Skip to main content

Potential Benefits and Limitations of Enriched Environments and Cognitive Activity on Age-Related Behavioural Decline

  • Chapter
  • First Online:
Book cover Behavioral Neurobiology of Aging

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 10))

Abstract

The main aim of this chapter is to review preclinical studies that have evaluated interventions which may aid in preventing or delaying age-related behavioural decline. Animal models of Environmental Enrichment (EE) are useful for evaluating the influence of cognitive, physical and social stimulation in mitigating cognitive decline at different ages. The EE paradigm has been proposed as a non-invasive treatment for alleviating age-related memory impairment and neurodegenerative diseases. While in this complex environment, rodents can be stimulated at different levels (physical, social, cognitive and sensorial), although a synergism between all these components is likely to play an important role. We will summarize available data relating to EE as a potential therapeutic strategy that slows down or counteracts age-related cognitive and behavioural changes. EE also alters physiological responses and induces neurobiological changes such as stimulation of neurogenesis and neural plasticity. At the behavioural level, EE improves learning and memory tasks and reduces anxiety. Several variables seem to influence the behavioural and cognitive benefits induced by EE, including the age at which animals are first exposed to EE, total period during which animals are submitted to EE, gender, the cognitive task evaluated, the drug administered and individual factors. Cognitive and physical stimulation of animals in enriched experimental environments may lead to a better understanding of factors that promote the formation of cognitive reserve (CR) and a healthier life in humans. In the present chapter we review the potential benefits of EE in aged rodents and in animal models of Alzheimer Disease (AD). Results obtained in preclinical models of EE may be relevant to future research into mental and neurodegenerative diseases, stress, aging and development of enviromimetics. Finally, we outline the main limitations of EE studies (variability between laboratories, difficulty of separating the different components of EE, gender of experimental subjects, individual differences in the response to EE), evaluating the potential benefits of enriched environments and the neurobiological mechanisms that underlie them. We conclude that there are experimental data which demonstrate the cognitive benefits of rearing rodents in enriched environments and discuss their implication for clarifying which variables contribute to the formation of the CR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD::

Alzheimer’s disease

Aβ::

β-Amyloid deposition

CR::

Cognitive reserve

EE::

Environmental enrichment

LTP::

Long-term potentiation

References

  • Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H (2004) Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport 15:1751–1754

    Article  PubMed  Google Scholar 

  • Bennett JC, McRae PA, Levy LJ, Frick KM (2006) Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem 85:139–152

    Article  PubMed  Google Scholar 

  • Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L (2007) Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis 11:359–370

    PubMed  CAS  Google Scholar 

  • Bielak AA (2009) How can we not ‘lose it’ if we still don’t understand how to ‘use it’? Unanswered questions about the influence of activity participation on cognitive performance in older age—a mini-review. Gerontology 56:507–519

    Article  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  PubMed  CAS  Google Scholar 

  • Bloss EB, Janssen WG, McEwen BS, Morrison JH (2010) Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. J Neurosci 30:6726–6731

    Article  PubMed  CAS  Google Scholar 

  • Brenes JC, Fornaguera J (2008) Effects of environmental enrichment and social isolation on sucrose consumption and preference: associations with depressive-like behavior and ventral striatum dopamine. Neurosci Lett 436:278–282

    Article  PubMed  CAS  Google Scholar 

  • Brenes JC, Rodriguez O, Fornaguera J (2008) Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89:85–93

    Article  PubMed  CAS  Google Scholar 

  • Brust JC (2010) Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. Int J Environ Res Public Health 7:1540–1557

    Article  PubMed  CAS  Google Scholar 

  • Buchhold B, Mogoanta L, Suofu Y, Hamm A, Walker L, Kessler C, Popa-Wagner A (2007) Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor Neurol Neurosci 25:467–484

