Skip to main content

Strategies for the Development of Influenza Drugs: Basis for New Efficient Combination Therapies

  • Chapter
  • First Online:
Book cover Therapy of Viral Infections

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 15))

Abstract

Only four drugs are approved for the specific treatment of acute influenza infections worldwide. These drugs address either the viral neuraminidase or the M2-channel but suffer from poor efficacy and the rapid emergence of drug resistances. Some additional drugs are launched in few countries, but their efficacy is relatively low and often limited to certain influenza strains. Ideally, new drugs should possess a broad potency against all influenza viruses and be less susceptible to the development of resistances. The propagation cycle of the influenza virus offers many possibilities for the development of new anti-influenza drugs. Various compounds addressing viral targets reached clinical development, from which the most-advanced candidate is the polymerase inhibitor favipiravir. A promising strategy could be also the inhibition of host targets and signaling pathways, e.g., by already approved kinase inhibitors, anti-inflammatory drugs, or immunomodulatory agents. However, the benefit of these agents has to be demonstrated in controlled clinical trials. A broader arsenal of approved drugs will offer the possibility for more efficient combinatorial therapies in the future. The first proof of concept studies for such multiple drug therapies in infected mice revealed beneficial effects. Moreover, this strategy should reduce the rapid emergence of resistant influenza strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

dsRNA:

Double-stranded RNA

HA:

Hemagglutinin

HCV:

Hepatitis C virus

HPAIV:

Highly pathogenic avian influenza virus

HTS:

High-throughput screening

IFN:

Interferon

NA:

Neuraminidase

nAb:

Neutralizing antibody

NAI:

Neuraminidase inhibitor

NEP:

Nuclear export protein

NP:

Nucleoprotein

RdRp:

RNA-dependent RNA polymerase

RNP:

Ribonucleoprotein

SA:

Sialic acid

References

  1. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, Van Kerkhove MD, Mounts AW, Paget WJ (2013) Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project: a modeling study. PLoS Med 10:e1001558

    Google Scholar 

  2. Krug RM, Aramini JM (2009) Emerging antiviral targets for influenza A virus. Trends Pharmacol Sci 30:269–277

    CAS  Google Scholar 

  3. Gong J, Fang H, Li M, Liu Y, Yang K, Xu W (2009) Potential targets and their relevant inhibitors in anti-influenza fields. Curr Med Chem 16:3716–3739

    CAS  Google Scholar 

  4. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:361–366

    Google Scholar 

  5. Samuel CE (2010) Thematic minireview series: toward a structural basis for understanding influenza virus-host cell interactions. J Biol Chem 285:28399–28401

    CAS  Google Scholar 

  6. von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974

    Google Scholar 

  7. Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44

    CAS  Google Scholar 

  8. Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3:1687–1696

    CAS  Google Scholar 

  9. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49

    CAS  Google Scholar 

  10. Castillo R, Holland LE, Boltz DA (2010) Peramivir and its use in H1N1 influenza. Drugs Today (Barc) 46:399–408

    CAS  Google Scholar 

  11. Abdul Rahim AS, von Itzstein M, Manoj CD (2013) Chapter sixteen – recent progress in the discovery of neuraminidase inhibitors as anti-influenza agents. In: Annual reports in medicinal chemistry, vol 48. Academic, San Diego, pp 249–263

    Google Scholar 

  12. Mohan S, Kerry PS, Bance N, Niikura M, Pinto BM (2014) Serendipitous discovery of a potent influenza virus a neuraminidase inhibitor. Angew Chem Int Ed Engl 53:1076–1080

    CAS  Google Scholar 

  13. Sun X, Li Q, Wu Y, Wang M, Liu Y, Qi J, Vavricka CJ, Gao GF (2014) Structure of influenza virus N7: the last piece of the neuraminidase “jigsaw” puzzle. J Virol 88:9197–9207

    Google Scholar 

  14. Rudrawar S, Dyason JC, Maggioni A, Thomson RJ, von Itzstein M (2013) Novel 3,4-disubstituted-Neu5Ac2en derivatives as probes to investigate flexibility of the influenza virus sialidase 150-loop. Bioorg Med Chem 21:4820–4830

