Skip to main content

Phosphonated Nucleoside Analogues as Antiviral Agents

  • Chapter
  • First Online:
Therapy of Viral Infections

Abstract

The present review is focused on the description of synthesis and antiviral activities of both acyclic and carbocyclic nucleoside phosphonates, endowed with an antiviral potential. Despite the outstanding results in antiviral therapy of acyclovir and azidothymidine, a major drawback concerning the use of nucleoside analogues (NA) is the retention of their stability following triphosphorylation within the host cell. The instability of the phosphate forms of NA has been, at least partially, overcome by the introduction of phosphate groups in the molecular structure. This approach gives rise to two main classes of compounds endowed with ascertained or potential antiviral activity, such as acyclic nucleoside phosphonates (ANP) and phosphonated carbocyclic nucleosides (PCN). Regarding ANP, a higher affinity for HIV reverse transcriptase (RT), with respect to NA, and the potent inhibition of HIV and hepatitis B virus (HBV) have been reported for some of them. Regarding PCN, some phosphonated cyclopropyl and cyclopentyl carbanucleosides, characterized by the presence of one or more phosphonic groups and by replacement of the endocyclic oxygen atom with a methylene group, showed to be good inhibitors of HBV and HIV infection. Another class of PCN is represented by phosphonated N,O-nucleosides (PCOAN). PCOAN encompass homo phosphonated-, phosphonated- and truncated phosphonated-N,O-nucleosides. Some PCOAN have been shown to directly inhibit RT activity of both murine and human retroviruses and to block HTLV-1 infection in vitro. The flexibility of the phosphonated NA structure suggests the possibility to develop new analogues endowed with antiviral activity towards a broad range of DNA or RNA viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3TC, lamivudine:

(−)-l-3′-thia-2′,3′-dideoxycytidine

ABC, abacavir:

Cyclopentenyl-N6-cyclopropylaminopurine

ACV:

Acyclovir

adefovir:

PMEA

AdF:

(5′S)-5-fluoro-1-isoxazolidin-5-yl-1H-pyrimidine-2,4-dione

ADV:

Adefovir dipivoxil

ANP:

Acyclic nucleoside phosphonates

APC:

Apricitabine

ATL:

Adult T-cell leukemia

AZT, zidovudine:

3′-Azido-3′-deoxythymidine

BMS986001:

Festinavir

CMV:

Cytomegalovirus

d4T, stavudine:

2′,3′-Didehydro-2′,3′-dideoxythymidine

ddC, zalcitabine:

2′3′-Dideoxycytidine

ddI, didanosine:

2′3′-Dideoxynosine

ddNMP:

Dideoxynucleotide monophosphate

EBV:

Epstein–Barr virus

ETC, entecavir:

BMS-200475

Fd4AP:

5-[(6-Amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl] phosphonic acid disodium salt (50)

FPMPA:

2,6-Diaminopurine

[(−) FTC, emtricitabine]:

(−)-L5-fluoro-3′-thia-2′,3′-dideoxycytidine

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HDP:

Hexadecyloxypropyl

HAM/TSP:

HTLV-1 associated-myelopathy/tropical spastic paraparesis

HMCV:

Human cytomegalovirus

hOAT1 and hOAT3:

Human renal organic anion transporters types 1 and 3

HPMPC, cidofovir:

(S)-1-(3-Hydroxy-2-phosphonylmethoxypropyl)cytosine

HSV:

Herpes simplex virus

HTLV-1:

Human T-cell leukemia/lymphotropic virus type 1

MRP4:

Multidrug resistance protein 4

NA:

Nucleoside analogues

NNRTI:

Non-nucleoside reverse-transcriptase inhibitors

NRTI:

Nucleoside reverse-transcriptase inhibitors

ODE:

Octadecyloxyethyl

PBMC:

Peripheral blood mononuclear cells

PCN:

Phosphonated carbocyclic nucleosides

PCOAN:

Phosphonated N,O-nucleosides

PMCG:

9-[1-(Phosphonomethoxycyclopropyl) methyl] guanine

PMCG:

9-[1-(Phosphonomethoxycyclopropyl)methyl]guanine 55

PMEO-DAPy:

2,4-Diamino 6-[2-(phosphonomethoxy)ethoxy]pyridine

PMPA:

9-(2R,S)-2-phosphonylmethoxypropyl derivatives of adenine

R7128:

Mericitabine

TDF:

Tenofovir disoproxil fumarate

TPCOAN:

Truncated phosphonated N,O-nucleosides 119

VZV:

Varicella-zoster virus

References

  1. De Clercq E (2013) Selective anti-herpesvirus agents. Antivir Chem Chemother. doi:10.3851/IMP2533

  2. Mitsuya H et al (1985) 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A 82(20):7096–7100

    Article  CAS  Google Scholar 

  3. Mitsuya H, Broder S (1986) Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideoxynucleosides. Proc Natl Acad Sci U S A 83(6):1911–1915

    Article  CAS  Google Scholar 

  4. Nisole S, Saib A (2004) Early steps of retrovirus replicative cycle. Retrovirology 1:9

    Article  Google Scholar 

  5. Gao WY et al (1994) Divergent anti-human-immunodeficiency-virus activity and anabolic phosphorylation of 2',3'-dideoxynucleoside analogs in resting and activated human-cells. J Biol Chem 269(17):12633–12638

    CAS  Google Scholar 

  6. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30(2):115–133

    Article  Google Scholar 

  7. Cahn P et al (2011) Antiviral activity of apricitabine in treatment-experienced HIV-1-infected patients with M184V who are failing combination therapy. HIV Med 12(6):334–342

    Article  CAS  Google Scholar 

  8. Cahn P, Wainberg MA (2010) Resistance profile of the new nucleoside reverse transcriptase inhibitor apricitabine. J Antimicrob Chemother 65(2):213–217

    Article  CAS  Google Scholar 

  9. Saag MS (2012) New and investigational antiretroviral drugs for HIV infection: mechanisms of action and early research findings. Top Antivir Med 20(5):162–167

    Google Scholar 

  10. Razonable RR (2011) Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 86(10):1009–1026

    Article  CAS  Google Scholar 

  11. Bisacchi GS et al (1997) BMS-200475, a novel carbocyclic 2'-deoxyguanosine analog with potent and selective anti-hepatitis B virus activity in vitro. Bioorg Med Chem Lett 7(2):127–132

    Article  CAS  Google Scholar 

  12. Seifer M et al (1998) In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir. Antimicrob Agents Chemother 42(12):3200–3208

    CAS  Google Scholar 

  13. Reijnders JGP et al (2010) Antiviral effect of entecavir in chronic hepatitis B: influence of prior exposure to nucleos(t)ide analogues. J Hepatol 52(4):493–500

    Article  CAS  Google Scholar 

  14. Murakami E et al (2008) The mechanism of action of beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidme involves a second metabolic pathway leading to beta-D-2'-deoxy-2-fluoro-2'-C-methyluridine 5'-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 52(2):458–464

    Article  CAS  Google Scholar 

  15. Chiacchio U et al (2009) Stereoselective synthesis and biological evaluations of novel 3'-Deoxy-4'-azaribonucleosides as inhibitors of hepatitis C virus RNA replication. J Med Chem 52(13):4054–4057

    Article  CAS  Google Scholar 

  16. Meneghesso S et al (2012) Synthesis and biological evaluation of pyrimidine nucleoside monophosphate prodrugs targeted against influenza virus. Antiviral Res 94(1):35–43

    Article  CAS  Google Scholar 

  17. Lund KC, Peterson LL, Wallace KB (2007) Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrob Agents Chemother 51(7):2531–2539

    Article  CAS  Google Scholar 

  18. Dalakas MC et al (1990) Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med 322(16):1098–1105

    Article  CAS  Google Scholar 

  19. Dragovic G, Milic N, Jevtovic DJ (2005) Incidence of acute pancreatitis and nucleoside reverse transcriptase inhibitors usage. Int J STD AIDS 16(6):427–429

    Article  CAS  Google Scholar 

  20. Dalakas MC, Semino-Mora C, Leon-Monzon M (2001) Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2' 3'-dideoxycytidine (ddC). Lab Invest 81(11):1537–1544

    Article  CAS  Google Scholar 

  21. Venhoff N et al (2007) Mitochondrial toxicity of tenofovir, emtricitabine and abacavir alone and in combination with additional nucleoside reverse transcriptase inhibitors. Antivir Ther 12(7):1075–1085

    CAS  Google Scholar 

  22. Desai VG et al (2012) Evaluation of hepatic mitochondria and hematological parameters in zidovudine-treated B6C3F(1) mice. AIDS Res Treat 2012:317695

