Skip to main content

Nanoscopic Agents in a Physiological Environment: The Importance of Understanding Their Characteristics

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 20))

Abstract

The application of nanotechnology in medicine signifies one of the most exciting developments in science over the last decade. Even though advancement has been made in nanoparticle engineering in terms of size, shape and surface functionalisation, the behaviour in vivo remains poorly characterised and understood. The potential impact of engineered nanomaterials on human health is strictly related to their behaviour in the biological environment. When in contact with biological fluids, nanoparticles spontaneously interact and adsorb proteins to dramatically change their surface properties. Thus, the nanoparticle surface acquires a new biological identity that will influence its stability and interaction with the cellular machinery, thereby affecting the nanoparticle biodistribution in vivo. This protein coating ‘expressed’ at the nanoparticle surface is what is ‘read’ by the cells. Consequently, methods to effectively study the structure and composition of this bio-nano interface have been emerging as key objectives in nanoscience. In this chapter, we discuss the state-of-the-art techniques for the physico-chemical characterisation of nanoparticle-protein complexes in the biological environment with particular emphasis on their impact on the efficiency and safety of a new generation of nanomedicines. We also highlight the barriers faced by nanomedicines for effective targeting and delivery in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AUT:

Aminoundecanoic thiol

BAM:

N-tert-butylacrylamide

BLM:

Bilayer lipid membrane

CD:

Circular dichroism

DCS:

Differential centrifugal sedimentation

DLS:

Dynamic light scattering

ECM:

Extracellular matrix

ENM:

Engineered nanomaterial

EPR:

Enhanced permeability and retention

FCS:

Fluorescence correlation spectroscopy

FTIR:

Fourier transform infrared spectroscopy

GBM:

Glioblastoma

HPLC:

High-performance liquid chromatography

HSA:

Human serum albumin

i.v.:

Intravenous

ICAM-1:

Intercellular adhesion molecule-1

ICP-MS/AES :

Inductively coupled plasma mass/atomic emission spectroscopy

IFP:

Interstitial fluid pressure

k off :

Dissociation rate constant

MPS:

Mononuclear phagocyte system

MS:

Mass spectrometry

NIPAM:

N-Isopropylacrylamide

NLS:

Nuclear localisation signal

NMR:

Nuclear magnetic resonance

NP:

Nanoparticle(s)

PC:

Protein corona

PEG:

Polyethylene glycol

PS:

Polystyrene

QCM:

Quartz-crystal microbalance

RES:

Reticuloendothelial system

SANS:

Small angle neutron scattering

SAXS:

Small angle X-ray scattering

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatography

SPR:

Surface plasmon resonance

SWCNT:

Single-walled carbon nanotubes

TEM:

Transmission electron microscopy

Tf:

Transferrin

TfR:

Transferrin receptor

References

  1. Lewinski N, Colvin V et al (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  CAS  Google Scholar 

  2. Jinhao GAO, Hongwei GU et al (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  CAS  Google Scholar 

  3. Johnston H, Pojana G, Zuin S et al (2013) Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43(1):1–20

    Article  CAS  Google Scholar 

  4. Nyström AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161(2):403–408

    Article  CAS  Google Scholar 

  5. Nel AE, Mädler L et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  Google Scholar 

  6. Aggarwal P, Hall JB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  Google Scholar 

  7. Casals E, Puntes VF (2012) Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine 7(12):1917–1930

    Article  CAS  Google Scholar 

  8. Mahmoudi M, Lynch I et al (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637

    Article  CAS  Google Scholar 

  9. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  CAS  Google Scholar 

  10. Walczyk D, Bombelli FB et al (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    Article  CAS  Google Scholar 

  11. Norde W, MacRitchie F et al (1986) Protein adsorption at solid–liquid interfaces: reversibility and conformation aspects. J Colloid Interface Sci 112(2):447–456

    Article  CAS  Google Scholar 

  12. Lundqvist M, Stigler J et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270

    Article  CAS  Google Scholar 

  13. Milani S, Baldelli Bombelli F et al (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541

    Article  CAS  Google Scholar 

  14. Mortensen NP, Hurst GB et al (2013) Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5(14):6372–6380

    Article  CAS  Google Scholar 

  15. Pompa PP, Vecchio G et al (2011) Physical assessment of toxicology at nanoscale: nano dose-metrics and toxicity factor. Nanoscale 3(7):2889–2897

    Article  CAS  Google Scholar 

  16. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Article  CAS  Google Scholar 