    PubMed  CAS  Google Scholar 

  • Buga AM, Balseanu A, Popa-Wagner A, Mogoanta L (2009) Strategies to improve post-stroke behavioral recovery in aged subjects. Rom J Morphol Embryol 50:559–582

    PubMed  Google Scholar 

  • Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, Lin B, During MJ (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142:52–64

    Article  PubMed  CAS  Google Scholar 

  • Chao MV (2010) A conversation with Rita Levi-Montalcini. Annu Rev Physiol 72:1–13

    Article  PubMed  CAS  Google Scholar 

  • Chapillon P, Manneche C, Belzung C, Caston J (1999) Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behav Genet 29:41–46

    Article  PubMed  CAS  Google Scholar 

  • Christensen K, Doblhammer G, Rau R, Vaupel JW (2009) Ageing populations: the challenges ahead. Lancet 374:1196–1208

    Article  PubMed  Google Scholar 

  • Costa DA, Cracchiolo JR, Bachstetter AD, Hughes TF, Bales KR, Paul SM, Mervis RF, Arendash GW, Potter H (2007) Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging 28:831–844

    Article  PubMed  CAS  Google Scholar 

  • Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O (2010) Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol Aging, in press

    Google Scholar 

  • Coutellier L, Würbel H (2009) Early environmental cues affect object recognition memory in adult female but not male C57BL/6 mice. Behav Brain Res 203:312–315

    Article  PubMed  Google Scholar 

  • Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW (2007) Enhanced cognitive activity-over and above social or physical activity-is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 88:277–294

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Curtis WJ, Nelson CA (2003) Toward building a better brain: Neurobehavioral outcomes, mechanisms, and processes of environmental enrichment. In S. Luthar (Ed.), Resilience and Vulnerability: Adaptation in the context of childhood adversities. In: Anonymous Cambridge University Press., New York, pp 463–488

    Google Scholar 

  • Daffner KR (2010) Promoting successful cognitive aging: a comprehensive review. J Alzheimers Dis 19:1101–1122

    PubMed  Google Scholar 

  • Darby R (2010) Ethical issues in the use of cognitive enhancement. Pharos Alpha Omega Alpha Honor Med Soc 73:16–22

    PubMed  Google Scholar 

  • De Bartolo P, Leggio MG, Mandolesi L, Foti F, Gelfo F, Ferlazzo F, Petrosini L (2008) Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience 154:444–453

    Article  PubMed  CAS  Google Scholar 

  • DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58:884–893

    Article  PubMed  CAS  Google Scholar 

  • Dhanushkodi A, Bindu B, Raju TR, Kutty BM (2007) Exposure to enriched environment improves spatial learning performances and enhances cell density but not choline acetyltransferase activity in the hippocampus of ventral subicular-lesioned rats. Behav Neurosci 121:491–500

    Article  PubMed  CAS  Google Scholar 

  • Diamond MC (2001) Response of the brain to enrichment. An Acad Bras Cienc 73:211–220

    Article  PubMed  CAS  Google Scholar 

  • Diniz DG, Foro CA, Rego CM, Gloria DA, de Oliveira FR, Paes JM, de Sousa AA, Tokuhashi TP, Trindade LS, Turiel MC, Vasconcelos EG, Torres JB, Cunnigham C, Perry VH, da Costa Vasconcelos PF, Diniz CW (2010) Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 32:509–519

    Article  PubMed  Google Scholar 

  • Dotson VM, Beydoun MA, Zonderman AB (2010) Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology 75:27–34

    Article  PubMed  Google Scholar 

  • Elliott BM, Grunberg NE (2005) Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats. Behav Brain Res 165:187–196

    Article  PubMed  Google Scholar 

  • Fahlström A, Yu Q, Ulfhake B (2009) Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging, in press

    Google Scholar 

  • Forstmeier S, Maercker A (2008) Motivational reserve: lifetime motivational abilities contribute to cognitive and emotional health in old age. Psychol Aging 23:886–899

