Skip to main content

Sensitive Periods for Hormonal Programming of the Brain

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 16))

Abstract

During sensitive periods, information from the external and internal environment that occurs during particular phases of development is relayed to the brain to program neural development. Hormones play a central role in this process. In this review, we first discuss sexual differentiation of the brain as an example of hormonal programming. Using sexual differentiation, we define sensitive periods, review cellular and molecular processes that can explain their restricted temporal window, and discuss challenges in determining the precise timing of the temporal window. We then briefly review programming effects of other hormonal systems and discuss how programming of these systems interact with sexual differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel KM, Drake R, Goldstein JM (2010) Sex differences in schizophrenia. Int Rev Psychiatry 22:417–428

    PubMed  Google Scholar 

  • Ahern TH, Krug S, Carr AV, Murray EK, Fitzpatrick E, Bengston L, McCutcheon J, De Vries GJ, Forger NG (2013) Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. J Comp Neurol 521:2551–2569

    PubMed  Google Scholar 

  • Ahima RS, Prabakaran D, Flier JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding—implications for energy homeostasis and neuroendocrine function. J Clin Invest 101:1020–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed OM, El-Gareib AW, El-Bakry AM, Ei-Tawab SMA, Ahmed RG (2008) Thyroid hormones states and brain development interactions. Int J Dev Neurosci 26:147–209

    CAS  PubMed  Google Scholar 

  • Al-Shamma HA, De Vries GJ (1996) Neurogenesis of the sexually dimorphic vasopressin cells of the bed nucleus of the stria terminalis and amygdala of rats. J Neurobiol 29:91–98

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer, SA (1995) Atlas of prenatal rat brain development. CRC Press, Boca Raton

    Google Scholar 

  • Amateau SK, McCarthy MM (2004) Induction of PGE(2) by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci 7:643–650

    CAS  PubMed  Google Scholar 

  • Anderson DK, Rhees RW, Fleming DE (1985) Effects of prenatal stress on differentiation of the sexually dimorphic nucleus of the preoptic area (sdn-poa) of the rat-brain. Brain Res 332:113–118

    CAS  PubMed  Google Scholar 

  • Arnold AP (2009) The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav 55:570–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold AP, Breedlove SM (1985) Organizational and activational effects of sex steroids on brain and behavior: a re-analysis. Horm Behav 19:469–498

    CAS  PubMed  Google Scholar 

  • Attig L, Solomon G, Ferezou J, Abdennebi-Najar L, Taouis M, Gertler A, Djiane J (2008) Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int J Obes 32:1153–1160

    CAS  Google Scholar 

  • Ayala R, Shu TZ, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128:29–43

    CAS  PubMed  Google Scholar 

  • Bale TL (2009) Neuroendocrine and immune influences on the CNS: it’s a matter of sex. Neuron 64:13–16

    CAS  PubMed  Google Scholar 

  • Bale TL (2011) Sex differences in prenatal epigenetic programing of stress pathways. Stress Int J Biol Stress 14:348–356

    Google Scholar 

  • Barbazanges A, Piazza PV, LeMoal M, Maccari S (1996) Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 16:3943–3949

    CAS  PubMed  Google Scholar 

  • Barraclough CA (1961) Production of anovulatory, sterile rats by single injections of testosterone propionate. Endocrinology 68:62–67

    CAS  PubMed  Google Scholar 

  • Barraclough CA, Gorski RA (1961) Evidence that the hypothalamus is responsible for androgen-induced sterility in the female rat. Endocrinology 68:68–79

    CAS  PubMed  Google Scholar 

  • Barraclough CA, Leathem JH (1954) Infertility induced in mice by a single injection of testosterone propionate. Proc Soc Exp Biol Med 85:673–674

    CAS  PubMed  Google Scholar 

  • Baum MJ (2006) Mammalian animal models of psychosexual differentiation: when is ‘translation’ to the human situation possible? Horm Behav 50:579–588

    PubMed  Google Scholar 

  • Benediktsson R, Calder AA, Edwards CRW, Seckl JR (1997) Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 46:161–166

