Skip to main content

An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases

  • Chapter
  • First Online:
Zinc Enzyme Inhibitors

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 22))

Abstract

Multidrug-resistant bacterial infections have become in recent years an increasingly worrisome problem in the medical community. The β-lactams are the most used antibiotics consisting in more than 60% of the prescribed antibacterials. Indeed, carbapenems are considered as “last resort” antibiotics for the treatment of several pathogens that are difficult to eradicate. The most widespread bacterial resistant mechanism against β-lactams consists in the expression of β-lactamases which inactivate these compounds by hydrolyzing the β-lactam bond. Metallo-β-lactamases (MBLs) are metal-dependent enzymes that are able to coordinate one or two Zn(II) ions in their active site which are essential for the catalytic mechanism. In view of this scenario, the search and identification of inhibitors against these enzymes is of outmost importance for the rescue of the antibiotic activity of the β-lactams. Here we present a critical analysis of the different chemical motifs that had been reported as MBL inhibitors, inspected within the context of mechanistic and structural information with the goal of identifying common aspects that can be used for the development of more efficient and broad-spectrum leads. We also suggest possible future directions for the development of this exciting research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hede K (2014) Antibiotic resistance: an infectious arms race. Nature 509:S2–S3

    Article  CAS  Google Scholar 

  2. Reardon S (2015) Bacterial arms race revs up. Nature 521:402–403

    Article  CAS  Google Scholar 

  3. Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105:395–424

    Article  CAS  Google Scholar 

  4. Kelly JA, Dideberg O, Charlier P et al (1986) On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231:1429–1431

    Article  CAS  Google Scholar 

  5. Sabath LD, Abraham EP (1966) Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98:11C–13C

    Article  CAS  Google Scholar 

  6. Cuchural GJ Jr, Malamy MH, Tally FP (1986) Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother 30:645–648

    Article  CAS  Google Scholar 

  7. Walsh TR, Hall L, Assinder SJ et al (1994) Sequence analysis of the L1 metallo-beta-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta 1218:199–201

    Article  CAS  Google Scholar 

  8. Shannon K, King A, Phillips I (1986) Beta-lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. J Antimicrob Chemother 17:45–50

    Article  CAS  Google Scholar 

  9. Walsh TR, Neville WA, Haran MH et al (1998) Nucleotide and amino acid sequences of the metallo-beta-lactamase, ImiS, from Aeromonas veronii bv. sobria. Antimicrob Agents Chemother 42:436–439

    CAS  Google Scholar 

  10. Rossolini GM, Franceschini N, Riccio ML et al (1998) Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 332(Pt 1):145–152

    Article  CAS  Google Scholar 

  11. Bellais S, Léotard S, Poirel L et al (1999) Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol Lett 171:127–132

    CAS  Google Scholar 

  12. Morán-Barrio J, González JM, Lisa MN et al (2007) The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. J Biol Chem 282:18286–18293

    Article  Google Scholar 

  13. Chen Y, Succi J, Tenover FC et al (2003) Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 185:823–830

    Article  CAS  Google Scholar 

  14. Nordmann P, Naas T, Poirel L (2011) Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798

    Article  CAS  Google Scholar 

  15. Walsh TR, Toleman MA, Poirel L et al (2005) Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325

    Article  CAS  Google Scholar 

  16. Bush K, Fisher JF (2011) Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 65:455–478

    Article  CAS  Google Scholar 

  17. Dortet L, Poirel L, Nordmann P (2014) Worldwide dissemination of the NDM-type carbapenemases in gram-negative bacteria. Biomed Res Int 2014:249856

    Article  CAS  Google Scholar 

  18. Pettinati I, Brem J, Lee SY et al (2016) The chemical biology of human metallo-beta-lactamase fold proteins. Trends Biochem Sci 41:338–355