    Article  PubMed  Google Scholar 

  • Fouquet C, Petit GH, Auffret A, Gaillard E, Rovira C, Mariani J, Rondi-Reig L (2009) Early detection of age-related memory deficits in individual mice. Neurobiol Aging, in press

    Google Scholar 

  • Fratiglioni L, Qiu C (2009) Prevention of common neurodegenerative disorders in the elderly. Exp Gerontol 44:46–50

    Article  PubMed  Google Scholar 

  • Frick KM, Benoit JD (2010) Use it or lose it: Environmental enrichment as a means to promote successful cognitive aging. Sci World J 10:1129–1141

    Article  Google Scholar 

  • Frick KM, Fernandez SM (2003) Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 24:615–626

    Article  PubMed  CAS  Google Scholar 

  • Gates N, Valenzuela M (2010) Cognitive exercise and its role in cognitive function in older adults. Curr Psychiatry Rep 12:20–27

    Article  PubMed  Google Scholar 

  • Görtz N, Lewejohann L, Tomm M, Ambree O, Keyvani K, Paulus W, Sachser N (2008) Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav Brain Res 191:43–48

    Article  PubMed  CAS  Google Scholar 

  • Gresack JE, Kerr KM, Frick KM (2007a) Life-long environmental enrichment differentially affects the mnemonic response to estrogen in young, middle-aged, and aged female mice. Neurobiol Learn Mem 88:393–408

    Article  PubMed  Google Scholar 

  • Gresack JE, Kerr KM, Frick KM (2007b) Short-term environmental enrichment decreases the mnemonic response to estrogen in young, but not aged, female mice. Brain Res 1160:91–101

    Article  PubMed  CAS  Google Scholar 

  • Hannan AJ (2004) Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington’s disease. Acta Biochim Pol 51:415–430

    PubMed  CAS  Google Scholar 

  • Hansalik M, Skalicky M, Viidik A (2006) Impairment of water maze behaviour with ageing is counteracted by maze learning earlier in life but not by physical exercise, food restriction or housing conditions. Exp Gerontol 41:169–174

    Article  PubMed  Google Scholar 

  • Harburger LL, Lambert TJ, Frick KM (2007) Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behav Brain Res 185:43–48

    Article  PubMed  Google Scholar 

  • Hebb DO (1947) The effects of early experience on problem solving at maturity. Am Psychol 2:306–307

    Google Scholar 

  • Herring A, Ambree O, Tomm M, Habermann H, Sachser N, Paulus W, Keyvani K (2008) Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol 216:184–192

    Article  PubMed  CAS  Google Scholar 

  • Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    Article  PubMed  CAS  Google Scholar 

  • Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O (2010) Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB J 24:1667–1681

    Article  PubMed  CAS  Google Scholar 

  • Hughes RN, Collins MA (2010) Enhanced habituation and decreased anxiety by environmental enrichment and possible attenuation of these effects by chronic alpha-tocopherol (vitamin E) in aging male and female rats. Pharmacol Biochem Behav 94:534–542

    Article  PubMed  CAS  Google Scholar 

  • Kannangara TS, Lucero MJ, Gil-Mohapel J, Drapala RJ, Simpson JM, Christie BR, van Praag H (2010) Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging, in press

    Google Scholar 

  • Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31:163–169

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18:3206–3212

    PubMed  CAS  Google Scholar 

  • Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143

    Article  PubMed  Google Scholar 

  • Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf SA (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci 4:1-9

    Article  Google Scholar 

  • Kobayashi S, Ohashi Y, Ando S (2002) Effects of enriched environments with different durations and starting times on learning capacity during aging in rats assessed by a refined procedure of the Hebb-Williams maze task. J Neurosci Res 70:340–346

    Article  PubMed  CAS  Google Scholar 

  • Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T, Narita M (2010) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus, in press