    CAS  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    CAS  PubMed  Google Scholar 

  • Bernal J (2005) Thyroid hormones and brain development. In: Litwack G (ed) Vitamins and hormones—advances in research and applications, Vol 71, pp 95–122

    Google Scholar 

  • Berthold AA (1849) Transplantation der Hoden. Arch f Anat u Physiol phys 16:42–46

    Google Scholar 

  • Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11 beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841–2853

    CAS  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33:267–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16:622–653

    CAS  PubMed  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    CAS  PubMed  Google Scholar 

  • Bouret SG, Simerly RB (2007) Development of leptin-sensitive circuits. J Neuroendocrinol 19:575–582

    CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 210:564–566

    CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1983) Hormonal-control of a developing neuromuscular system: II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci 3:424–432

    CAS  PubMed  Google Scholar 

  • Breton C (2013) The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol 216:R19–R31

    CAS  PubMed  Google Scholar 

  • Breton C, Lukaszewski M-A, Risold P-Y, Enache M, Guillemot J, Riviere G, Delahaye F, Lesage J, Dutriez-Casteloot I, Laborie C, Vieau D (2009) Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am J Physiol-Endocrinol Metab 296:E462–E472

    CAS  PubMed  Google Scholar 

  • Brock O, Keller M, Veyrac A, Douhard Q, Bakker J (2010) Short term treatment with estradiol decreases the rate of newly generated cells in the subventricular zone and main olfactory bulb of adult female mice. Neuroscience 166:368–376

    CAS  PubMed  Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    PubMed Central  PubMed  Google Scholar 

  • Burgoyne PS, Buehr M, Koopman P, Rossant J, McLaren A (1988) Cell-autonomous action of the testis-determining gene—sertoli cells are exclusively XY in XX–XY chimaeric mouse testes. Development 102:443–450

    CAS  PubMed  Google Scholar 

  • Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477–484

    CAS  PubMed  Google Scholar 

  • Caldwell HK, Lee HJ, Macbeth AH, Young WS (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84:1–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang G-Q, Gaysinskaya V, Karatayev O, Leibowitz SF (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28:12107–12119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56–79

    PubMed  Google Scholar 

  • Chung WCJ, Swaab DF, De Vries GJ (2000) Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain. J Neurobiol 43:234–243

    CAS  PubMed  Google Scholar 

  • Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19:323–362

    CAS  PubMed  Google Scholar 

  • Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    Google Scholar 

  • Coupe B, Amarger V, Grit I, Benani A, Parnet P (2010) Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology 151:702–713

    CAS  PubMed  Google Scholar 

  • Cripps RL, Martin-Gronert MS, Archer ZA, Hales CN, Mercer JG, Ozanne SE (2009) Programming of hypothalamic neuropeptide gene expression in rats by maternal dietary protein content during pregnancy and lactation. Clin Sci 117:85–93

    CAS  PubMed  Google Scholar 

  • Davis EC, Popper P, Gorski RA (1996) The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 734:10–18

    CAS  PubMed  Google Scholar 

  • Davis EC, Shryne JE, Gorski RA (1995) A revised critical period for the sexual differentiation of the sexually dimorphic nucleus of the preoptic area in the rat. Neuroendocrinology 62:579–585

    CAS  PubMed  Google Scholar 

  • de Escobar GM, Obregon MJ, del Rey FE (2004) Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab 18:225–248

    PubMed  Google Scholar 

  • De Vries GJ (2004) Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145:1063–1068

    PubMed  Google Scholar 

  • De Vries GJ, Best W, Sluiter AA (1983) The influence of androgens on the development of a sex difference in the vasopressinergic innervation of the rat lateral septum. Dev Brain Res 8:377–380

    Google Scholar 

  • De Vries GJ, Buijs RM, Sluiter AA (1984) Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult-rat brain. Brain Res 298:141–145

    PubMed  Google Scholar 

  • De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain–presence of a sex difference in the lateral septum. Brain Res 218:67–78

