Skip to main content

Genomic Analysis of the Root-Knot Nematode Genome

  • Chapter
  • First Online:
Plant Cell Monographs

Abstract

Plant-parasitic nematodes cause substantial agricultural damage throughout the world, triggering as much as $100 billion in economic losses per year. Measures to control these pests are limited and include the use of agrichemicals such as methyl bromide (now available only on a “critical use exemption” basis) or the planting of crops that have natural resistance. However, the availability of chemical pesticides is decreasing and host resistance is limited. A better understanding of the complex interaction between plant-parasitic nematodes and their hosts is needed to develop new control strategies (including new chemicals). The vast majority of the damage is caused by sedentary endoparasitic forms in the order Tylenchida, which fall into clade IV of the Nematoda (Blaxter et al. 1998). In particular, the root-knot nematodes (Meloidogyne spp.), soybean cyst nematodes (Heterodera glycines), and potato cyst (Globodera spp.) nematodes are devastating parasites of plant roots.

In this chapter, we will present a brief overview of the status of genomic research on root-knot nematodes. Root-knot nematodes, in particular M. hapla, are emerging as a model species for research on sedentary endoparasites. We will discuss the impact of root-knot nematodes on the host plant and focus on genomic approaches to unraveling the complex nature of the interaction from the nematode’s perspective. In addition to the complete genome sequence of M. hapla, a complete genome sequence has simultaneously been obtained for the aneuploid species, M. incognita (Abad, personal communication). In the future, comparison between these two genomes will provide fundamental clues as to the evolution and biology of root-knot nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  ADS  CAS  Google Scholar 

  • Barthels N, van der Lee FM, Klap J, Goddijn OJ, Karimi M, Puzio P, Grundler FM, Ohl SA, Lindsey K, Roberson L, Robertson WM, Van Montagu M, Gheysen G, Sijmons PC (1997) Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures. Plant Cell 9:2119–2134

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or C, Kapulnik Y, and Koltai H (2005) A broad characterization of the transcriptional profile of the tomato response to the plant parasitic root knot nematode. European Journal of Plant Pathology 111:181–192

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heinje G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Bio 340:783–795

    Article  CAS  Google Scholar 

  • Berg RH, Fester T, Taylor CG (2008) Development of the root-knot nematode feeding cell. Plant Cell Monogr., doi:10.1007/7089_2008_30

    Google Scholar 

  • Bird DM, Opperman CH (1998) Caenorhabditis elegans.: a genetic guide to parasitic nematode biology J Nematol 30:299–308

    CAS  PubMed  Google Scholar 

  • Bird DM, Wilson MA (1994) DNA sequence and expression analysis of root-knot nematode-elicited giant-cell transcripts. Mol Plant Microbe Interact 7:419–424

    Article  PubMed  CAS  Google Scholar 

  • Bird DM, Opperman CH, Jones SJM, Baillie DL (1999) The Caenorhabditis elegans. genome: a guide in the post genomics age Annu Rev Phytopathol 37:247–265

    Article  PubMed  CAS  Google Scholar 

  • Bird DM, Clifton SW, Kepler T, Kieber JJ, Thorne J, Opperman CH (2002) Genomic dissection of a nematode-plant interaction: a tool to study plant biology. Plant Physiol 129:394–395

    Article  CAS  Google Scholar 

  • Bird DMcK, Opperman CH, Williamson VM (2008) Plant infection by root-knot nematode. Plant Cell Monogr., doi:10.1007/7089_2008_31

    Google Scholar 

  • Blaxter M, Bird DM (1997) Parasitic nematodes. In: Riddle DL, Blumenthal T, Meyer BJ Priess JR (eds)C. elegans. II. Parasitic nematodesCold Spring Harbor Laboratory, Cold Spring Harbor, pp 851–878

    Google Scholar 

  • Blaxter ML, DeLey P, Garey J, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK(1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  ADS  CAS  Google Scholar 

  • Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C, (2002) The Brugia malayi. genome project: expressed sequence tags and gene discovery Trans R Soc Trop Med Hyg ISO 96:7–17The Filarial Genome Project

    Article  Google Scholar 

  • Boucher, GLambshead PJD (1994) Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep-sea regions. Conserv Biol 9:1594–1604

    Article  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Cassada RC, Russell RL (1975) The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46:326–342

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno P, Esparrago G, Abad P, Leroy F, Bongiovanni M (1995) Satellite DNA as a target for PCR-specific detection of the plant-parasitic nematode Meloidogyne hapla. Curr Genet 28:566–570

    Article  PubMed  CAS  Google Scholar 

  • Daub J, Loukas A, Pritchard DI, Blaxter M (2000) A survey of genes expressed in adults of the human hookworm, Necator americanus. Parasitology 120:171–184