    Google Scholar 

  • La Rue A (2010) Healthy brain aging: role of cognitive reserve, cognitive stimulation, and cognitive exercises. Clin Geriatr Med 26:99–111

    Article  PubMed  Google Scholar 

  • Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31:159–168

    Article  PubMed  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  • Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163:78–90

    Article  PubMed  Google Scholar 

  • Levi O, Michaelson DM (2007) Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J Neurochem 100:202–210

    Article  PubMed  CAS  Google Scholar 

  • Lewejohann L, Hoppmann AM, Kegel P, Kritzler M, Kruger A, Sachser N (2009) Behavioral phenotyping of a murine model of Alzheimer’s disease in a seminaturalistic environment using RFID tracking. Behav Res Methods 41:850–856

    Article  PubMed  Google Scholar 

  • Li C, Niu W, Jiang CH, Hu Y (2007) Effects of enriched environment on gene expression and signal pathways in cortex of hippocampal CA1 specific NMDAR1 knockout mice. Brain Res Bull 71:568–577

    Article  PubMed  CAS  Google Scholar 

  • Lin ED, Choi E, Liu X, Martin A, During MJ (2010) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6 J mice. Behav Brain Res, in press

    Google Scholar 

  • Lister JP, Barnes CA (2009) Neurobiological changes in the hippocampus during normative aging. Arch Neurol 66:829–833

    Article  PubMed  Google Scholar 

  • Llorens-Martin MV, Rueda N, Martinez-Cue C, Torres-Aleman I, Florez J, Trejo JL (2007) Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice. Neuroscience 147:631–638

    Article  PubMed  CAS  Google Scholar 

  • Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T (2010) Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry 67:657–665

    Article  PubMed  Google Scholar 

  • Madroñal N, Lopez-Aracil C, Rangel A, del Rio JA, Delgado-Garcia JM, Gruart A (2010) Effects of enriched physical and social environments on motor performance, associative learning, and hippocampal neurogenesis in mice. PLoS One 5:e11130

    Article  PubMed  CAS  Google Scholar 

  • Mandolesi L, De Bartolo P, Foti F, Gelfo F, Federico F, Leggio MG, Petrosini L (2008) Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. J Alzheimers Dis 15:11–28

    PubMed  Google Scholar 

  • Maruoka T, Kodomari I, Yamauchi R, Wada E, Wada K (2009) Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neurosci Lett 454:28–32

    Article  PubMed  CAS  Google Scholar 

  • McFadden SH, Basting AD (2010) Healthy aging persons and their brains: promoting resilience through creative engagement. Clin Geriatr Med 26:149–161

    Article  PubMed  Google Scholar 

  • McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T (2009) Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323:800–802

    Article  PubMed  CAS  Google Scholar 

  • McOmish CE, Hannan AJ (2007) Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opin Ther Targets 11:899–913

    Article  PubMed  CAS  Google Scholar 

  • Middleton LE, Yaffe K (2010) Targets for the prevention of dementia. J Alzheimers Dis 20:915–924

    PubMed  Google Scholar 

  • Mirochnic S, Wolf S, Staufenbiel M, Kempermann G (2009) Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 19:1008–1018

    Article  PubMed  CAS  Google Scholar 

  • Morrissette DA, Parachikova A, Green KN, LaFerla FM (2009) Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem 284:6033–6037

    Article  PubMed  CAS  Google Scholar 

  • Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW (2009) Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 5:287–294

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2009) The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 89:369–382

    Article  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2010) Mechanisms mediating brain and cognitive reserve: Experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry, In press

    Google Scholar 

  • O’Callaghan RM, Griffin EW, Kelly AM (2009) Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus. Hippocampus 19:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Howard RJ, Ballard CG (2010) Putting brain training to the test. Nature 465:775–778

    Article  PubMed  CAS  Google Scholar 

  • Paban V, Chambon C, Manrique C, Touzet C, Alescio-Lautier B (2009) Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats Environmental enrichment as potential therapeutic agent. Neurobiol Aging, in press

    Google Scholar 

  • Pamplona FA, Pandolfo P, Savoldi R, Prediger RD, Takahashi RN (2009) Environmental enrichment improves cognitive deficits in Spontaneously Hypertensive Rats (SHR): relevance for Attention Deficit/Hyperactivity Disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry 33:1153–1160

    Article  PubMed  Google Scholar 

  • Pang TYC, Hannan AJ (2010) Environmental enrichment: a cure for cancer? It’s all in the mind. J Mol Cell Biol 2:302–304

    Article  PubMed  CAS  Google Scholar 

  • Papp KV, Walsh SJ, Snyder PJ (2009) Immediate and delayed effects of cognitive interventions in healthy elderly: a review of current literature and future directions. Alzheimers Dement 5:50–60

    Article  PubMed  Google Scholar 

  • Pardon MC, Rattray I (2008) What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev 32:1103–1120

    Article  PubMed  Google Scholar 

  • Partridge L (2010) The new biology of ageing. Philos Trans R Soc Lond B Biol Sci 365:147–154

    Article  PubMed  Google Scholar 

  • Pawlowski TL, Bellush LL, Wright AW, Walker JP, Colvin RA, Huentelman MJ (2009) Hippocampal gene expression changes during age-related cognitive decline. Brain Res 1256:101–110

    Article  PubMed  CAS  Google Scholar 

  • Peña Y, Prunell M, Dimitsantos V, Nadal R, Escorihuela RM (2006) Environmental enrichment effects in social investigation in rats are gender dependent. Behav Brain Res 174:181–187

    Article  PubMed  Google Scholar 

  • Peña Y, Prunell M, Rotllant D, Armario A, Escorihuela RM (2009) Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology 34:1390–1404

    Article  PubMed  CAS  Google Scholar 

  • Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L (2009) On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev 61:221–239

    Article  PubMed  Google Scholar 

  • Philipson O, Lord A, Gumucio A, O’Callaghan P, Lannfelt L, Nilsson LN (2010) Animal models of amyloid-beta-related pathologies in Alzheimer’s disease. FEBS J 277:1389–1409

    Article  PubMed  CAS  Google Scholar 

  • Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK (2008) The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav Brain Res 192:42–60

    Article  PubMed  Google Scholar 

  • Pizzorusso T, Berardi N, Maffei L (2007) A richness that cures. Neuron 54:508–510

    Article  PubMed  CAS  Google Scholar 

  • Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S (2010) Systematic review: NIH state of the science conference: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 153:182–193

    PubMed  Google Scholar 

  • Qiu C, Xu W, Fratiglioni L (2010) Vascular and psychosocial factors in Alzheimer’s disease: epidemiological evidence toward intervention. J Alzheimers Dis 20:689–697

    PubMed  Google Scholar 

  • Redolat R, Mesa P, Perez-Martinez A (2009a) Influence of environmental enrichment and nicotine administration on exploratory behavior in mice. Abstract presented at XIXth IAGG World Congress of Gerontology and Geriatrics

    Google Scholar 

  • Redolat R, Perez-Martinez A, Carrasco MC, Mesa P (2009b) Individual differences in novelty-seeking and behavioral responses to nicotine: a review of animal studies. Curr Drug Abuse Rev 2:230–242

    Article  PubMed  CAS  Google Scholar 

  • Reichman WE, Fiocco AJ, Rose NS (2010) Exercising the brain to avoid cognitive decline: examining the evidence. Aging Health 6:565–584

    Article  Google Scholar 

  • Roe CM, Xiong C, Miller JP, Morris JC (2007) Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 68:223–228

    Article  PubMed  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Zolman JF (1962) Variation in environmental complexity and brain measures. J Comp Physiol Psychol 55:1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Sale A, Berardi N, Maffei L (2009) Enrich the environment to empower the brain. Trends Neurosci 32:233–239