    Google Scholar 

  23. Matteucci C et al (2010) Inhibition of NF-κB activation sensitizes U937 cells to 3'-azido-3'-deoxythymidine induced apoptosis. Cell Death Dis 1:e81

    Article  CAS  Google Scholar 

  24. Sarafianos SG et al (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385(3):693–713

    Article  CAS  Google Scholar 

  25. Goldschmidt V, Marquet R (2004) Primer unblocking by HIV-1 reverse transcriptase and resistance to nucleoside RT inhibitors (NRTIs). Int J Biochem Cell Biol 36(9):1687–1705

    Article  CAS  Google Scholar 

  26. De Clercq E, Holý A (1985) Alkyl esters of 3-adenin-9-yl-2-hydroxypropanoic acid: a new class of broad-spectrum antiviral agents. J Med Chem 28(3):282–287

    Article  Google Scholar 

  27. De Clercq E et al (1986) A novel selective broad-spectrum anti-DNA virus agent. Nature 323(6087):464–467

    Article  Google Scholar 

  28. Holy A, Rosenberg I (1987) Stereospecific syntheses of 9-(S)-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA). Nucleic Acids Symp Ser 18:33–36

    CAS  Google Scholar 

  29. Zakirova NF et al (2004) A new approach to the synthesis of optically active alkylated adenine derivatives. Bioorg Med Chem Lett 14(12):3357–3360

    Article  CAS  Google Scholar 

  30. Beadle JR et al (2006) Synthesis and antiviral evaluation of alkoxyalkyl derivatives of 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine against cytomegalovirus and orthopoxviruses. J Med Chem 49(6):2010–2015

    Article  CAS  Google Scholar 

  31. De Clercq E et al (1987) Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res 8(5–6):261–272

    Article  Google Scholar 

  32. Krecmerova M et al (2007) Antiviral activity of triazine analogues of 1-(S)- 3-hydroxy-2-(phosphonomethoxy)propyl cytosine (cidofovir) and related compounds. J Med Chem 50(5):1069–1077

    Article  CAS  Google Scholar 

  33. Painter W et al (2012) First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrob Agents Chemother 56(5):2726–2734

    Article  CAS  Google Scholar 

  34. Tichý T et al (2011) New prodrugs of adefovir and cidofovir. Bioorg Med Chem 19(11):3527–3539

    Article  Google Scholar 

  35. Beadle JR et al (2002) Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro. Antimicrob Agents Chemother 46(8):2381–2386

    Article  CAS  Google Scholar 

  36. Lebeau I et al (2007) Inhibitory activities of three classes of acyclic nucleoside phosphonates against murine polyomavirus and primate simian virus 40 strains. Antimicrob Agents Chemother 51(6):2268–2273

    Article  CAS  Google Scholar 

  37. Balzarini J et al (1991) 9- (2rs)-3-fluoro-2-phosphonylmethoxypropyl derivatives of purines – a class of highly selective antiretroviral agents in vitro and in vivo. Proc Natl Acad Sci U S A 88(11):4961–4965

    Article  CAS  Google Scholar 

  38. Balzarini J et al (1993) Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother 37(2):332–338

    Article  CAS  Google Scholar 

  39. Heijtink RA et al (1994) Inhibitory effects of acyclic nucleoside phosphonates on human hepatitis B virus and duck hepatitis B virus infections in tissue culture. Antimicrob Agents Chemother 38(9):2180–2182

    Article  CAS  Google Scholar 

  40. Schultze LM et al (1998) Practical synthesis of the anti-HIV drug, PMPA. Tetrahedron Lett 39(14):1853–1856

    Article  CAS  Google Scholar 

  41. Scarth BJ et al (2011) Mechanism of resistance to GS-9148 conferred by the Q151L mutation in HIV-1 reverse transcriptase. Antimicrob Agents Chemother 55(6):2662–2669

    Article  CAS  Google Scholar 

  42. De Clercq E et al (2005) Antiviral potential of a new generation of acyclic nucleoside phosphonates, the 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines. Nucleosides Nucleotides Nucleic Acids 24(5–7):331–341

    Article  Google Scholar 

  43. Balzarini J et al (2002) Antiretrovirus activity of a novel class of acyclic pyrimidine nucleoside phosphonates. Antimicrob Agents Chemother 46(7):2185–2193