  17. Kim ST, Saha K et al (2013) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46(3):681–691

    Article  CAS  Google Scholar 

  18. Huang R, Carney RP et al (2013) Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 5:6928–6935

    Article  CAS  Google Scholar 

  19. Roach P, Farrar D et al (2006) surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  CAS  Google Scholar 

  20. Shang L, Wang Y et al (2007) pH-Dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5):2714–2721

    Article  CAS  Google Scholar 

  21. Deng ZJ, Liang M et al (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6(10):8962–8969

    Article  CAS  Google Scholar 

  22. Dell'Orco D, Lundqvist M et al (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5(6):e10949

    Article  CAS  Google Scholar 

  23. Darabi Sahneh F, Scoglio C et al (2013) Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS One 8(5):e64690

    Article  CAS  Google Scholar 

  24. Röcker C, Pötzl M et al (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  CAS  Google Scholar 

  25. Casals E, Pfaller T et al (2011) Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7(24):3479–3486

    Article  CAS  Google Scholar 

  26. Liu W, Rose J et al (2013) Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 5(4):1658–1668

    Article  CAS  Google Scholar 

  27. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252(5010):1164–1167

    Article  CAS  Google Scholar 

  28. Casals E, Pfaller T et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  CAS  Google Scholar 

  29. Hühn D, Kantner K et al (2013) Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano. doi:10.1021/nn3059295

    Google Scholar 

  30. Gabizon A, Shmeeda H et al (2003) Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet 42(5):419–436

    Article  CAS  Google Scholar 

  31. Harris JM, Martin NE et al (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40(7):539–551

    Article  CAS  Google Scholar 

  32. Immordino ML, Dosio F et al (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1(3):297–315

    Article  CAS  Google Scholar 

  33. Karakoti AS, Das S et al (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50(9):1980–1994

    Article  CAS  Google Scholar 

  34. Sacchetti C, Motamedchaboki K et al (2013) Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7(3):1974–1989

    Article  CAS  Google Scholar 

  35. Shah NB, Vercellotti GM et al (2012) Blood-nanoparticle interactions and in vivo biodistribution: impact of surface peg and ligand properties. Mol Pharmaceutics 9(8):2146–2155

    CAS  Google Scholar 

  36. Zhang G, Yang Z et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936

    Article  CAS  Google Scholar 

  37. Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10(9):2379–2400

    Article  CAS  Google Scholar 

  38. Chithrani BD, Ghazani AA et al (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

  39. Sahay G, Alakhova DY et al (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  Google Scholar 

  40. Zhang S, Li J et al (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21(4):419–424

    Article  CAS  Google Scholar 

  41. Dubavik A, Sezgin E et al (2012) Penetration of amphiphilic quantum dots through model and cellular plasma membranes. ACS Nano 6(3):2150–2156

    Article  CAS  Google Scholar 

  42. Kostarelos K, Lacerda L et al (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2):108–113

    Article  CAS  Google Scholar 

  43. Verma A, Uzun O et al (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  CAS  Google Scholar 

  44. Carney RP, Astier Y et al (2012) Electrical method to quantify nanoparticle interaction with lipid bilayers. ACS Nano 7(2):932–942

    Article  CAS  Google Scholar 

  45. Tatur S, Maccarini M et al (2013) Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29(22):6606–6614

    Article  CAS  Google Scholar 

  46. Safi M, Courtois J et al (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363

    Article  CAS  Google Scholar 

  47. Ehrenberg MS, Friedman AE et al (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610

    Article  CAS  Google Scholar 

  48. Lesniak A, Salvati A et al (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444

    Article  CAS  Google Scholar 

  49. Deng ZJ, Liang M et al (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  Google Scholar 

  50. Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7(3):314–322

    Article  CAS  Google Scholar 

  51. Pitek AS, O’Connell D et al (2012) Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One 7(7):e40685

    Article  CAS  Google Scholar 

  52. Salvati A, Pitek AS et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  Google Scholar 

  53. Monopoli MP, Aberg C et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  Google Scholar 

  54. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068(2):133–141

    Article  CAS  Google Scholar 

  55. Drummond DC, Meyer O et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    CAS  Google Scholar 

  56. Storm G, Belliot SO et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48

    Article  CAS  Google Scholar 

  57. Hong RL, Huang CJ et al (1999) Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 5(11):3645–3652

    CAS  Google Scholar 

  58. Song LY, Ahkong QF et al (2002) Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta 1558(1):1–13

    Article  CAS  Google Scholar 

  59. Yoo JW, Doshi N et al (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63(14–15):1247–1256

    Article  CAS  Google Scholar 

  60. Campbell RB, Fukumura D et al (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62(23):6831–6836

    CAS  Google Scholar 

  61. Chanda N, Kattumuri V et al (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci U S A 107(19):8760–8765

    Article  CAS  Google Scholar 

  62. Zhang XD, Wu D et al (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081

    Article  CAS  Google Scholar 

  63. Sadauskas E, Wallin H et al (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10

    Article  CAS  Google Scholar 

  64. Choi HS, Liu W et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  CAS  Google Scholar 

  65. Kobayashi H, Brechbiel MW (2004) Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5(6):539–549

    Article  CAS  Google Scholar 

  66. Longmire M, Choyke PL et al (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed Nanotechnol Biol Med 3(5):703–717