    Article  CAS  Google Scholar 

  19. Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23:160–201

    Article  CAS  Google Scholar 

  20. Garau G, García-Sáez I, Bebrone C et al (2004) Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 48:2347–2349

    Article  CAS  Google Scholar 

  21. Bebrone C (2007) Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74:1686–1701

    Article  CAS  Google Scholar 

  22. de Seny D, Heinz U, Wommer S et al (2001) Metal ion binding and coordination geometry for wild type and mutants of metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach. J Biol Chem 276:45065–45078

    Article  CAS  Google Scholar 

  23. Concha NO, Janson CA, Rowling P et al (2000) Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:4288–4298

    Article  CAS  Google Scholar 

  24. Garcia-Saez I, Docquier JD, Rossolini GM et al (2008) The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 375:604–611

    Article  CAS  Google Scholar 

  25. King DT, Worrall LJ, Gruninger RJ et al (2012) New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J Am Chem Soc 134:11362–11365

    Article  CAS  Google Scholar 

  26. Docquier J-D, Benvenuti M, Calderone V et al (2010) High-resolution crystal structure of the subclass B3 metallo-beta-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides. Antimicrob Agents Chemother 54:4343–4351

    Article  CAS  Google Scholar 

  27. Hall BG, Salipante SJ, Barlow M (2003) The metallo-beta-lactamases fall into two distinct phylogenetic groups. J Mol Evol 57:249–254

    Article  CAS  Google Scholar 

  28. Bebrone C, Delbrück H, Kupper MB et al (2009) The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 53:4464–4471

    Article  CAS  Google Scholar 

  29. Yong D, Toleman MA, Giske CG et al (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  CAS  Google Scholar 

  30. Lauretti L, Riccio ML, Mazzariol A et al (1999) Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43:1584–1590

    CAS  Google Scholar 

  31. Zhao W-H, Hu Z-Q (2011) IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons. Crit Rev Microbiol 37:214–226

    Article  CAS  Google Scholar 

  32. Toleman MA, Simm AM, Murphy TA et al (2002) Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 50:673–679

    Article  CAS  Google Scholar 

  33. Lim HM, Pene JJ, Shaw RW (1988) Cloning, nucleotide sequence, and expression of the Bacillus cereus 5/B/6 beta-lactamase II structural gene. J Bacteriol 170:2873–2878

    Article  CAS  Google Scholar 

  34. Rasmussen BA, Gluzman Y, Tally FP (1990) Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother 34:1590–1592

    Article  CAS  Google Scholar 

  35. Massidda O, Rossolini GM, Satta G (1991) The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol 173:4611–4617

    CAS  Google Scholar 

  36. Saavedra MJ, Peixe L, Sousa JC et al (2003) Sfh-I, a subclass B2 metallo-beta-lactamase from a Serratia fonticola environmental isolate. Antimicrob Agents Chemother 47:2330–2333

    Article  CAS  Google Scholar 

  37. Bellais S, Poirel L, Leotard S et al (2000) Genetic diversity of carbapenem-hydrolyzing metallo-beta-lactamases from Chryseobacterium (Flavobacterium) indologenes. Antimicrob Agents Chemother 44:3028–3034

    Article  CAS  Google Scholar 

  38. Boschi L, Mercuri PS, Riccio ML et al (2000) The Legionella (Fluoribacter) gormanii metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases. Antimicrob Agents Chemother 44:1538–1543

    Article  CAS  Google Scholar 

  39. Yong D, Toleman MA, Bell J et al (2012) Genetic and biochemical characterization of an acquired subgroup B3 metallo-beta-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 56:6154–6159

    Article  CAS  Google Scholar 

  40. Fabiane SM, Sohi MK, Wan T et al (1998) Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37:12404–12411

    Article  CAS  Google Scholar 

  41. Concha NO, Rasmussen BA, Bush K et al (1996) Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4:823–836

    Article  CAS  Google Scholar 

  42. Nauton L, Kahn R, Garau G et al (2008) Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. J Mol Biol 375:257–269

    Article  CAS  Google Scholar 

  43. Zhang H, Hao Q (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 25:2574–2582

    Article  CAS  Google Scholar 

  44. de Seny D, Prosperi-Meys C, Bebrone C et al (2002) Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase. Biochem J 363:687–696