    Article  CAS  Google Scholar 

  44. De Clercq E (2011) The clinical potential of the acyclic (and cyclic) nucleoside phosphonates. The magic of the phosphonate bond. Biochem Pharmacol 82(2):99–109

    Article  Google Scholar 

  45. Segovia MC, Chacra W, Gordon SC (2012) Adefovir dipivoxil in chronic hepatitis B: history and current uses. Expert Opin Pharmacother 13(2):245–254

    Article  CAS  Google Scholar 

  46. Marcellin P et al (2003) Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348(9):808–816

    Article  CAS  Google Scholar 

  47. Perrillo R et al (2004) Adefovir dipivoxil added to ongoing lamivudine in chronic hepatitis B with YMDD mutant hepatitis B virus. Gastroenterology 126(1):81–90

    Article  CAS  Google Scholar 

  48. Balzarini J et al (1996) Activity of the (R)-enantiomers of 9-(2-phosphonylmethoxypropyl)-adenine and 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine against human immunodeficiency virus in different human cell systems. Biochem Biophys Res Commun 219(2):337–341

    Article  CAS  Google Scholar 

  49. Balestrieri E et al (2005) Protective effect of the acyclic nucleoside phosphonate tenofovir toward human T-cell leukemia/lymphotropic virus type 1 infection of human peripheral blood mononuclear cells in vitro. Antiviral Res 68(3):154–162

    Article  CAS  Google Scholar 

  50. Macchi B et al (2011) Susceptibility of primary HTLV-1 isolates from patients with HTLV-1-associated myelopathy to reverse transcriptase inhibitors. Viruses Basel 3(5):469–483

    Article  CAS  Google Scholar 

  51. Schooley RT et al (2002) Tenofovir DF in antiretroviral-experienced patients: results from a 48-week, randomized, double-blind study. AIDS 16(9):1257–1263

    Article  CAS  Google Scholar 

  52. Deeks SG et al (1998) Safety, pharmacokinetics, and antiretroviral activity of intravenous 9–2-(R)-(phosphonomethoxy)propyl adenine a novel anti-human immunodeficiency virus (HIV) therapy, in HIV-infected adults. Antimicrob Agents Chemother 42(9):2380–2384

    CAS  Google Scholar 

  53. Sax PE, Gallant JE, Klotman PE (2007) Renal safety of tenofovir disoproxil fumarate. AIDS Read 17(2):90–92

    Google Scholar 

  54. Birkus G, Hitchcock MJM, Cihlar T (2002) Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 46(3):716–723

    Article  CAS  Google Scholar 

  55. Cihlar T et al (2002) Tenofovir exhibits low cytotoxicity in various human cell types: comparison with other nucleoside reverse transcriptase inhibitors. Antiviral Res 54(1):37–45

    Article  CAS  Google Scholar 

  56. Cundy KC et al (1996) Pharmacokinetics, bioavailability, metabolism, and tissue distribution of cidofovir (HPMPC) and cyclic HPMPC in rats. Drug Metab Dispos 24(7):745–752

    CAS  Google Scholar 

  57. Cihlar T et al (2001) Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 20(4–7):641–648

    Article  CAS  Google Scholar 

  58. Imaoka T et al (2007) Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol 71(2):619–627

    Article  CAS  Google Scholar 

  59. Holý A et al (2002) 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J Med Chem 45(9):1918–1929

    Article  Google Scholar 

  60. Hockova D et al (2003) 5-Substituted-2,4-diamino-6–2-(phosphonomethoxy)ethoxylpyrimidines-acyc lic nucleoside phosphonate analogues with antiviral activity. J Med Chem 46(23):5064–5073

    Article  CAS  Google Scholar 

  61. Balzarini J et al (2007) Pronounced in vitro and in vivo antiretroviral activity of 5-substituted 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy] pyrimidines. J Antimicrob Chemother 59(1):80–86

    Article  CAS  Google Scholar 

  62. Balzarini J, De Clercq E, Holy A (2003) (phosphonomethoxy)Alkoxy pyrimidine derivatives having antiviral activity. Patent 2003/002,580 A1

    Google Scholar 

  63. Wainberg MA et al (1999) In vitro selection and characterization of HIV-1 with reduced susceptibility to PMPA. Antivir Ther 4(2):87–94