    CAS  Google Scholar 

  15. Wen WH, Wang SY, Tsai KC, Cheng YS, Yang AS, Fang JM, Wong CH (2010) Analogs of zanamivir with modified C4-substituents as the inhibitors against the group-1 neuraminidases of influenza viruses. Bioorg Med Chem 18:4074–4084

    CAS  Google Scholar 

  16. Li Q, Qi J, Zhang W, Vavricka CJ, Shi Y, Wei J, Feng E, Shen J, Chen J, Liu D, He J, Yan J, Liu H, Jiang H, Teng M, Li X, Gao GF (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17:1266–1268

    CAS  Google Scholar 

  17. Shie JJ, Fang JM, Lai PT, Wen WH, Wang SY, Cheng YS, Tsai KC, Yang AS, Wong CH (2011) A practical synthesis of zanamivir phosphonate congeners with potent anti-influenza activity. J Am Chem Soc 133:17959–17965

    CAS  Google Scholar 

  18. Feng E, Shin WJ, Zhu X, Li J, Ye D, Wang J, Zheng M, Zuo JP, No KT, Liu X, Zhu W, Tang W, Seong BL, Jiang H, Liu H (2013) Structure-based design and synthesis of C-1- and C-4-modified analogs of zanamivir as neuraminidase inhibitors. J Med Chem 56:671–684

    CAS  Google Scholar 

  19. Mohan S, McAtamney S, Haselhorst T, von Itzstein M, Pinto BM (2010) Carbocycles related to oseltamivir as influenza virus group-1-specific neuraminidase inhibitors. Binding to N1 enzymes in the context of virus-like particles. J Med Chem 53:7377–7391

    CAS  Google Scholar 

  20. Mooney CA, Johnson SA, Hart PT, Quarles van Ufford L, de Haan CA, Moret EE, Martin NI (2014) Oseltamivir analogues bearing N-substituted guanidines as potent neuraminidase inhibitors. J Med Chem 57:3154–3160

    CAS  Google Scholar 

  21. Schade D, Kotthaus J, Riebling L, Muller-Fielitz H, Raasch W, Koch O, Seidel N, Schmidtke M, Clement B (2014) Development of novel potent orally bioavailable oseltamivir derivatives active against resistant influenza A. J Med Chem 57:759–769

    CAS  Google Scholar 

  22. Bromba CM, Mason JW, Brant MG, Chan T, Lunke MD, Petric M, Boulanger MJ, Wulff JE (2011) The de-guanidinylated derivative of peramivir remains a potent inhibitor of influenza neuraminidase. Bioorg Med Chem Lett 21:7137–7141

    CAS  Google Scholar 

  23. Li Y, Silamkoti A, Kolavi G, Mou L, Gulati S, Air GM, Brouillette WJ (2012) Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: the hydrophobic side chain influences type A subtype selectivity. Bioorg Med Chem 20:4582–4589

    CAS  Google Scholar 

  24. Sun C, Zhang X, Huang H, Zhou P (2006) Synthesis and evaluation of a new series of substituted acyl(thio)urea and thiadiazolo [2,3-a] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Bioorg Med Chem 14:8574–8581

    CAS  Google Scholar 

  25. Sun C, Huang H, Feng M, Shi X, Zhang X, Zhou P (2006) A novel class of potent influenza virus inhibitors: polysubstituted acylthiourea and its fused heterocycle derivatives. Bioorg Med Chem Lett 16:162–166

    CAS  Google Scholar 

  26. Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599

    CAS  Google Scholar 

  27. Gu RX, Liu LA, Wei DQ (2013) Structural and energetic analysis of drug inhibition of the influenza A M2 proton channel. Trends Pharmacol Sci 34:571–580

    CAS  Google Scholar 

  28. Wang J, Cady SD, Balannik V, Pinto LH, DeGrado WF, Hong M (2009) Discovery of spiro-piperidine inhibitors and their modulation of the dynamics of the M2 proton channel from influenza A virus. J Am Chem Soc 131:8066–8076