    Article  Google Scholar 

  45. Huntley JJ, Scrofani SD, Osborne MJ et al (2000) Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Biochemistry 39:13356–13364

    Article  CAS  Google Scholar 

  46. Salsbury FR Jr, Crowder MW, Kingsmore SF et al (2009) Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. J Mol Model 15:133–145

    Article  CAS  Google Scholar 

  47. Scrofani SD, Chung J, Huntley JJ et al (1999) NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 38:14507–14514

    Article  CAS  Google Scholar 

  48. Fonseca F, Bromley EHC, Saavedra MJ et al (2011) Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases. J Mol Biol 411:951–959

    Article  CAS  Google Scholar 

  49. Bebrone C, Anne C, Kerff F et al (2008) Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila. Biochem J 414:151–159

    Article  CAS  Google Scholar 

  50. Dudev T, Lin YL, Dudev M et al (2003) First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. J Am Chem Soc 125:3168–3180

    Article  CAS  Google Scholar 

  51. Gonzalez JM, Meini MR, Tomatis PE et al (2012) Metallo-beta-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions. Nat Chem Biol 8:698–700

    Article  CAS  Google Scholar 

  52. Meini MR, Llarrull LI, Vila AJ (2015) Overcoming differences: the catalytic mechanism of metallo-beta-lactamases. FEBS Lett 589:3419–3432

    Article  CAS  Google Scholar 

  53. Meini MR, Llarrull LI, Vila AJ (2014) Evolution of metallo-beta-lactamases: trends revealed by natural diversity and evolution. Antibiotics 3:285–316

    Article  CAS  Google Scholar 

  54. King DT, Sobhanifar S, Strynadka NC (2016) One ring to rule them all: current trends in combating bacterial resistance to the beta-lactams. Protein Sci

    Google Scholar 

  55. Karsisiotis AI, Damblon CF, Roberts GC (2014) A variety of roles for versatile zinc in metallo-beta-lactamases. Metallomics 6:1181–1197

    Article  CAS  Google Scholar 

  56. Palzkill T (2013) Metallo-beta-lactamase structure and function. Ann N Y Acad Sci 1277:91–104

    Article  CAS  Google Scholar 

  57. Poeylaut-Palena AA, Tomatis PE, Karsisiotis AI et al (2007) A minimalistic approach to identify substrate binding features in B1 metallo-beta-lactamases. Bioorg Med Chem Lett 17:5171–5174

    Article  CAS  Google Scholar 

  58. Rasia RM, Vila AJ (2004) Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase. J Biol Chem 279:26046–26051

    Article  CAS  Google Scholar 

  59. Spencer J, Read J, Sessions RB et al (2005) Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography. J Am Chem Soc 127:14439–14444

    Article  CAS  Google Scholar 

  60. Garau G, Bebrone C, Anne C et al (2005) A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 345:785–795

    Article  CAS  Google Scholar 

  61. Oelschlaeger P, Ai N, Duprez KT et al (2010) Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 53:3013–3027

    Article  CAS  Google Scholar 

  62. Crowder MW, Spencer J, Vila AJ (2006) Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 39:721–728

    Article  CAS  Google Scholar 

  63. Mollard C, Moali C, Papamicael C et al (2001) Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. J Biol Chem 276:45015–45023

    Article  CAS  Google Scholar 

  64. Lassaux P, Hamel M, Gulea M et al (2010) Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-beta-lactamases. J Med Chem 53:4862–4876

    Article  CAS  Google Scholar 

  65. Bebrone C, Lassaux P, Vercheval L et al (2010) Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 70:651–679

    Article  CAS  Google Scholar 

  66. Brem J, van Berkel SS, Zollman D et al (2015) Structural basis of metallo-beta-lactamase inhibition by captopril stereoisomers. Antimicrob Agents Chemother 60:142–150