    CAS  Google Scholar 

  64. Margot NA et al (2002) Genotypic and phenotypic analyses of HIV-1 in antiretroviral-experienced patients treated with tenofovir DF. AIDS 16(9):1227–1235

    Article  CAS  Google Scholar 

  65. White KL et al (2002) Molecular mechanisms of resistance to human immunodeficiency virus type 1 with reverse transcriptase mutations K65R and K65R+M184V and their effects on enzyme function and viral replication capacity. Antimicrob Agents Chemother 46(11):3437–3446

    Article  CAS  Google Scholar 

  66. Cherrington JM et al (1996) Novel mutation (K70E) in human immunodeficiency virus type 1 reverse transcriptase confers decreased susceptibility to 9–2-(phosphonomethoxy)ethyl adenine in vitro. Antimicrob Agents Chemother 40(9):2212–2216

    CAS  Google Scholar 

  67. Ross L et al. (2005) Selection of the HIV-1 reverse transcriptase mutation K70E in antiretroviral-naive subjects treated with tenfovir/abacavir/lamivudine therapy. In: 14th International HIV drug resistance workshop, Quebec City, 7–11 Jun 2005. Source: Antiviral Therapy 10, Suppl 1. pp s102–s102

    Google Scholar 

  68. Sluis-Cremer N et al (2007) Molecular mechanism by which the K70E mutation in human immunodeficiency virus type 1 reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 51(1):48–53

    Article  CAS  Google Scholar 

  69. Mackman RL et al (2010) Discovery of GS-9131: design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorg Med Chem 18(10):3606–3617

    Article  CAS  Google Scholar 

  70. Cihlar T et al (2009) Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother 53(1):150–156

    Article  CAS  Google Scholar 

  71. Ray AS et al (2008) Intracellular metabolism of the nucleotide prodrug GS-9131, a potent anti-human immunodeficiency virus agent. Antimicrob Agents Chemother 52(2):648–654

    Article  CAS  Google Scholar 

  72. Cihlar T et al (2008) Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother 52(2):655–665

    Article  CAS  Google Scholar 

  73. Wang PY, Schinazi RF, Chu CK (1998) Asymmetric synthesis and anti-HIV activity of 1-carbocyclic 2 ',3 '-didehydro-2 ',3 '-dideoxyadenosine. Bioorg Med Chem Lett 8(13):1585–1588

    Article  CAS  Google Scholar 

  74. Choi JR et al (2004) A novel class of phosphonate nucleosides. 9-[(1-phosphonomethoxycyclopropyl)methyl]guanine as a potent and selective anti-HBV agent. J Med Chem 47(11):2864–2869

    Article  CAS  Google Scholar 

  75. Yan Z et al (2006) Synthesis of methylenecyclopropane analogues of antiviral nucleoside phosphonates. Tetrahedron 62(11):2608–2615

    Article  CAS  Google Scholar 

  76. Li C, Zemlicka J (2007) Synthesis of "reversed" methylenecyclopropane analogues of antiviral phosphonates. Nucleosides Nucleotides Nucleic Acids 26(1):111–120

    Article  Google Scholar 

  77. Kim JW, Ko OH, Hong JH (2005) Synthesis and antiviral evaluation of novel methyl branched cyclopropyl phosphonic acid nucleosides. Arch Pharm Res 28(7):745–749

    Article  CAS  Google Scholar 

  78. Kim A, Hong JH, Oh CH (2006) Synthesis and anti-HCMV activity of novel cyclopropyl phosphonic acid nucleosides. Nucleosides Nucleotides Nucleic Acids 25(12):1399–1406

    Article  CAS  Google Scholar 

  79. Li H et al (2011) Synthesis of novel difluoro-cyclopropyl guanine nucleosides and their phosphonate analogues as potent antiviral agents. Nucleosides Nucleotides Nucleic Acids 30(11):945–960

    Article  CAS  Google Scholar 

  80. Boojamra CG et al (2009) Design, synthesis, and anti-HIV activity of 4'-modified carbocyclic nucleoside phosphonate reverse transcriptase inhibitors. Bioorg Med Chem 17(4):1739–1746

    Article  CAS  Google Scholar 

  81. Yoo JC et al (2010) Synthesis and anti-HIV activity of novel 4'-Ethyl-5'-norcarbocyclic adenosine phosphonic acid analogues. Bull Korean Chem Soc 31(11):3348–3352