    CAS  Google Scholar 

  29. Balannik V, Wang J, Ohigashi Y, Jing X, Magavern E, Lamb RA, Degrado WF, Pinto LH (2009) Design and pharmacological characterization of inhibitors of amantadine-resistant mutants of the M2 ion channel of influenza A virus. Biochemistry 48:11872–11882

    CAS  Google Scholar 

  30. Kurtz S, Luo G, Hahnenberger KM, Brooks C, Gecha O, Ingalls K, Numata K, Krystal M (1995) Growth impairment resulting from expression of influenza virus M2 protein in Saccharomyces cerevisiae: identification of a novel inhibitor of influenza virus. Antimicrob Agents Chemother 39:2204–2209

    CAS  Google Scholar 

  31. Rey-Carrizo M, Barniol-Xicota M, Ma C, Frigole-Vivas M, Torres E, Naesens L, Llabres S, Juarez-Jimenez J, Luque FJ, DeGrado WF, Lamb RA, Pinto LH, Vazquez S (2014) Easily accessible polycyclic amines that inhibit the wild-type and amantadine-resistant mutants of the M2 channel of influenza A virus. J Med Chem 57:5738–5747

    CAS  Google Scholar 

  32. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    CAS  Google Scholar 

  33. Wang J, Ma C, Jo H, Canturk B, Fiorin G, Pinto LH, Lamb RA, Klein ML, DeGrado WF (2013) Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J Med Chem 56:2804–2812

    CAS  Google Scholar 

  34. Wang J, Wu Y, Ma C, Fiorin G, Pinto LH, Lamb RA, Klein ML, Degrado WF (2013) Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci U S A 110:1315–1320

    CAS  Google Scholar 

  35. Kolocouris A, Tzitzoglaki C, Johnson FB, Zell R, Wright AK, Cross TA, Tietjen I, Fedida D, Busath DD (2014) Aminoadamantanes with persistent in vitro efficacy against H1N1 (2009) influenza A. J Med Chem 57:4629–4639

    CAS  Google Scholar 

  36. Dunning J, Baillie JK, Cao B, Hayden FG (2014) Antiviral combinations for severe influenza. Lancet Infect Dis 14:1259–1270

    CAS  Google Scholar 

  37. Glick GD, Toogood PL, Wiley DC, Skehel JJ, Knowles JR (1991) Ligand recognition by influenza virus. The binding of bivalent sialosides. J Biol Chem 266:23660–23669

    CAS  Google Scholar 

  38. Choi S-K, Mammen M, Whitesides GM (1997) Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J Am Chem Soc 119:4103–4111

    CAS  Google Scholar 

  39. Gambaryan AS, Tuzikov AB, Chinarev AA, Juneja LR, Bovin NV, Matrosovich MN (2002) Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antiviral Res 55:201–205

    CAS  Google Scholar 

  40. Gambaryan AS, Boravleva EY, Matrosovich TY, Matrosovich MN, Klenk HD, Moiseeva EV, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV (2005) Polymer-bound 6′ sialyl-N-acetyllactosamine protects mice infected by influenza virus. Antiviral Res 68:116–123

    CAS  Google Scholar 

  41. Guo CT, Sun XL, Kanie O, Shortridge KF, Suzuki T, Miyamoto D, Hidari KI, Wong CH, Suzuki Y (2002) An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. Glycobiology 12:183–190

    CAS  Google Scholar 

  42. Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S (2006) Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J Virol 80:11960–11967

    CAS  Google Scholar 

  43. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, Nagata K, Okahata Y, Sato T (2010) Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem 53:4441–4449

    CAS  Google Scholar 

  44. O’Keefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR (2003) Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob Agents Chemother 47:2518–2525

    Google Scholar 

  45. Boltz DA, Aldridge JR Jr, Webster RG, Govorkova EA (2010) Drugs in development for influenza. Drugs 70:1349–1362

    CAS  Google Scholar 

  46. Matsubara T, Sumi M, Kubota H, Taki T, Okahata Y, Sato T (2009) Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library. J Med Chem 52:4247–4256