    Article  PubMed  CAS  Google Scholar 

  • Davis ELHussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, Abad P (2000) Nematode parasitism genes. Annu Rev Phytopath 38:341–372

    Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2008) Parasitism genes: what they reveal about parasitism. Plant Cell Monogr., doi:10.1007/7089_2008_29

    Google Scholar 

  • de Almeida-Engler J, de VleesschauwerV, Burssens S, Celenza JLJr, Inze D, Van MontaguM, Engler G, Gheyson G(1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–807

    Article  PubMed  CAS  Google Scholar 

  • de Boer, JMSmant G, Goverse A, Davis EL, Overmars HA, Pomp H, van Gent-Pelzer M, Zilverentant JF, Stokkermans JP, Hussey RS, Gommers FJ, Bakker J, Schots A (1996) Secretory granule proteins from the subventral esophageal glands of the potato cyst nematode identified by monoclonal antibodies to a protein fraction from second-stage juveniles. Mol Plant Microbe Interact 9:39–46

    Article  PubMed  CAS  Google Scholar 

  • Favery B, Complainville A, Vinardell JM, Lecomte P, Vaubert D, Mergaert P, Kondorosi A, Crespi M, Abad P (2002) The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic nematode interactions in Medicago truncatula. Mol Plant Microbe Interact 15:1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Fuchs AG (1915) Die Naturgeschichte der Nematoden und einiger anderer Parasiten. I. Des Ips typographus L. 2. Des Hylobius abietis L. Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere, Jena 38:109–122

    Google Scholar 

  • Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrin-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gheysen G, Mitchum MG (2008) Molecular insights in the susceptible plant response to nematode infection. Plant Cell Monogr., doi:10.1007/7089_2008_35

    Google Scholar 

  • Gheyson G, Fenoll C(2002) Gene expression in nematode feeding sites. Annu Rev Phytopath 40:191–219

    Article  CAS  Google Scholar 

  • Goellner, MWang X, Davis EL (2001) Endo-beta-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–55

    Article  PubMed  CAS  Google Scholar 

  • Hammes UZ, Schachtman DP, Berg RH, Nielson E, Koch W, McIntyre LM, Taylor CG (2005) Nematode-induced changes of transporter gene expression in Arabidopsis. roots Mol Plant Microbe Interact 18:(12)1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Ithal, NRecknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG (2007) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20:293–305

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette M, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  PubMed  CAS  Google Scholar 

  • Khan, RAlkharouf N, Beard H, MacDonald M, Chouikha I, Meyer S, Grefenstette J, Knap H, Matthews B (2004) Microarray analysis of gene expression in soybean roots susceptible to the soybean cyst nematode two days post invasion. J Nematol 36:241–248

    CAS  PubMed  Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525

    Article  PubMed  ADS  CAS  Google Scholar 

  • Koltai H, Bird DM (2000) Epistatic repression of PHANTASTICA. and class I KNOTTED genes is uncoupled in tomato Plant J 22:455–459

    Article  PubMed  CAS  Google Scholar 

  • Lambert KK, Allen KD, Sussex IM (1999) Cloning and characterization of an esophageal gland specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Mol Plant Microbe Interact 12:328–336

    Article  PubMed  CAS  Google Scholar 

  • Li L, Fester T, Taylor CG (2008) Transcriptomic analysis of nematode infestation. Plant Cell Monogr., doi:10.1007/7089_2008_36

    Google Scholar 

  • Liu, QLThomas VP, Williamson VM (2007) Meiotic parthenogenesis in a root-knot nematode results in rapid genomic homozygosity. Genetics 176:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Mallatt, JWinchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301

    PubMed  CAS  Google Scholar 

  • McCarter, JPAbad P, Jones J, Bird DM (2000) Rapid gene discovery in plant-parasitic nematodes via. expressed sequence tags Nematology 2:719–731

    Article  CAS  Google Scholar 

  • McCarter, JPClifton SW, Bird DM, Waterston R (2002) Nematode gene sequences; update for march 2002. J Nematol 34:71–74

    PubMed  Google Scholar 

  • McCarter JP, Mitreva MD, Martin J, Dante M, Wylie T, Rao U, Pape D, Bowers Y, Theising B, Murphy C, Kloek AP, Chiapelli B, Clifton SW, Bird DM, Waterston R (2003) Analysis and functional classification of transcripts from the root-knot nematode Meloidogyne incognita.Genome Biol 4:R26.1–R26.19

    Article  Google Scholar 

  • Mitreva M, McCarter JP, Martin J, Dante M, Wylie T, Chiapelli B, Pape D, Clifton SW, Nutman TB, Waterston RH (2004) Comparative genomics of gene expression in the parasitic and free-living nematodes Strongyloides stercoralis and Caenorhabditis elegans. Genome Res 14:209–220