    Article  CAS  Google Scholar 

  82. Li H et al (2010) Synthesis of SATE prodrug of 6'-fluoro-6'-methyl-5'-noradenosine nucleoside phosphonic acid as a new class of anti-HIV agent. Bull Korean Chem Soc 31(9):2514–2518

    Article  CAS  Google Scholar 

  83. Yuen M-F et al (2006) A randomized placebo-controlled, dose-finding study of oral LB80380 in HBeAg-positive patients with chronic hepatitis B. Antivir Ther 11(8):977–983

    CAS  Google Scholar 

  84. Mulato AS, Cherrington JM (1997) Anti-HIV activity of adefovir (PMEA) and PMPA in combination with antiretroviral compounds: in vitro analyses. Antiviral Res 36(2):91–97

    Article  CAS  Google Scholar 

  85. Perigaud C et al (1996) Comments on nucleotide delivery forms. In: De Clercq R (ed) Advances in antiviral drug design, vol 2. JAI, Greenwich, pp 147–172

    Google Scholar 

  86. Chiacchio U et al (2004) Diastereoselective synthesis of homo-N,O-nucleosides. Tetrahedron 60(2):441–448

    Article  CAS  Google Scholar 

  87. Saita MG et al (2003) Diastereo- and enantioselective synthesis of 1'-C-branched N,O-nucleosides. Nucleosides Nucleotides Nucleic Acids 22(5–8):739–742

    Article  CAS  Google Scholar 

  88. Chiacchio U et al (2003) Enantioselective synthesis of N,O-psiconucleosides. Tetrahedron Asymmetry 14(16):2419–2425

    Article  CAS  Google Scholar 

  89. Chiacchio U et al (2005) Synthesis of phosphonated carbocyclic 2'-oxa-3'-aza-nucleosides: novel inhibitors of reverse transcriptase. J Med Chem 48(5):1389–1394

    Article  CAS  Google Scholar 

  90. Chiacchio U et al (2007) Phosphonated carbocyclic 2'-oxa-3'-azanucleosides as new antiretroviral agents. J Med Chem 50(15):3747–3750

    Article  CAS  Google Scholar 

  91. Piperno A et al (2010) Synthesis of C-4'truncated phosphonated carbocyclic 2'-oxa-3'-azanucleosides as antiviral agents. J Org Chem 75(9):2798–2805

    Article  CAS  Google Scholar 

  92. Chiacchio U et al (2006) Synthesis and biological evaluation of phosphonated carbocyclic 2'-oxa-3'-aza-nucleosides. Bioorg Med Chem 14(4):955–959

    Article  CAS  Google Scholar 

  93. Sigel H (2004) Metal ion complexes of antivirally active nucleotide analogues. Conclusions regarding their biological action. Chem Soc Rev 33(3):191–200

    Article  CAS  Google Scholar 

  94. Chiacchio U et al (2001) Diastereoselective synthesis of N,O-psiconucleosides via 1,3-dipolar cycloadditions. Tetrahedron Lett 42(9):1777–1780

    Article  CAS  Google Scholar 

  95. Chiacchio U et al (2002) Diastereoselective synthesis of N,O-psiconucleosides, a new class of modified nucleosides. Eur J Org Chem 7:1206–1212

    Article  Google Scholar 

  96. Chiacchio U et al (2006) Enantioselective synthesis of homocarbocyclic-2'-oxo-3'-azanucleosides. Tetrahedron 62(6):1171–1181

    Article  CAS  Google Scholar 

  97. Romeo R et al (2012) Truncated phosphonated C-1'-branched N,O-nucleosides: a new class of antiviral agents. Bioorg Med Chem 20(11):3652–3657

    Article  CAS  Google Scholar 

  98. Balestrieri E et al (2008) Effect of phosphonated carbocyclic 2'-oxa-3'-aza-nucleoside on human T-cell leukemia virus type 1 infection in vitro. Antimicrob Agents Chemother 52(1):54–64

    Article  CAS  Google Scholar 

  99. Lairmore MD, Haines R, Anupam R (2012) Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr Opin Virol 2(4):474–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Macchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macchi, B. et al. (2013). Phosphonated Nucleoside Analogues as Antiviral Agents. In: Diederich, W., Steuber, H. (eds) Therapy of Viral Infections. Topics in Medicinal Chemistry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2013_28

Download citation

Publish with us

Policies and ethics