    CAS  Google Scholar 

  47. Malakhov MP, Aschenbrenner LM, Smee DF, Wandersee MK, Sidwell RW, Gubareva LV, Mishin VP, Hayden FG, Kim DH, Ing A, Campbell ER, Yu M, Fang F (2006) Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother 50:1470–1479

    CAS  Google Scholar 

  48. Triana-Baltzer GB, Gubareva LV, Nicholls JM, Pearce MB, Mishin VP, Belser JA, Chen LM, Chan RW, Chan MC, Hedlund M, Larson JL, Moss RB, Katz JM, Tumpey TM, Fang F (2009) Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS One 4:e7788

    Google Scholar 

  49. Chan RW, Chan MC, Wong AC, Karamanska R, Dell A, Haslam SM, Sihoe AD, Chui WH, Triana-Baltzer G, Li Q, Peiris JS, Fang F, Nicholls JM (2009) DAS181 inhibits H5N1 influenza virus infection of human lung tissues. Antimicrob Agents Chemother 53:3935–3941

    CAS  Google Scholar 

  50. Triana-Baltzer GB, Gubareva LV, Klimov AI, Wurtman DF, Moss RB, Hedlund M, Larson JL, Belshe RB, Fang F (2009) Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein. PLoS One 4:e7838

    Google Scholar 

  51. Moss RB, Hansen C, Sanders RL, Hawley S, Li T, Steigbigel RT (2012) A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection. J Infect Dis 206:1844–1851

    CAS  Google Scholar 

  52. Chalkias S, Mackenzie MR, Gay C, Dooley C, Marty FM, Moss RB, Li T, Routh RL, Walsh SR, Tan CS (2014) DAS181 treatment of hematopoietic stem cell transplant patients with parainfluenza virus lung disease requiring mechanical ventilation. Transpl Infect Dis 16:141–144

    CAS  Google Scholar 

  53. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    CAS  Google Scholar 

  54. Bowman EJ, Bowman BJ (2005) V-ATPases as drug targets. J Bioenerg Biomembr 37:431–435

    CAS  Google Scholar 

  55. Chen HW, Cheng JX, Liu MT, King K, Peng JY, Zhang XQ, Wang CH, Shresta S, Schooley RT, Liu YT (2013) Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antiviral Res 99:371–382

    CAS  Google Scholar 

  56. Garten W, Klenk HD (2008) Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis. In: Klenk HD, Matrosovich M, Stech J (eds) Avian influenza, vol 27. Karger, Basel, pp 156–167

    Google Scholar 

  57. Tashiro M, Ciborowski P, Klenk HD, Pulverer G, Rott R (1987) Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325:536–537

    CAS  Google Scholar 

  58. Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD (2014) The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 385:3–34

    Google Scholar 

  59. Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS, Pöhlmann S, Schughart K (2013) Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog 9:e1003774

    Google Scholar 

  60. Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS, Garten W, Klenk HD, Gabriel G, Böttcher-Friebertshäuser E (2014) TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol 88:4744–4751

    Google Scholar 

  61. Hamilton BS, Whittaker GR (2013) Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. J Biol Chem 288:17399–17407

    CAS  Google Scholar 

  62. Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80:9896–9898

    Google Scholar 

  63. Bertram S, Glowacka I, Blazejewska P, Soilleux E, Allen P, Danisch S, Steffen I, Choi SY, Park Y, Schneider H, Schughart K, Pöhlmann S (2010) TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J Virol 84:10016–10025

    CAS  Google Scholar 

  64. Zmora P, Blazejewska P, Moldenhauer AS, Welsch K, Nehlmeier I, Wu Q, Schneider H, Pöhlmann S, Bertram S (2014) DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry. J Virol 88:12087–12097

    Google Scholar 

  65. Hamilton BS, Gludish DW, Whittaker GR (2012) Cleavage activation of the human-adapted influenza virus subtypes by matriptase reveals both subtype and strain specificities. J Virol 86:10579–10586

    CAS  Google Scholar 

  66. Baron J, Tarnow C, Mayoli-Nüssle D, Schilling E, Meyer D, Hammami M, Schwalm F, Steinmetzer T, Guan Y, Garten W, Klenk HD, Böttcher-Friebertshäuser E (2013) Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol 87:1811–1820

    CAS  Google Scholar 

  67. Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Yao D, Yao M, Chida J, Yano M (2012) Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. Biochim Biophys Acta 1824:186–194

    CAS  Google Scholar 

  68. Ovcharenko AV, Zhirnov OP (1994) Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice. Antiviral Res 23:107–118

    CAS  Google Scholar 

  69. Zhirnov OP, Klenk HD, Wright PF (2011) Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 92:27–36

    CAS  Google Scholar 

  70. Hamilton BS, Chung C, Cyphers SY, Rinaldi VD, Marcano VC, Whittaker GR (2014) Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2. Biochem Biophys Res Commun 450:1070–1075

    CAS  Google Scholar 

  71. Sielaff F, Böttcher-Friebertshäuser E, Meyer D, Saupe SM, Volk IM, Garten W, Steinmetzer T (2011) Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorg Med Chem Lett 21:4860–4864

    CAS  Google Scholar 

  72. Meyer D, Sielaff F, Hammami M, Böttcher-Friebertshäuser E, Garten W, Steinmetzer T (2013) Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem J 452:331–343

    CAS  Google Scholar 

  73. Böttcher-Friebertshäuser E, Lu Y, Meyer D, Sielaff F, Steinmetzer T, Klenk HD, Garten W (2012) Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine 30:7374–7380

    Google Scholar 

  74. Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T (2012) Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 287:21992–22003

    CAS  Google Scholar 

  75. Dahms SO, Hardes K, Becker GL, Steinmetzer T, Brandstetter H, Than ME (2014) X-ray structures of human furin in complex with competitive inhibitors. ACS Chem Biol 9:1113–1118

    CAS  Google Scholar 

  76. Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID (1993) Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 32:2967–2978

    CAS  Google Scholar 

  77. Luo G, Torri A, Harte WE, Danetz S, Cianci C, Tiley L, Day S, Mullaney D, Yu KL, Ouellet C, Dextraze P, Meanwell N, Colonno R, Krystal M (1997) Molecular mechanism underlying the action of a novel fusion inhibitor of influenza A virus. J Virol 71:4062–4070

    CAS  Google Scholar 

  78. Luo G, Colonno R, Krystal M (1996) Characterization of a hemagglutinin-specific inhibitor of influenza A virus. Virology 226:66–76

    CAS  Google Scholar 

  79. Vanderlinden E, Goktas F, Cesur Z, Froeyen M, Reed ML, Russell CJ, Cesur N, Naesens L (2010) Novel inhibitors of influenza virus fusion: structure-activity relationship and interaction with the viral hemagglutinin. J Virol 84:4277–4288

    CAS  Google Scholar 

  80. Leneva IA, Russell RJ, Boriskin YS, Hay AJ (2009) Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res 81:132–140

    CAS  Google Scholar 

  81. Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ (2008) Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 15:997–1005

    CAS  Google Scholar 

  82. Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409

    CAS  Google Scholar 

  83. Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16:265–273

    CAS  Google Scholar 

  84. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850–856

    CAS  Google Scholar 

  85. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516:355–360

    Google Scholar 

  86. Fodor E (2013) The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol 57:113–122

    CAS  Google Scholar 

  87. Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:1078–1082

    CAS  Google Scholar 

  88. Kao RY, Yang D, Lau LS, Tsui WH, Hu L, Dai J, Chan MP, Chan CM, Wang P, Zheng BJ, Sun J, Huang JD, Madar J, Chen G, Chen H, Guan Y, Yuen KY (2010) Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol 28:600–605

    CAS  Google Scholar 

  89. Loginova S, Borisevich SV, Maksimov VA, Bondarev VP, Nebol’sin VE (2008) Therapeutic efficacy of ingavirin, a new domestic formulation against influenza A virus (H3N2). Antibiot Khimioter 53:27–30

    CAS  Google Scholar 

  90. Zarubalev VV, Garshinina AV, Kalinina NA, Shtro AA, Belyaevskaya SV, Slita AV, Nebolsin VE, Kiselev OI (2011) Activity of ingavirin (6-[2-(1H-imidazol-4-yl)ethylamino]-5-oxohexanoic acid) against human respiratory viruses in in vivo experiments. Pharmaceuticals 4:1518–1534

    Google Scholar 

  91. Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, Nagata K, Tame JR, Park SY (2008) The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454:1127–1131

    CAS  Google Scholar 

  92. Ghanem A, Mayer D, Chase G, Tegge W, Frank R, Kochs G, Garcia-Sastre A, Schwemmle M (2007) Peptide-mediated interference with influenza A virus polymerase. J Virol 81:7801–7804

    CAS  Google Scholar 

  93. Wunderlich K, Mayer D, Ranadheera C, Holler AS, Manz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M (2009) Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS One 4:e7517

    Google Scholar 

  94. Wunderlich K, Juozapaitis M, Ranadheera C, Kessler U, Martin A, Eisel J, Beutling U, Frank R, Schwemmle M (2011) Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase. Antimicrob Agents Chemother 55:696–702

    CAS  Google Scholar 

  95. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    CAS  Google Scholar 

  96. Fukuoka M, Minakuchi M, Kawaguchi A, Nagata K, Kamatari YO, Kuwata K (2012) Structure-based discovery of anti-influenza virus A compounds among medicines. Biochim Biophys Acta 1820:90–95

    CAS  Google Scholar 

  97. Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK (1972) Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 177:705–706

    CAS  Google Scholar 

  98. Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16:37–48

    CAS  Google Scholar 

  99. Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF (2005) In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Res 68:10–17

    CAS  Google Scholar 

  100. Tuttle JV, Tisdale M, Krenitsky TA (1993) Purine 2′-deoxy-2′-fluororibosides as antiinfluenza virus agents. J Med Chem 36:119–125

    CAS  Google Scholar 

  101. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, Gowen BB, Julander JG, Morrey JD (2009) T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 82:95–102

    CAS  Google Scholar 

  102. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL (2013) Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 100:446–454

    CAS  Google Scholar 

  103. Oestereich L, Ludtke A, Wurr S, Rieger T, Munoz-Fontela C, Gunther S (2014) Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 105:17–21

    CAS  Google Scholar 

  104. Boivin S, Cusack S, Ruigrok RW, Hart DJ (2010) Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 285:28411–28417

    CAS  Google Scholar 

  105. Hastings JC, Selnick H, Wolanski B, Tomassini JE (1996) Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob Agents Chemother 40:1304–1307

    CAS  Google Scholar 

  106. Hsu JT, Yeh JY, Lin TJ, Li ML, Wu MS, Hsieh CF, Chou YC, Tang WF, Lau KS, Hung HC, Fang MY, Ko S, Hsieh HP, Horng JT (2012) Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob Agents Chemother 56:647–657

    Google Scholar 

  107. Clark MP, Ledeboer MW, Davies I, Byrn RA, Jones SM, Perola E, Tsai A, Jacobs M, Nti-Addae K, Bandarage UK, Boyd MJ, Bethiel RS, Court JJ, Deng H, Duffy JP, Dorsch WA, Farmer LJ, Gao H, Gu W, Jackson K, Jacobs DH, Kennedy JM, Ledford B, Liang J, Maltais F, Murcko M, Wang T, Wannamaker MW, Bennett HB, Leeman JR, McNeil C, Taylor WP, Memmott C, Jiang M, Rijnbrand R, Bral C, Germann U, Nezami A, Zhang Y, Salituro FG, Bennani YL, Charifson PS (2014) Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J Med Chem 57:6668–6678

    CAS  Google Scholar 

  108. Basu D, Walkiewicz MP, Frieman M, Baric RS, Auble DT, Engel DA (2009) Novel influenza virus NS1 antagonists block replication and restore innate immune function. J Virol 83:1881–1891

    CAS  Google Scholar 

  109. Walkiewicz MP, Basu D, Jablonski JJ, Geysen HM, Engel DA (2011) Novel inhibitor of influenza non-structural protein 1 blocks multi-cycle replication in an RNase L-dependent manner. J Gen Virol 92:60–70

    CAS  Google Scholar 

  110. Jablonski JJ, Basu D, Engel DA, Geysen HM (2012) Design, synthesis, and evaluation of novel small molecule inhibitors of the influenza virus protein NS1. Bioorg Med Chem 20:487–497

    CAS  Google Scholar 

  111. Cho EJ, Xia S, Ma LC, Robertus J, Krug RM, Anslyn EV, Montelione GT, Ellington AD (2012) Identification of influenza virus inhibitors targeting NS1A utilizing fluorescence polarization-based high-throughput assay. J Biomol Screen 17:448–459

    CAS  Google Scholar 

  112. You L, Cho EJ, Leavitt J, Ma LC, Montelione GT, Anslyn EV, Krug RM, Ellington A, Robertus JD (2011) Synthesis and evaluation of quinoxaline derivatives as potential influenza NS1A protein inhibitors. Bioorg Med Chem Lett 21:3007–3011

    CAS  Google Scholar 

  113. Twu KY, Noah DL, Rao P, Kuo RL, Krug RM (2006) The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol 80:3957–3965

    CAS  Google Scholar 

  114. Das K, Ma LC, Xiao R, Radvansky B, Aramini J, Zhao L, Marklund J, Kuo RL, Twu KY, Arnold E, Krug RM, Montelione GT (2008) Structural basis for suppression of a host antiviral response by influenza A virus. Proc Natl Acad Sci U S A 105:13093–13098

    CAS  Google Scholar 

  115. Ai H, Zhang L, Chang AK, Wei H, Che Y, Liu H (2014) Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus. J Mol Model 20:2142

    Google Scholar 

  116. Paterson D, Fodor E (2012) Emerging roles for the influenza A virus nuclear export protein (NEP). PLoS Pathog 8:e1003019

    CAS  Google Scholar 

  117. Manz B, Brunotte L, Reuther P, Schwemmle M (2012) Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat Commun 3:802

    Google Scholar 

  118. Chakrabarti AK, Pasricha G (2013) An insight into the PB1F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses. Virology 440:97–104

    CAS  Google Scholar 

  119. McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6:e1001014

    Google Scholar 

  120. Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10:1140–1152

    CAS  Google Scholar 

  121. Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG (2009) Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 284:29798–29808

    CAS  Google Scholar 

  122. Rossignol JF (2014) Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res 110c:94–103

    Google Scholar 

  123. Ludwig S, Pleschka S, Planz O, Wolff T (2006) Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol 8:375–386

    CAS  Google Scholar 

  124. Ludwig S (2011) Disruption of virus-host cell interactions and cell signaling pathways as an anti-viral approach against influenza virus infections. Biol Chem 392:837–847

    CAS  Google Scholar 

  125. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK (2010) Human host factors required for influenza virus replication. Nature 463:813–817

    Google Scholar 

  126. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463:818–822

    CAS  Google Scholar 

  127. Ludwig S, Planz O (2008) Influenza viruses and the NF-kappaB signaling pathway – towards a novel concept of antiviral therapy. Biol Chem 389:1307–1312

    CAS  Google Scholar 

  128. Luig C, Kother K, Dudek SE, Gaestel M, Hiscott J, Wixler V, Ludwig S (2010) MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J 24:4068–4077

    CAS  Google Scholar 

  129. Droebner K, Pleschka S, Ludwig S, Planz O (2011) Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antiviral Res 92:195–203

    CAS  Google Scholar 

  130. Rask-Andersen M, Zhang J, Fabbro D, Schioth HB (2014) Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol Sci 35:604–620

    CAS  Google Scholar 

  131. Nimmerjahn F, Dudziak D, Dirmeier U, Hobom G, Riedel A, Schlee M, Staudt LM, Rosenwald A, Behrends U, Bornkamm GW, Mautner J (2004) Active NF-kappaB signalling is a prerequisite for influenza virus infection. J Gen Virol 85:2347–2356