    Article  CAS  Google Scholar 

  67. Li N, Xu Y, Xia Q et al (2014) Simplified captopril analogues as NDM-1 inhibitors. Bioorg Med Chem Lett 24:386–389

    Article  CAS  Google Scholar 

  68. Ma J, McLeod S, MacCormack K et al (2014) Real-time monitoring of New Delhi metallo-β-lactamase activity in living bacterial cells by 1H NMR spectroscopy. Angew Chem Int Ed Engl 53:2130–2133

    Article  CAS  Google Scholar 

  69. AbdAlla S, Langer A, Fu X et al (2013) ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int J Mol Sci 14:16917–16942

    Article  CAS  Google Scholar 

  70. Szekacs B, Vajo Z, Dachman W (1996) Effect of ACE inhibition by benazepril, enalapril and captopril on chronic and post exercise proteinuria. Acta Physiol Hung 84:361–367

    CAS  Google Scholar 

  71. Faxon DP (1988) ACE inhibition for the failing heart: experience with captopril. Am Heart J 115:1085–1093

    Article  CAS  Google Scholar 

  72. Brem J, van Berkel SS, Aik W et al (2014) Rhodanine hydrolysis leads to potent thioenolate mediated metallo-beta-lactamase inhibition. Nat Chem 6:1084–1090

    Article  CAS  Google Scholar 

  73. Fast W, Sutton LD (2013) Metallo-beta-lactamase: inhibitors and reporter substrates. Biochim Biophys Acta 1834:1648–1659

    Article  CAS  Google Scholar 

  74. Selevsek N, Tholey A, Heinzle E et al (2006) Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 17:1000–1004

    Article  CAS  Google Scholar 

  75. Liénard BMR, Hüting R, Lassaux P et al (2008) Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med Chem 51:684–688

    Article  CAS  Google Scholar 

  76. Makena A, van Berkel SS, Lejeune C et al (2013) Chromophore-linked substrate (CLS405): probing metallo-beta-lactamase activity and inhibition. ChemMedChem 8:1923–1929

    Article  CAS  Google Scholar 

  77. van Berkel SS, Brem J, Rydzik AM et al (2013) Assay platform for clinically relevant metallo-beta-lactamases. J Med Chem 56:6945–6953

    Article  CAS  Google Scholar 

  78. Rydzik AM, Brem J, van Berkel SS et al (2014) Monitoring conformational changes in the NDM-1 metallo-β-lactamase by 19F NMR spectroscopy. Angew Chem Int Ed Engl 53:3129–3133

    Article  CAS  Google Scholar 

  79. Ghavami A, Labbe G, Brem J et al (2015) Assay for drug discovery: synthesis and testing of nitrocefin analogues for use as beta-lactamase substrates. Anal Biochem 486:75–77

    Article  CAS  Google Scholar 

  80. Ma J, Cao Q, McLeod SM et al (2015) Target-based whole-cell screening by (1)H NMR spectroscopy. Angew Chem 54:4764–4767

    Article  CAS  Google Scholar 

  81. Wang X, Lu M, Shi Y et al (2015) Discovery of novel New Delhi metallo-beta-lactamases-1 inhibitors by multistep virtual screening. PLoS ONE 10, e0118290

    Article  CAS  Google Scholar 

  82. Santos-Martins D, Forli S, Ramos MJ et al (2014) AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model 54:2371–2379

    Article  CAS  Google Scholar 

  83. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  Google Scholar 

  84. Oelschlaeger P, Aitha M, Yang H et al (2015) Meropenem and chromacef intermediates observed in IMP-25 metallo-beta-lactamase-catalyzed hydrolysis. Antimicrob Agents Chemother 59:4326–4330

    Article  CAS  Google Scholar 

  85. Tioni MF, Llarrull LI, Poeylaut-Palena AA et al (2008) Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase. J Am Chem Soc 130:15852–15863

    Article  CAS  Google Scholar 

  86. Feng H, Ding J, Zhu D et al (2014) Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J Am Chem Soc 136:14694–14697

    Article  CAS  Google Scholar 

  87. Toney JH, Cleary KA, Hammond GG et al (1999) Structure-activity relationships of biphenyl tetrazoles as metallo-beta-lactamase inhibitors. Bioorg Med Chem Lett 9:2741–2746

    Article  CAS  Google Scholar 

  88. Toney JH, Fitzgerald PM, Grover-Sharma N et al (1998) Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 5:185–196

    Article  CAS  Google Scholar 

  89. Park H, Merz KM Jr (2005) Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. J Med Chem 48:1630–1637

    Article  CAS  Google Scholar 

  90. Mohamed MS, Hussein WM, McGeary RP et al (2011) Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur J Med Chem 46:6075–6082

    Article  CAS  Google Scholar 

  91. Hussein WM, Fatahala SS, Mohamed ZM et al (2012) Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des 80:500–515

    Article  CAS  Google Scholar 

  92. Toney JH, Hammond GG, Fitzgerald PM et al (2001) Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. J Biol Chem 276:31913–31918

    Article  CAS  Google Scholar 

  93. Moloughney JG, Thomas JD, Toney JH (2005) Novel IMP-1 metallo-beta-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol Lett 243:65–71

    Article  CAS  Google Scholar 

  94. Olsen L, Jost S, Adolph H-W et al (2006) New leads of metallo-beta-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem 14:2627–2635

    Article  CAS  Google Scholar 

  95. Hiraiwa Y, Morinaka A, Fukushima T et al (2009) Metallo-beta-lactamase inhibitory activity of phthalic acid derivatives. Bioorg Med Chem Lett 19:5162–5165

    Article  CAS  Google Scholar 

  96. Ishii Y, Eto M, Mano Y et al (2010) In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase- producing Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 54:3625–3629

    Article  CAS  Google Scholar 

  97. Feng L, Yang KW, Zhou LS et al (2012) N-heterocyclic dicarboxylic acids: broad-spectrum inhibitors of metallo-beta-lactamases with co-antibacterial effect against antibiotic-resistant bacteria. Bioorg Med Chem Lett 22:5185–5189

    Article  CAS  Google Scholar 

  98. Klingler FM, Wichelhaus TA, Frank D et al (2015) Approved drugs containing thiols as inhibitors of metallo-beta-lactamases: a strategy to combat multidrug-resistant bacteria. J Med Chem 58:3626–3630

    Article  CAS  Google Scholar 

  99. Bounaga S, Galleni M, Laws AP et al (2001) Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase. Bioorg Med Chem 9:503–510

    Article  CAS  Google Scholar 

  100. Sun Q, Law A, Crowder MW et al (2006) Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Bioorg Med Chem Lett 16:5169–5175

    Article  CAS  Google Scholar 

  101. Liénard BMR, Garau G, Horsfall L et al (2008) Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 6:2282–2294

    Article  CAS  Google Scholar 

  102. Vella P, Hussein WM, Leung EWW et al (2011) The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 21:3282–3285

    Article  CAS  Google Scholar 

  103. Faridoon, Hussein WM, Vella P et al (2012) 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 22:380–386

    Google Scholar 

  104. Siemann S, Clarke AJ, Viswanatha T et al (2003) Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases. Biochemistry 42:1673–1683

    Article  CAS  Google Scholar 

  105. García-Saez I, Hopkins J, Papamicael C et al (2003) The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem 278:23868–23873

    Article  CAS  Google Scholar 

  106. García-Sáez I, Mercuri PS, Papamicael C et al (2003) Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol 325:651–660

    Article  Google Scholar 

  107. Day JA, Cohen SM (2013) Investigating the selectivity of metalloenzyme inhibitors. J Med Chem 56:7997–8007

    Article  CAS  Google Scholar 

  108. Mojica MF, Mahler SG, Bethel CR et al (2015) Exploring the role of residue 228 in substrate and inhibitor recognition by VIM metallo-beta-lactamases. Biochemistry 54:3183–3196