    PubMed  Google Scholar 

  • De Vries GJ, Jardon M, Reza M, Rosen GJ, Immerman E, Forger NG (2008) Sexual differentiation of vasopressin innervation of the brain: cell death versus phenotypic differentiation. Endocrinology 149:4632–4637

    PubMed Central  PubMed  Google Scholar 

  • De Vries GJ, Miller MA (1998) Anatomy and function of extrahypothalamic vasopressin systems in the brain. Prog Brain Res 119:3–20

    PubMed  Google Scholar 

  • De Vries GJ, Panzica GC (2006) Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 138:947–955

    PubMed Central  PubMed  Google Scholar 

  • De Vries GJ, Simerly RB (2002) Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Moss RL, Rubin RT (ed) Hormones, brain, and behavior volume IV: development of hormone-dependent neuronal systems, Academic Press, San Diego, pp 137–191

    Google Scholar 

  • De Vries GJ, Södersten P (2009) Sex differences in the brain: the relation between structure and function. Horm Behav 55:589–596

    PubMed Central  PubMed  Google Scholar 

  • De Vries H (1904) Species and varieties, their origin by mutation. Lectures delivered at the University of California. The Open court publishing company, Chicago

    Google Scholar 

  • Delahaye F, Breton C, Risold P-Y, Enache M, Dutriez-Casteloot I, Laborie C, Lesage J, Vieau D (2008) Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 149:470–475

    CAS  PubMed  Google Scholar 

  • Dominguez PR (2011) The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: an update. Brain Res Bull 84:118–124

    PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    CAS  PubMed  Google Scholar 

  • DonCarlos LL (1996) Developmental profile and regulation of estrogen receptor (ER) mRNA expression in the preoptic area of prenatal rats. Dev Brain Res 94:224–233

    CAS  Google Scholar 

  • DonCarlos LL, Handa RJ (1994) Developmental profile of estrogen-receptor messenger-rna in the preoptic area of male and female neonatal rats. Dev Brain Res 79:283–289

    CAS  Google Scholar 

  • Dugger BN, Morris JA, Jordan CL, Breedlove SM (2008) Gonadal steroids regulate neural plasticity in the sexually dimorphic nucleus of the preoptic area of adult male and female rats. Neuroendocrinology 88:17–24

    CAS  PubMed  Google Scholar 

  • Dunn GA, Morgan CP, Bale TL (2011) Sex-specificity in transgenerational epigenetic programming. Horm Behav 59:290–295

    PubMed  Google Scholar 

  • Ebstein RP, Israel S, Chew SH, Zhong SF, Knafo A (2010) Genetics of human social behavior. Neuron 65:831–844

    CAS  PubMed  Google Scholar 

  • Ellis S, Mouihate A, Pittman QJ (2005) Early life immune challenge alters innate immune responses to lipopolysaccharide: implications for host defense as adults. Faseb J 19:1519–1521

    Google Scholar 

  • Ellis S, Mouihate A, Pittman QJ (2006) Neonatal programming of the rat neuroimmune response: stimulus specific changes elicited by bacterial and viral mimetics. J Physiol-Lond 571:695–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferretti S, Fornari A, Pedrazzi P, Pellegrini M, Zoli M (2011) Developmental overfeeding alters hypothalamic neuropeptide mRNA levels and response to a high-fat diet in adult mice. Peptides 32:1371–1383

    CAS  PubMed  Google Scholar 

  • Fombonne E (2009) Epidemiology of Pervasive developmental disorders. Pediatr Res 65:591–598

    PubMed  Google Scholar 

  • Forbes-Lorman RM, Rautio JJ, Kurian JR, Auger AP, Auger CJ (2012) Neonatal MeCP2 is important for the organization of sex differences in vasopressin expression. Epigenetics 7:230–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forger NG (2006) Cell death and sexual differentiation of the nervous system. Neuroscience 138:929–938

    CAS  PubMed  Google Scholar 

  • Forger NG (2009) Control of cell number in the sexually dimorphic brain and spinal cord. J Neuroendocrinol 21:393–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, De Vries GJ (2004) Deletion of bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci USA 101:13666–13671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler CD, Liu Y, Wang ZX (2008) Estrogen and adult neurogenesis in the amygdala and hypothalamus. Brain Res Rev 57:342–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froemke RC, Jones BJ (2011) Development of auditory cortical synaptic receptive fields. Neurosci Biobehav Rev 35:2105–2113

    PubMed Central  PubMed  Google Scholar 

  • Garcia AP, Palou M, Sanchez J, Priego T, Palou A, Pico C (2011) Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring. Plos One 6:e17313

    Google Scholar 

  • Gilmore RF, Varnum MM, Forger NG (2012) Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis. Biol Sex Differ 3:5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodson JL (2008) Nonapeptides and the evolutionary patterning of sociality. In: Neumann ID, Landgraf R (eds) Advances in vasopressin and oxytocin: from genes to behaviour to disease, vol 170, pp 3–15

    Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within medial preoptic area of rat brain. Brain Res 148:333–346

    CAS  PubMed  Google Scholar 

  • Granado M, Garcia-Caceres C, Fuente-Martin E, Diaz F, Mela V, Viveros MP, Argente J, Chowen JA (2011) Effects of acute changes in neonatal leptin levels on food intake and long-term metabolic profiles in rats. Endocrinology 152:4116–4126

    CAS  PubMed  Google Scholar 

  • Green JJ, Hollander E (2010) Autism and oxytocin: new developments in translational approaches to therapeutics. Neurotherapeutics 7:250–257

    CAS  PubMed  Google Scholar 

  • Gutteling BM, De Weerth C, Buitelaar JK (2005a) Prenatal stress and children’s cortisol reaction to the first day of school. Psychoneuroendocrinology 30:541–549

    CAS  PubMed  Google Scholar 

  • Gutteling BM, de Weerth C, Willemsen-Swinkels SHN, Huizink AC, Mulder EJH, Visser GHA, Buitelaar JK (2005b) The effects of prenatal stress on temperament and problem behavior of 27-month-old toddlers. Eur Child Adolesc Psychiatry 14:41–51

    PubMed  Google Scholar 

  • Hales CN, Barker DJP (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    CAS  PubMed  Google Scholar 

  • Han TM, De Vries GJ (1999) Neurogenesis of galanin cells in the bed nucleus of the stria terminalis and centromedial amygdala in rats: a model for sexual differentiation of neuronal phenotype. J Neurobiol 38:491–498

    CAS  PubMed  Google Scholar 

  • Han TM, De Vries GJ (2003) Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mRNA expression in the bed nucleus of the stria terminalis. J Neurobiol 54:502–510

    CAS  PubMed  Google Scholar 

  • Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59:279–289

    CAS  PubMed  Google Scholar 

  • Harris GW, Jacobsohn D (1952) Functional grafts of the anterior pituitary gland. Proc of the Royal Soc B-Biol Sci 139:263–276

    Google Scholar 

  • Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    PubMed Central  PubMed  Google Scholar 

  • Harvey L, Boksa P (2012) Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol 72:1335–1348

    CAS  PubMed  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  • Henrichs J, Ghassabian A, Peeters RP, Tiemeier H (2013) Maternal hypothyroxinemia and effects on cognitive functioning in childhood: how and why? Clin Endocrinol 79:152–162

    Google Scholar 

  • Henry C, Kabbaj M, Simon H, Lemoal M, Maccari S (1994) Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult-rats. J Neuroendocrinol 6:341–345

    CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    CAS  PubMed  Google Scholar 

  • Hodyl NA, Krivanek MM, Clifton VL, Hodgson DM (2008) Innate immune dysfunction in the neonatal rat following prenatal endotoxin exposure. J Neuroimmunol 204:126–130

    CAS  PubMed  Google Scholar 

  • Horn S, Heuer H (2010) Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol 315:19–26

    CAS  PubMed  Google Scholar 

  • Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M (2007) Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol 193:31–37

    CAS  PubMed  Google Scholar 

  • Jordan CL (1999) Glia as mediators of steroid hormone action on the nervous system: an overview. J Neurobiol 40:434–445

    CAS  PubMed  Google Scholar 

  • Jost A (1947) Recherches sur la differenciation sexuelle de l’embryon de lapin. 1. Introduction et embryologie genitale normale. Arch Anat Microsc Morphol Exp 36:151–200

    CAS  Google Scholar 

  • Jost A (1970) Hormonal factors in the sex differentiation of the mammalian foetus. Philos Trans R Soc Lond Ser B-Biol Sci 259:119–131

    CAS  Google Scholar 

  • Junien C, Gallou-Kabani C, Vige A, Gross MS (2005) Nutritional epigenomics of metabolic syndrome. M S-Med Sci 21:44–52

    Google Scholar 

  • Kester MHA, de Mena RM, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, Hume R, de Escobar GM (2004) Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89:3117–3128

    CAS  PubMed  Google Scholar 

  • Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L, Taylor PD, Coen CW (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. Plos One 4:e5870

    Google Scholar 

  • Knudsen EI (2004) Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16:1412–1425

    PubMed  Google Scholar 

  • Lazarus JH, Bestwick JP, Channon S, Paradice R, Maina A, Rees R, Chiusano E, John R, Guaraldo V, George LM, Perona M, Dall’Amico D, Parkes AB, Joomun M, Wald NJ (2012) Antenatal thyroid screening and childhood cognitive function. N Engl J Med 366:493–501

    CAS  PubMed  Google Scholar 

  • Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamopituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702

    CAS  PubMed  Google Scholar 

  • Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30:939–946

    PubMed  Google Scholar 

  • Llorente R, Miguel-Blanco C, Aisa B, Lachize S, Borcel E, Meijer OC, Ramirez MJ, De Kloet ER, Viveros MP (2011) Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol 23:329–344

    CAS  PubMed  Google Scholar 

  • Loffler KA, Koopman P (2002) Charting the course of ovarian development in vertebrates. Int J Dev Biol 46:503–510

    CAS  PubMed  Google Scholar 

  • Lonstein JS, Rood BD, De Vries GJ (2005) Unexpected effects of perinatal gonadal hormone manipulations on sexual differentiation of the extrahypothalamic arginine-vasopressin system in prairie voles. Endocrinology 146:1559–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • LovellBadge R, Hacker A (1995) The molecular genetics of Sry and its role in mammalian sex determination. Philos Trans R Soc Lond Ser B-Biol Sci 350:205–214

    CAS  Google Scholar 

  • Maclusky NJ, Naftolin F (1981) Sexual-differentiation of the central nervous-system. Science 211:1294–1303

    CAS  PubMed  Google Scholar 

  • Mairesse J, Lesage J, Breton C, Breant B, Hahn T, Darnaudery M, Dickson SL, Seckl J, Blondeau B, Vieau D, Maccari S, Viltart O (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol-Endocrinol Metab 292:E1526–E1533

    CAS  PubMed  Google Scholar 

  • Matthews SG, Phillips DI (2012) Transgenerational inheritance of stress pathology. Exp Neurol 233:95–101

    PubMed  Google Scholar 

  • McAbee MD, DonCarlos LL (1999) Regulation of androgen receptor messenger ribonucleic acid expression in the developing rat forebrain. Endocrinology 140:1807–1814

    CAS  PubMed  Google Scholar 

  • McCarthy MM (2008) Estradiol and the developing brain. Physiol Rev 88:91–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ (2012) Sex differences in the brain: the not so inconvenient truth. J Neurosci 32:2241–2247 (The journal of neuroscience is the official journal of the society for neuroscience)

    PubMed Central  PubMed  Google Scholar 

  • McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, Murray EK, Nugent BM, Schwarz JM, Wilson ME (2009a) The epigenetics of sex differences in the brain. J Neurosci 29:12815–12823

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy MM, De Vries GJ, Forger NG (2009b) Sexual differentiation of the brain: mode, mechanisms, and meaning. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (ed) Hormones, brain and behavior, vol 3. Academic Press, San Diego, pp 1707–1744

    Google Scholar 

  • McEwen BS (2001) Genome and hormones: Gender differences in physiology—invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 91:2785–2801

    CAS  PubMed  Google Scholar 

  • McEwen BS, Pfaff DW (1970) Factors influencing sex hormone uptake by rat brain regions: 1. effects of neonatal treatment, hypophysectomy, and competing steroid on estradiol uptake. Brain Res 21:1–16

    CAS  PubMed  Google Scholar 

  • McEwen BS, Pfaff DW, Zigmond RE (1970) Factors influencing sex hormone uptake by rat brain regions: 2. Effects of neonatal treatment and hypophysectomy on testosterone uptake. Brain Res 21:17–28

    CAS  PubMed  Google Scholar 

  • Meaney MJ, McEwen BS (1986) Testosterone implants into the amygdala during the neonatal-period masculinize the social play of juvenile female rats. Brain Res 398:324–328

    CAS  PubMed  Google Scholar 

  • Meaney MJ, Stewart J, Poulin P, McEwen BS (1983) Sexual-differentiation of social play in rat pups is mediated by the neonatal androgen-receptor system. Neuroendocrinology 37:85–90

    CAS  PubMed  Google Scholar 

  • Meyer U (2013) Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75:307–315

    Google Scholar 

  • Meyer-Lindenberg A, Kolachana B, Gold B, Olsh A, Nicodemus KK, Mattay V, Dean M, Weinberger DR (2009) Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 14:968–975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller MA, De Vries GJ, Al-Shamma HA, Dorsa DM (1992) Decline of vasopressin immunoreactivity and messenger-RNA levels in the bed nucleus of the stria terminalis following castration. J Neurosci 12:2881–2887

    CAS  PubMed  Google Scholar 

  • Mistry AM, Swick A, Romsos DR (1999) Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am J Physio-Regul Integr Comp Physiol 277:R742–R747

    CAS  Google Scholar 

  • Mong JA, Kurzweil RL, Davis AM, Rocca MS, McCarthy MM (1996) Evidence for sexual differentiation of glia in rat brain. Horm Behav 30:553–562

    CAS  PubMed  Google Scholar 

  • Morgan K, Meredith J, Kuo JYA, Bilkey DK, McLennan IS (2011) The sex bias in novelty preference of preadolescent mouse pups may require testicular Mullerian inhibiting substance. Behav Brain Res 221:304–306

    PubMed  Google Scholar 

  • Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28:9055–9065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negishi T, Kawasaki K, Sekiguchi S, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y (2005) Attention-deficit and hyperactive neurobehavioural characteristics induced by perinatal hypothyroidism in rats. Behav Brain Res 159:323–331

    CAS  PubMed  Google Scholar 

  • Nordeen EJ, Nordeen KW, Sengelaub DR, Arnold AP (1985) Androgens prevent normally occurring cell death in a sexually dimorphic spinal nucleus. Science 229:671–673 (Washington DC)

    CAS  PubMed  Google Scholar 

  • Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obregon MJ, Calvo RM, Del Rey FE, de Escobar GM (2007) Ontogenesis of thyroid function and interactions with maternal function. Endocr Dev 10:86–98

    CAS  PubMed  Google Scholar 

  • Pankhurst MW, McLennan IS (2012) Inhibin B and anti-Mullerian hormone/Mullerian-inhibiting substance may contribute to the male bias in autism. Transl Psychiatry 2:e148

    Google Scholar 

  • Panzica GC, Castagna C, Viglietti-Panzica C, Russo C, Tlemcani O, Balthazart J (1998) Organizational effects of estrogens on brain vasotocin and sexual behavior in quail. J Neurobiol 37:684–699

    CAS  PubMed  Google Scholar 

  • Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17:389–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pellis SM, Pellis VC (1998) Play fighting of rats in comparative perspective: a schema for neurobehavioral analyses. Neurosci Biobehav Rev 23:87–101

    CAS  PubMed  Google Scholar 

  • Petersen SL, Krishnan S, Aggison LK, Intlekofer KA, Moura PJ (2012) Sexual differentiation of the gonadotropin surge release mechanism: a new role for the canonical Nf kappa B signaling pathway. Front Neuroendocrinol 33:36–44

    CAS  PubMed  Google Scholar 

  • Pfaff DW (1966) Morphological changes in the brains of adult male rats after neonatal castration. J Endocrinol 36:415–416

    CAS  PubMed  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    CAS  PubMed  Google Scholar 

  • Pinto S, Roseberry AG, Liu HY, Diano S, Shanabrough M, Cai XL, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115

    CAS  PubMed  Google Scholar 

  • Pittman QJ, Chen XH, Mouihate A, Hirasawa M, Martin S (1998) Arginine vasopressin, fever and temperature regulation. Adv Brain Vasopressin 119:383–392

    CAS  Google Scholar 

  • Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol-Lond 587:4963–4976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raisman G, Field PM (1971) Sexual dimorphism in the preoptic area of the rat. Science 173:731–733

    CAS  PubMed  Google Scholar 

  • Raisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54:1–29

    CAS  PubMed  Google Scholar 

  • Rhees RW, Shryne JE, Gorski RA (1990a) Onset of the hormone-sensitive perinatal period for sexual differentiation of the sexually dimorphic nucleus of the preoptic area in female rats. J Neurobiol 21:781–786

    CAS  PubMed  Google Scholar 

  • Rhees RW, Shryne JE, Gorski RA (1990b) Termination of the hormone-sensitive period for differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Res Dev Brain Res 52:17–23

    CAS  PubMed  Google Scholar 

  • Salomon S, Bejar C, Schorer-Apelbaum D, Weinstock M (2011) Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats. J Neuroendocrinol 23:118–128

    CAS  PubMed  Google Scholar 

  • Schulz KM, Zehr JL, Salas-Ramirez KY, Sisk CL (2009) Testosterone programs adult social behavior before and during, but not after, adolescence. Endocrinology 150:3690–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120:948–963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JP (1957) Critical periods in the development of social-behavior in puppies. Psychosom Med 19:499–500

    Google Scholar 

  • Scott JP (1958) Critical periods in the development of social-behavior in puppies. Psychosom Med 20:42–54

    CAS  PubMed  Google Scholar 

  • Scott JP, Marston MV (1950) Critical periods affecting the development of normal and mal-adjustive social behavior of puppies. J Genet Psychol 77:25–60

    CAS  PubMed  Google Scholar 

  • Sengelaub DR, Forger NG (2008) The spinal nucleus of the bulbocavemosus: firsts in androgen-dependent neural sex differences. Horm Behav 53:596–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoener JA, Baig R, Page KC (2006) Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol-Regul Integr Comp Physiol 290:R1366–R1373

    CAS  PubMed  Google Scholar 

  • Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 25:507–536

    CAS  PubMed  Google Scholar 

  • Simerly RB (2008) Hypothalamic substrates of metabolic imprinting. Physiol Behav 94:79–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sisk CL, Zehr JL (2005) Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 26:163–174

    CAS  PubMed  Google Scholar 

  • Tanapat P, Hastings NB, Reeves AJ, Gould E (1999) Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 19:5792–5801

    CAS  PubMed  Google Scholar 

  • Taylor PV, Veenema AH, Paul MJ, Bredewold R, Isaacs S, De Vries GJ (2012) Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats. Biol Sex Differ 3:15

    PubMed Central  PubMed  Google Scholar 

  • Tobet S, Knoll JG, Hartshorn C, Aurand E, Stratton M, Kumar P, Searcy B, McClellan K (2009) Brain sex differences and hormone influences: a moving experience? J Neuroendocrinol 21:387–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van den Bergh BRH, Marcoen A (2004) High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev 75:1085–1097

    PubMed  Google Scholar 

  • van Wijk N, Rijntjes E, Van de Heijning BJM (2008) Perinatal and chronic hypothyroidism impair behavioural development in male and female rats. Exp Physiol 93:1199–1209