    CAS  Google Scholar 

  132. Ludwig S, Zell R, Schwemmle M, Herold S (2014) Influenza, a One Health paradigm-Novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. Int J Med Microbiol 304:894–901

    Google Scholar 

  133. Mazur I, Wurzer WJ, Ehrhardt C, Pleschka S, Puthavathana P, Silberzahn T, Wolff T, Planz O, Ludwig S (2007) Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity. Cell Microbiol 9:1683–1694

    CAS  Google Scholar 

  134. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    CAS  Google Scholar 

  135. Llona-Minguez S, Baiget J, Mackay SP (2013) Small-molecule inhibitors of IkappaB kinase (IKK) and IKK-related kinases. Pharm Pat Anal 2:481–498

    CAS  Google Scholar 

  136. Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124–134

    CAS  Google Scholar 

  137. Coan KE, Maltby DA, Burlingame AL, Shoichet BK (2009) Promiscuous aggregate-based inhibitors promote enzyme unfolding. J Med Chem 52:2067–2075

    CAS  Google Scholar 

  138. Zhang C, Wu Y, Xuan Z, Zhang S, Wang X, Hao Y, Wu J, Zhang S (2014) p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM. Virus Res 192:6–15

    CAS  Google Scholar 

  139. Sieczkarski SB, Brown HA, Whittaker GR (2003) Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol 77:460–469

    CAS  Google Scholar 

  140. Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML (2011) Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci U S A 108:5777–5782

    CAS  Google Scholar 

  141. Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B (2013) PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 123:206–214

    CAS  Google Scholar 

  142. Chackalamannil S, Wang Y, Greenlee WJ, Hu Z, Xia Y, Ahn HS, Boykow G, Hsieh Y, Palamanda J, Agans-Fantuzzi J, Kurowski S, Graziano M, Chintala M (2008) Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem 51:3061–3064

    CAS  Google Scholar 

  143. Fedson DS (2009) Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respi Viruses 3:129–142

    CAS  Google Scholar 

  144. Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, Zhang HJ, Chen HL, Wong SS, Lau SK, Woo PC, Chan KH, Jin DY, Yuen KY (2008) Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci U S A 105:8091–8096

    CAS  Google Scholar 

  145. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19:571–582

    CAS  Google Scholar 

  146. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198:962–970

    Google Scholar 

  147. Fedson DS (2008) Confronting an influenza pandemic with inexpensive generic agents: can it be done? Lancet Infect Dis 8:571–576

    CAS  Google Scholar 

  148. Fedson DS (2013) Treating influenza with statins and other immunomodulatory agents. Antiviral Res 99:417–435

    CAS  Google Scholar 

  149. Nguyen JT, Hoopes JD, Le MH, Smee DF, Patick AK, Faix DJ, Blair PJ, de Jong MD, Prichard MN, Went GT (2010) Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro. PLoS One 5:e9332

    Google Scholar 

  150. Hoopes JD, Driebe EM, Kelley E, Engelthaler DM, Keim PS, Perelson AS, Rong L, Went GT, Nguyen JT (2011) Triple combination antiviral drug (TCAD) composed of amantadine, oseltamivir, and ribavirin impedes the selection of drug-resistant influenza A virus. PLoS One 6:e29778

    CAS  Google Scholar 

  151. Park S, Kim JI, Lee I, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Jang SI, Kim H, Cheong HJ, Song JW, Song KJ, Baek LJ, Park MS (2014) Combination effects of peramivir and favipiravir against oseltamivir-resistant 2009 pandemic influenza A(H1N1) infection in mice. PLoS One 9:e101325

    Google Scholar 

  152. Govorkova EA, Webster RG (2010) Combination chemotherapy for influenza. Viruses 2:1510–1529

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Steinmetzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinmetzer, T., Hardes, K., Böttcher-Friebertshäuser, E., Garten, W. (2014). Strategies for the Development of Influenza Drugs: Basis for New Efficient Combination Therapies. In: Diederich, W., Steuber, H. (eds) Therapy of Viral Infections. Topics in Medicinal Chemistry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2014_84

Download citation

Publish with us

Policies and ethics