    CAS  Google Scholar 

  67. Socha M, Bartecki P et al (2009) Stealth nanoparticles coated with heparin as peptide or protein carriers. J Drug Target 17(8):575–585

    Article  CAS  Google Scholar 

  68. Thasneem YM, Sajeesh S et al (2013) Glucosylated polymeric nanoparticles: a sweetened approach against blood compatibility paradox. Colloids Surf B Biointerfaces 108:337–344

    Article  CAS  Google Scholar 

  69. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11(3):130–135

    Article  CAS  Google Scholar 

  70. Rodriguez PL, Harada T et al (2013) Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975

    Article  CAS  Google Scholar 

  71. Singh R, Pantarotto D et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362

    Article  CAS  Google Scholar 

  72. Hirn S, Semmler-Behnke M et al (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77(3):407–416

    Article  CAS  Google Scholar 

  73. Litzinger DC, Buiting AM et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190(1):99–107

    Article  CAS  Google Scholar 

  74. Manohar S, Ungureanu C et al (2011) Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats. Contrast Media Mol Imaging 6(5):389–400

    Article  CAS  Google Scholar 

  75. Lee H, Hoang B et al (2010) In vivo distribution of polymeric nanoparticles at the whole-body, tumor, and cellular levels. Pharm Res 27(11):2343–2355

    Article  CAS  Google Scholar 

  76. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenesis Res. doi:10.1186/2040-2384-2-14

    Google Scholar 

  77. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 6:417–427

    Article  CAS  Google Scholar 

  78. Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release. doi:10.1016/j.jconrel.2012.04.038

    Google Scholar 

  79. Padera TP, Stoll BR et al (2004) Pathology: cancer cells compress intratumor vessels. Nature 427(6976):695

    Article  CAS  Google Scholar 

  80. Adiseshaiah PP, Hall JB et al (2010) Nanomaterial standards for efficacy and toxicity assessment. Nanomed Nanobiotechnol 2(1):99–112

    Article  CAS  Google Scholar 

  81. Sugahara KN, Teesalu T et al (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035

    Article  CAS  Google Scholar 

  82. Su S, Wang H et al (2013) iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34(13):3523–3533

    Article  CAS  Google Scholar 

  83. Lee H, Fonge H et al (2010) The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm 7(4):1195–1208

    Article  CAS  Google Scholar 

  84. Morral-Ruiz G, Melgar-Lesmes P et al (2013) Multifunctional polyurethane-urea nanoparticles to target and arrest inflamed vascular environment: a potential tool for cancer therapy and diagnosis. J Control Release. doi:10.1016/j.jconrel.2013.06.027

    Google Scholar 

  85. Kolhar P, Anselmo AC et al (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 110(26):10753–10758

    Article  CAS  Google Scholar 

  86. Ten Hagen TL, Van Der Veen AH et al (2000) Low-dose tumor necrosis factor-alpha augments antitumor activity of stealth liposomal doxorubicin (DOXIL) in soft tissue sarcoma-bearing rats. Int J Cancer 87(6):829–837

    Article  Google Scholar 

  87. Seynhaeve AL, Hoving S et al (2007) Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 67(19):9455–9462

    Article  CAS  Google Scholar 

  88. Holback H, Yeo Y (2011) Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 28(8):1819–1830

    Article  CAS  Google Scholar 

  89. Goel S, Duda DG et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  CAS  Google Scholar 

  90. Boucher Y, Baxter LT et al (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50(15):4478–4484

    CAS  Google Scholar 

  91. Heldin CH, Rubin K et al (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  CAS  Google Scholar 

  92. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  Google Scholar 

  93. Wang J, Lu Z et al (2011) Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomed Nanotechnol Biol Med 6(9):1605–1620