    Article  PubMed  CAS  Google Scholar 

  • Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302:627–637

    Article  PubMed  CAS  Google Scholar 

  • Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry 15:1152–1163

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Del Arco A, de Blas M, Garrido P, Mora F (2008a) Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res 187:304–311

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Del Arco A, Garrido P, de Blas M, Mora F (2008b) Environmental enrichment reduces the response to stress of the cholinergic system in the prefrontal cortex during aging. Neurochem Int 52:1198–1203

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Thiriet N, El Rawas R, Lardeux V, Jaber M (2009) Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology 34:1102–1111

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Thiriet N, Chauvet C, jaber M (2010) Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol 92:572–592

    Article  PubMed  CAS  Google Scholar 

  • Sozda CN, Hoffman AN, Olsen AS, Cheng JP, Zafonte RD, Kline AE (2010) Empirical comparison of typical and atypical environmental enrichment paradigms on functional and histological outcome after experimental traumatic brain injury. J Neurotrauma 27:1047–1057

    Article  PubMed  Google Scholar 

  • Sparling JE, Mahoney M, Baker S, Bielajew C (2010) The effects of gestational and postpartum environmental enrichment on the mother rat: a preliminary investigation. Behav Brain Res 208:213–223

    Article  PubMed  Google Scholar 

  • Sterlemann V, Rammes G, Wolf M, Liebi C, Ganea K, Müller MB, Schmidt MV (2010) Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus 20:540–549

    PubMed  Google Scholar 

  • Stranahan AM, Haberman RP, Gallagher M (2011) Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats. Cereb Cortex 21:392–400

    Article  PubMed  Google Scholar 

  • Sztainberg Y, Kuperman Y, Tsoory M, Lebow M, Chen A (2010) The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol Psychiatry 15:905–917

    Article  PubMed  CAS  Google Scholar 

  • Thiriet N, Amar L, Toussay X, Lardeux V, Ladenheim B, Becker KG, Cadet JL, Solinas M, Jaber M (2008) Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Res 1222:31–41

    Article  PubMed  CAS  Google Scholar 

  • Van de Weerd HA, Van Loo PL, Van Zutphen LF, Koolhaas JM, Baumans V (1997) Nesting material as environmental enrichment has no adverse effects on behavior and physiology of laboratory mice. Physiol Behav 62:1019–1028

    Article  PubMed  Google Scholar 

  • Van de Weerd HA, Aarsen EL, Mulder A, Kruitwagen CL, Hendriksen CF, Baumans V (2002) Effects of environmental enrichment for mice: variation in experimental results. J Appl Anim Welf Sci 5:87–109

    Article  PubMed  Google Scholar 

  • van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34

    Article  PubMed  CAS  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • Viola GG, Botton PH, Moreira JD, Ardais AP, Oses JP, Souza DO (2010) Influence of environmental enrichment on an object recognition task in CF1 mice. Physiol Behav 99:17–21

    Article  PubMed  CAS  Google Scholar 

  • Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Zahs KR, Ashe KH (2010) ‘Too much good news’—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends Neurosci 33:381–389

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann A, Stauffacher M, Langhans W, Wurbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by a grant from “Ministerio de Ciencia e Innovación” (Spain) and Plan E (Grant number: PSI2009-10410) and “Conselleria d’Educació i Ciéncia” from Generalitat Valenciana (Spain) (Grant number: GVACOMP2010-273). We would like to thank Asunción Pérez-Martínez for her help in photography and Mr. Brian Normanly for his help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Redolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Redolat, R., Mesa-Gresa, P. (2011). Potential Benefits and Limitations of Enriched Environments and Cognitive Activity on Age-Related Behavioural Decline. In: Pardon, MC., Bondi, M. (eds) Behavioral Neurobiology of Aging. Current Topics in Behavioral Neurosciences, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_134

Download citation

Publish with us

Policies and ethics