    Article  PubMed  Google Scholar 

  • Mitreva, MBlaxter ML, Bird DM, McCarter JP (2005) Comparative genomics in nematodes. Trends Genet 21:573–581

    Article  PubMed  CAS  Google Scholar 

  • Niebel A, de Almeida-Englar J, Tire C, Engler G, Van Montagu M, Gheysen G (1993) Induction patterns of an extension gene in tobacco upon nematode infection. Plant Cell 5:1697–1710

    Article  PubMed  CAS  Google Scholar 

  • Niebel A, de Almeida-Engler J, Hemerly A, Ferriera P, Inze D, Van Montagu M, Gheyson G (1996) Induction of cdc2A. and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation Plant J 10:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Opperman, CHBird DM (1998) The soybean cyst nematode, Heterodera glycines.: a genetic model system for the study of plant-parasitic nematodes Cur Opin Plant Biol 1:342–346

    Article  CAS  Google Scholar 

  • Page AP, Johnstone IL (2007) The cuticle. In: WormBook (ed) The C. elegans research community. WormBook, doi/10.1895/wormbook.1.138.1, http://www.wormbook.org

  • Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nature Genet 36:1259–1267

    Article  PubMed  Google Scholar 

  • Popeijus, MBlok VC, Bakker E, Phillips MS, Smant G, Jones JT (2000) Analysis of genes expressed in second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida using the expressed sequence tag approach. Nematology 2:567–574

    Article  CAS  Google Scholar 

  • Puthoff, DPNettleton D, Rodermel SR, Baum TJ (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J 33:911–921

    Article  PubMed  CAS  Google Scholar 

  • Riddle, DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds)C. elegans. IICold Spring Harbor Laboratory, Cold Spring Harbor, pp 739–768

    Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. (1997). C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. pp 1222

    Google Scholar 

  • Rosso, MNFavery B, Piotte C, Arthaud L, De Boer JM, Hussey RS, Bakker J, Baum TJ, Abad P (1999) Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita. and expression analysis during plant parasitism Mol Plant Microbe Interact 12:585–591

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology 94:441–446

    Article  PubMed  CAS  Google Scholar 

  • Sasser JN 1980Root-knot nematodes: a global menace to crop production. Plant Dis 64:36–41

    Article  Google Scholar 

  • Schaff, JEScholl EB, Smith CP, Nielsen DL, Bird DM (2007) Transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi. -mediated nematode resistance Plant Physiol 144:1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Scholl, EHThorne JL, McCarter JP, Bird DM (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39.1–R39.12

    Article  Google Scholar 

  • Sijmons PC, Cardol EF, Goddijn OJM (1994) Gene activities in nematode-induced feeding structures. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant microbe interactionsKluwer, Dordrecht, pp 333–338

    Google Scholar 

  • Smant, GStokkermans JPWG, Yan YT, de Boer JM, Baum TJ, Wang XH, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911

    Article  PubMed  ADS  CAS  Google Scholar 

  • Stein, LDBao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae.: a platform for comparative genomics PLoS Biol 1:E45

    Article  PubMed  CAS  Google Scholar 

  • Tetteh KK, Loukas A, Tripp C, Maizels RM (1999) Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis. by an expressed sequence tag strategy Infect Immun 67:4771–4779

    PubMed  CAS  Google Scholar 

  • Thiery MG, Green AE, Bird DM (1999) The Lycopersicon esculentum. orthologue of PHANTASTICA/rough sheath2 is expressed in feeding sites induced by root-knot nematodes Plant Physiol 120:934

    Google Scholar 

  • Vercauteren I, De Groodt R, de Almeida Engler J, Gheyson G (2002) An Arabidopsis thaliana. pectin acetylesterase gene is up-regulated in nematode feeding sites induced by root-knot and cyst nematodes Mol Plant Microbe Interact 15:404–407

    Article  PubMed  CAS  Google Scholar 

  • Wood WB(1988) The nematode Caenorhabditis elegans. CSHL, Cold Spring Harbor, 667 pp

    Google Scholar 

  • Yan YT, Smant G, Stokkermans J, Qin L, Helder J, Baum T, Schots A, Davis E (1998) Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene 220:61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank CSREES for funding the acquisition of the M. hapla genome sequence, all members of the CBNP both past and present, and our colleagues at the Joint Genome Institute, Walnut Creek, CA for invaluable collaboration and support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Schaff .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Opperman, C.H., Bird, D.M., Schaff, J.E. (2008). Genomic Analysis of the Root-Knot Nematode Genome. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_37

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics