, Telfer P, Burton B (2006) Analgesic addiction and pseudoaddiction in painful chronic illness. Clin J Pain 22(3):316–324

    Article  PubMed  Google Scholar 

  • Garland EL, Froeliger B, Zeidan F, Partin K, Howard MO (2013) The downward spiral of chronic pain, prescription opioid misuse, and addiction: cognitive, affective, and neuropsychopharmacologic pathways. Neurosci Biobehav Rev 37(10 Pt 2):2597–2607

    Article  PubMed  Google Scholar 

  • IOM (2011) Relieving pain in America: A blueprint for transforming prevention, care, education, and research. The National Academies Press, Washington, DC

    Google Scholar 

  • Minozzi S, Amato L, Davoli M (2012) Development of dependence following treatment with opioid analgesics for pain relief: a systematic review. Addiction 108(4):688–698

    Article  PubMed  Google Scholar 

  • Fishbain DA, Cole B, Lewis J, Rosomoff HL, Rosomoff RS (2008) What percentage of chronic nonmalignant pain patients exposed to chronic opioid analgesic therapy develop abuse/addiction and/or aberrant drug-related behaviors? A structured evidence-based review. Pain Med 9(4):444–459

    Article  PubMed  Google Scholar 

  • Pletcher MJ, Kertesz SG, Sidney S, Kiefe CI, Hulley SB (2006) Incidence and antecedents of nonmedical prescription opioid use in four US communities. The coronary artery risk development in young adults (CARDIA) prospective cohort study. Drug Alcohol Depend 85(2):171–176

    Article  PubMed  Google Scholar 

  • Edlund MJ, Sullivan M, Steffick D, Harris KM, Wells KB (2007) Do users of regularly prescribed opioids have higher rates of substance use problems than nonusers? Pain Med 8(8):647–656

    Article  PubMed  Google Scholar 

  • Huang B, Dawson DA, Stinson FS, Hasin DS, Ruan WJ, Saha TD, Smith SM, Goldstein RB, Grant BF (2006) Prevalence, correlates, and comorbidity of nonmedical prescription drug use and drug use disorders in the United States: results of the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry 67(7):1062–1073

    Article  PubMed  Google Scholar 

  • Fields HL (2011) The doctor’s dilemma: opiate analgesics and chronic pain. Neuron 69(4):591–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAuliffe WE (2012) A critique of Minozzi et al’s pain relief and dependence systematic review. Addiction 108(6):1162–1169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Fairbanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wade, C.L., Fairbanks, C.A. (2014). The Self-administration of Analgesic Drugs in Experimentally Induced Chronic Pain. In: Taylor, B., Finn, D. (eds) Behavioral Neurobiology of Chronic Pain. Current Topics in Behavioral Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_344

Download citation

Publish with us

Policies and ethics