    PubMed  Google Scholar 

  • Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146:4211–4216

    CAS  PubMed  Google Scholar 

  • Walum H, Westberg L, Henningsson S, Neiderhiser JM, Reiss D, Igl W, Ganiban JM, Spotts EL, Pedersen NL, Eriksson E, Lichtenstein P (2008) Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc Natl Acad Sci USA 105:14153–14156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang ZX, Bullock NA, De Vries GJ (1993) Sexual differentiation of vasopressin projections of the bed nucleus of the stria terminals and medial amygdaloid nucleus in rats. Endocrinology 132:2299–2306

    CAS  PubMed  Google Scholar 

  • Ward IL (1972) Prenatal stress feminizes and demasculinizes the behavior of males. Science 175:82–84

    CAS  PubMed  Google Scholar 

  • Ward IL, Stehm KE (1991) Prenatal stress feminizes juvenile play patterns in male rats. Physiol Behav 50:601–605

    CAS  PubMed  Google Scholar 

  • Ward IL, Weisz J (1984) Differential-effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114:1635–1644

    CAS  PubMed  Google Scholar 

  • Weinstock M (2007) Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochem Res 32:1730–1740

    CAS  PubMed  Google Scholar 

  • Weisz J, Brown BL, Ward IL (1982) Maternal stress decreases steroid aromatase-activity in brains of male and female rat fetuses. Neuroendocrinology 35:374–379

    CAS  PubMed  Google Scholar 

  • Welberg LAM, Seckl JR, Holmes MC (2000) Inhibition of 11 beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 12:1047–1054

    CAS  PubMed  Google Scholar 

  • Welberg LAM, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104:71–79

    CAS  PubMed  Google Scholar 

  • Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87:1–28

    CAS  PubMed  Google Scholar 

  • Williams CL, Teeling JL, Perry VH, Fleming TP (2011) Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biology 9:49

    Google Scholar 

  • Wittmann W, McLennan IS (2011) The male bias in the number of Purkinje cells and the size of the murine cerebellum may require Mullerian inhibiting substance/anti-Mullerian hormone. J Neuroendocrinol 23:831–838

    CAS  PubMed  Google Scholar 

  • Wittmann W, McLennan IS (2013a) Anti-Mullerian hormone may regulate the number of calbindin-positive neurons in the sexually dimorphic nucleus of the preoptic area of male mice. Biol Sex Differ 4:18

    PubMed Central  PubMed  Google Scholar 

  • Wittmann W, McLennan IS (2013b) The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH. Horm Behav 64:605–610

    PubMed  Google Scholar 

  • Wotus C, Levay-Young BK, Rogers LM, Gomez-Sanchez CE, Engeland WC (1998) Development of adrenal zonation in fetal rats defined by expression of aldosterone synthase and 11 beta-hydroxylase. Endocrinology 139:4397–4403

    CAS  PubMed  Google Scholar 

  • Xiao Q, Nikodem VM (1998) Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci 3:A52–A57

    Google Scholar 

  • Xiong FX, Zhang LB (2013) Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol 34:27–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Labonte B, Wen XL, Turecki G, Meaney MJ (2013) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38:111–123

    PubMed Central  PubMed  Google Scholar 

  • Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homolog. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  • Zoeller RT, Rovet J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16:809–818

    CAS  PubMed  Google Scholar 

  • Zou DJ, Feinstein P, Rivers AL, Mathews GA, Kim A, Greer CA, Mombaerts P, Firestein S (2004) Postnatal refinement of peripheral olfactory projections. Science 304:1976–1979

    CAS  PubMed  Google Scholar 

  • Zup SL, Carrier H, Waters EM, Tabor A, Bengston L, Rosen GJ, Simerly RB, Forger NG (2003) Overexpression of Bcl-2 reduces sex differences in neuron number in the brain and spinal cord. J Neurosci 23:2357–2362

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert J. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Vries, G.J., Fields, C.T., Peters, N.V., Whylings, J., Paul, M.J. (2014). Sensitive Periods for Hormonal Programming of the Brain. In: Andersen, S., Pine, D. (eds) The Neurobiology of Childhood. Current Topics in Behavioral Neurosciences, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_286

Download citation

Publish with us

Policies and ethics