    CAS  Google Scholar 

  94. Eikenes L, Bruland OS et al (2004) Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res 64(14):4768–4773

    Article  CAS  Google Scholar 

  95. Goodman TT, Olive PL et al (2007) Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomed 2(2):265–274

    CAS  Google Scholar 

  96. Wong C, Stylianopoulos T et al (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 108(6):2426–2431

    Article  CAS  Google Scholar 

  97. Cabral H, Matsumoto Y et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat Nanotechnol 6(12):815–823

    Article  CAS  Google Scholar 

  98. Huang K, Ma H et al (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5):4483–4493

    Article  CAS  Google Scholar 

  99. Huo S, Ma H et al (2013) Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73(1):319–330

    Article  CAS  Google Scholar 

  100. Daniels TR, Delgado T et al (2006) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121(2):159–176

    Article  CAS  Google Scholar 

  101. Daniels TR, Delgado T et al (2006) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158

    Article  CAS  Google Scholar 

  102. Hadjipanayis CG, Machaidze R et al (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312

    Article  CAS  Google Scholar 

  103. Lu W, Xiong C et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15(3):876–886

    Article  CAS  Google Scholar 

  104. Lundqvist M, Stigler J et al (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509

    Article  CAS  Google Scholar 

  105. Wagstaff KM, Jans DA (2009) Importins and beyond: non-conventional nuclear transport mechanisms. Traffic 10(9):1188–1198

    Article  CAS  Google Scholar 

  106. Chan CK, Senden T et al (2000) Supramolecular structure and nuclear targeting efficiency determine the enhancement of transfection by modified polylysines. Gene Therapy 7(19):1690–1697

    Article  CAS  Google Scholar 

  107. Boddapati SV, D'Souza GG et al (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8(8):2559–2563

    Article  CAS  Google Scholar 

  108. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Del Rev 59(8):748–758

    Article  CAS  Google Scholar 

  109. Terlecky SR, Koepke JI (2007) Drug delivery to peroxisomes: employing unique trafficking mechanisms to target protein therapeutics. Adv Drug Del Rev 59(8):739–747

    Article  CAS  Google Scholar 

  110. Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59(8):718–728

    Article  CAS  Google Scholar 

  111. Canovi M, Lucchetti J et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12(12):16420–16432

    Article  CAS  Google Scholar 

  112. Jedlovszky-Hajdú A, Bombelli FB et al (2012) Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 28(42):14983–14991

    Article  CAS  Google Scholar 

  113. Thielbeer F, Johansson EMV et al (2013) Influence of spacer length on the cellular uptake of polymeric nanoparticles. Macromol Biosci 13(6):682–686

    Article  CAS  Google Scholar 

  114. Natte K, Friedrich JF et al (2013) Impact of polymer shell on the formation and time evolution of nanoparticle–protein corona. Colloids Surf B Biointerfaces 104:213–220

    Article  CAS  Google Scholar 

  115. Laurent S, Burtea C et al (2013) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interface Sci 392:431–445

    Article  CAS  Google Scholar 

  116. Nienhaus GU, Maffre P, Nienhaus K (2013) Studying the protein corona on nanoparticles by FCS. Methods Enzymol 519:115–137

    Article  CAS  Google Scholar 

  117. Wang J, Jensen UB et al (2011) Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett 11(11):4985–4991

    Article  CAS  Google Scholar 

  118. Martin S, Manuela S-B et al (2013) Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 24(26):265103

    Article  CAS  Google Scholar 

  119. Jansch M, Stumpf P et al (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428(1–2):125–133

    Article  CAS  Google Scholar 

  120. Freese C, Uboldi C, Gibson MI et al (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9:23

    Article  CAS  Google Scholar 

  121. Bimbo LM, Sarparanta M et al (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4(10):3184–3192

    Article  CAS  Google Scholar 

  122. Calzolai L, Franchini F et al (2010) Protein–nanoparticle interaction: identification of the ubiquitin–gold nanoparticle interaction site. Nano Lett 10(8):3101–3105

    Article  CAS  Google Scholar 

  123. Goy-López S, Juárez J et al (2012) Physicochemical characteristics of protein–NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28(24):9113–9126

    Article  CAS  Google Scholar 

  124. Zheng Q, Yang H et al (2013) The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother. doi:10.1016/j.biopha.2013.04.003

    Google Scholar 

  125. Godugu C, Patel AR et al (2013) Inhalation delivery of telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release. doi:10.1016/j.jconrel.2013.06.036

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Baldelli Bombelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sherwood, V., Di Silvio, D., Baldelli Bombelli, F. (2013). Nanoscopic Agents in a Physiological Environment: The Importance of Understanding Their Characteristics. In: Pan, D. (eds) Personalized Medicine with a Nanochemistry Twist. Topics in Medicinal Chemistry, vol 20. Springer, Cham. https://doi.org/10.1007/7355_2013_36

Download citation

Publish with us

Policies and ethics