    Article  CAS  Google Scholar 

  109. González MM, Kosmopoulou M, Mojica MF et al (2015) Bisthiazolidines: a substrate-mimicking scaffold as an inhibitor of the NDM-1 carbapenemase. ACS Infect Dis 1:544

    Article  CAS  Google Scholar 

  110. Hinchliffe P, González MM, Mojica MF et al (2016) Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A (in press)

    Google Scholar 

  111. Kurosaki H, Yamaguchi Y, Higashi T et al (2005) Irreversible inhibition of metallo-beta-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)propionic acid pentafluorophenyl ester. Angew Chem Int Ed Engl 44:3861–3864

    Article  CAS  Google Scholar 

  112. Thomas PW, Cammarata M, Brodbelt JS et al (2014) Covalent inhibition of New Delhi metallo-beta-lactamase-1 (NDM-1) by cefaclor. Chembiochem 15:2541–2548

    Article  CAS  Google Scholar 

  113. Zervosen A, Valladares MH, Devreese B et al (2001) Inactivation of Aeromonas hydrophila metallo-beta-lactamase by cephamycins and moxalactam. Eur J Biochem 268:3840–3850

    Article  CAS  Google Scholar 

  114. Chiou J, Wan S, Chan KF et al (2015) Ebselen as a potent covalent inhibitor of New Delhi metallo-beta-lactamase (NDM-1). Chem Commun 51:9543–9546

    Article  CAS  Google Scholar 

  115. Payne DJ, Bateson JH, Gasson BC et al (1997) Inhibition of metallo-beta-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. FEMS Microbiol Lett 157:171–175

    Article  CAS  Google Scholar 

  116. Boerzel H, Koeckert M, Bu W et al (2003) Zinc-bound thiolate-disulfide exchange: a strategy for inhibiting metallo-beta-lactamases. Inorg Chem 42:1604–1615

    Article  CAS  Google Scholar 

  117. Thomas PW, Spicer T, Cammarata M et al (2013) An altered zinc-binding site confers resistance to a covalent inactivator of New Delhi metallo-beta-lactamase-1 (NDM-1) discovered by high-throughput screening. Bioorg Med Chem 21:3138–3146

    Article  CAS  Google Scholar 

  118. Hammond GG, Huber JL, Greenlee ML et al (1999) Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives. FEMS Microbiol Lett 179:289–296

    CAS  Google Scholar 

  119. Liu XL, Shi Y, Kang JS et al (2015) Amino acid thioester derivatives: a highly promising scaffold for the development of metallo-beta-lactamase L1 inhibitors. ACS Med Chem Lett 6:660–664

    Article  CAS  Google Scholar 

  120. Siemann S, Evanoff DP, Marrone L et al (2002) N-arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-beta-lactamase. Antimicrob Agents Chemother 46:2450–2457

    Article  CAS  Google Scholar 

  121. Minond D, Saldanha SA, Subramaniam P et al (2009) Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 17:5027–5037

    Article  CAS  Google Scholar 

  122. Weide T, Saldanha SA, Minond D et al (2010) NH-1,2,3-triazole-based inhibitors of the VIM-2 metallo-β-lactamase: synthesis and structure-activity studies. ACS Med Chem Lett 1:150–154

    Article  CAS  Google Scholar 

  123. Payne DJ, Hueso-Rodríguez JA, Boyd H et al (2002) Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrob Agents Chemother 46:1880–1886

    Article  CAS  Google Scholar 

  124. Gan M, Liu Y, Bai Y et al (2013) Polyketides with New Delhi metallo-β-lactamase 1 inhibitory activity from Penicillium sp. J Nat Prod 76:1535–1540

    Article  CAS  Google Scholar 

  125. Aaseth J, Skaug MA, Cao Y et al (2015) Chelation in metal intoxication—principles and paradigms. J Trace Elem Med Biol 31:260–266

    Article  CAS  Google Scholar 

  126. King AM, Reid-Yu SA, Wang W et al (2014) Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510:503–506

    Article  CAS  Google Scholar 

  127. Azumah R, Dutta J, Somboro AM et al (2016) In vitro evaluation of metal chelators as potential metallo-beta-lactamase inhibitors. J Appl Microbiol 120:860–867

    Article  CAS  Google Scholar 

  128. Yoshizumi A, Ishii Y, Livermore DM et al (2013) Efficacies of calcium-EDTA in combination with imipenem in a murine model of sepsis caused by Escherichia coli with NDM-1 β-lactamase. J Infect Chemother 19:992–995

    Article  CAS  Google Scholar 

  129. Somboro AM, Tiwari D, Bester LA et al (2015) NOTA: a potent metallo-beta-lactamase inhibitor. J Antimicrob Chemother 70:1594–1596

    Article  CAS  Google Scholar 

  130. Buynak JD, Chen H, Vogeti L et al (2004) Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 14:1299–1304

    Article  CAS  Google Scholar 

  131. Nagano R, Adachi Y, Imamura H et al (1999) Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Antimicrob Agents Chemother 43:2497–2503

    CAS  Google Scholar 

  132. Nagano R, Adachi Y, Hashizume T et al (2000) In vitro antibacterial activity and mechanism of action of J-111,225, a novel 1beta-methylcarbapenem, against transferable IMP-1 metallo-beta-lactamase producers. J Antimicrob Chemother 45:271–276

    Article  CAS  Google Scholar 

  133. Tsang WY, Dhanda A, Schofield CJ et al (2004) The inhibition of metallo-beta-lactamase by thioxo-cephalosporin derivatives. Bioorg Med Chem Lett 14:1737–1739

    Article  CAS  Google Scholar 

  134. Yang K-W, Feng L, Yang S-K et al (2013) New β-phospholactam as a carbapenem transition state analog: synthesis of a broad-spectrum inhibitor of metallo-β-lactamases. Bioorg Med Chem Lett 23:5855–5859

    Article  CAS  Google Scholar 

  135. Liénard BMR, Horsfall LE, Galleni M et al (2007) Inhibitors of the FEZ-1 metallo-beta-lactamase. Bioorg Med Chem Lett 17:964–968

    Article  CAS  Google Scholar 

  136. Ganta SR, Perumal S, Pagadala SRR et al (2009) Approaches to the simultaneous inactivation of metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 19:1618–1622

    Article  CAS  Google Scholar 

  137. Zhang YL, Yang KW, Zhou YJ et al (2014) Diaryl-substituted azolylthioacetamides: inhibitor discovery of New Delhi metallo-beta-lactamase-1 (NDM-1). ChemMedChem 9:2445–2448

    Article  CAS  Google Scholar 

  138. Yang SK, Kang JS, Oelschlaeger P et al (2015) Azolylthioacetamide: a highly promising scaffold for the development of metallo-beta-lactamase inhibitors. ACS Med Chem Lett 6:455–460

    Article  CAS  Google Scholar 

  139. Rotondo CM, Marrone L, Goodfellow VJ et al (2015) Arginine-containing peptides as potent inhibitors of VIM-2 metallo-beta-lactamase. Biochim Biophys Acta 1850:2228–2238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in Rosario has been supported by grants from NIH (1R01AI100560) and ANCPyT. MMG is recipient of a PhD fellowship from CONICET, and AJV is a Staff member from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Vila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González, M.M., Vila, A.J. (2016). An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. In: Supuran, C., Capasso, C. (eds) Zinc Enzyme Inhibitors. Topics in Medicinal Chemistry, vol 22. Springer, Cham. https://doi.org/10.1007/7355_2016_6

Download citation

Publish with us

Policies and ethics