Skip to main content

Microtubules and the Control of Wood Formation

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

Cell walls are reinforced by cellulose microfibrils, which resist cell expansion in response to turgor pressure. The orientation of cellulose microfibrils in the primary walls of cambial derivatives determines the direction of cell expansion, thereby controlling the shape and size of secondary xylem cells in trees. In addition, the texture of the secondary wall, in particular the orientation of cellulose microfibrils in the middle layer of the secondary wall (S2 layer), is closely related to the physical properties of secondary xylem cells. Thus, the orientation of cellulose microfibrils in the secondary walls determines the mechanical properties of wood. In addition, the secondary xylem cells form modifications of the cell wall, such as pits and perforations, by the localized deposition of cellulose microfibrils. These pits and perforations provide a pathway for liquid flow between secondary xylem cells. Thus, the ability to control the orientation and localization of cellulose microfibrils in the secondary wall might allow us to change the quality of wood and its products. There is considerable evidence that the dynamics of cortical microtubules are closely related to the orientation and localization of newly deposited cellulose microfibrils in the differentiating secondary xylem cells. Thus, manipulation of cortical microtubules would allow control of the texture of cell wall, with a consequent improvement of wood quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Funada R (2005) The orientation of cellulose microfibrils in the cell walls of tracheids in conifer: a model based on observations by field emission-scanning electron microscopy. IAWA J 26:161–174

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1991) FE-SEM observation on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull ns 12:431–438

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1992) Microfibrillar orientation of the innermost surface of conifer tracheid walls. IAWA Bull ns 13:411–417

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1994) A scanning electron microscopic study of changes in microtubule distributions during secondary wall formation in tracheids. IAWA J 15:185–189

    Google Scholar 

  • Abe H, Funada R, Imaizumi H, Ohtani J, Fukazawa K (1995a) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197:418–421

    CAS  Google Scholar 

  • Abe H, Funada R, Ohtani J, Fukazawa K (1995b) Changes in the arrangement of microtubules and microfibrils in differentiating conifer tracheids during the expansion of cells. Ann Bot 75:305–310

    Google Scholar 

  • Abe H, Funada R, Ohtani J, Fukazawa K (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11:328–332

    Google Scholar 

  • Awano T, Takabe K, Fujita M, Daniel G (2000) Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79

    CAS  Google Scholar 

  • Bamber RK, Fukazawa K (1985) Sapwood and heartwood: a review. For Abst 46:567–580

    Google Scholar 

  • Bailey IW, Vestal MR (1937) The orientation of cellulose in the secondary wall of tracheary cells. J Arnold Arbor 18:185–195

    Google Scholar 

  • Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood. Holzforschung 18:146–156

    Google Scholar 

  • Barnett JR (1981) Secondary xylem cell development. In: Barnett JR (ed) Xylem cell development. Castle House Publications, Tunbridge Wells, pp 47–95

    Google Scholar 

  • Barnett JR, Harris JM (1975) Early stages of bordered pit formation in radiata pine. Wood Sci Tech 9:233–241

    Google Scholar 

  • Barnett JR, Miller H (1994) The effect of applied heat on graft union formation in dormant Picea sitchensis (Bong.) Carr. J Exp Bot 45:135–143

    Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    PubMed  CAS  Google Scholar 

  • Bauch J, Liese W, Scholz F (1968) Über die Entwicklung und stoffliche Zusammensetzung der Hoftüpfelmembranen von Längstracheiden in Coniferen. Holzforschung 22:144–153

    Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007) Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata). Ann Bot 100:439–447

    PubMed  Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Nilsson T (2003) The structural organization of the S1 cell wall layer of Norway spruce tracheids. IAWA J 24:27–40

    Google Scholar 

  • Burk DH, Ye ZH (2002) Alternation of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14:2145–2160

    PubMed  CAS  Google Scholar 

  • Catesson AM (1990) Cambial cytology and biochemistry. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, pp 63–112

    Google Scholar 

  • Catesson AM (1994) Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int J Plant Sci 155:251–261

    CAS  Google Scholar 

  • Catesson AM, Funada R, Robert-Baby D, Quinet-Szély M, Chu-Bâ J, Goldberg R (1994) Biochemical and cytochemical cell wall changes across the cambial zone. IAWA J 15:91–101

    Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Tech 2:268–278

    Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For Prod J 44:43–48

    Google Scholar 

  • Chaffey N (2002a) Why is there so little research into the cell biology of the secondary vascular system of trees? New Phytol 153:213–223

    Google Scholar 

  • Chaffey N (2002b) Immunolocalisation of the cytoskeleton in the secondary vascular system of angiosperm trees and its visualization using epifluorescence microscopy. In: Chaffey N (ed) Wood formation in trees: cell and molecular biology techniques. Taylor and Francis Publisher, London, pp 113–142

    Google Scholar 

  • Chaffey N, Barlow P (2001) The cytoskeleton facilitates a three-dimensional symplastic continuum in the long-lived ray and axial parenchyma cells of angiosperm trees. Planta 213:811–823

    PubMed  CAS  Google Scholar 

  • Chaffey N, Barlow P (2002) Myosin, microtubules, and microfilaments: co-operation between cytoskeleton components during cambial cell division and secondary vascular differentiation in trees. Planta 202:526–536

    Google Scholar 

  • Chaffey N, Barlow P, Barnett J (1997a) Cortical microtubules rearrange during differentiation of vascular cambial derivatives, microfilaments do not. Trees 11:333–341

    Google Scholar 

  • Chaffey NJ, Barnett JR, Barlow PW (1997b) Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements of Aesculus hippocastanum L. (Hippocastanaceae): a correlative study using electron microscopy and indirect immunofluorescence microscopy. Protoplasma 197:64–75

    Google Scholar 

  • Chaffey NJ, Barnett JR, Barlow PW (1997c) Visualization of the cytoskeleton within the secondary vascular system of hardwood species. J Microsc 187:77–84

    PubMed  CAS  Google Scholar 

  • Chaffey N, Barnett J, Barlow P (1997d) Endomembranes, cytoskeleton, and cell wall: aspects of the ultrastructure of the vascular cambium of taproots of Aesculus hippocastanum L. (Hippocastanaceae). Int J Plant Sci 158:97–109

    Google Scholar 

  • Chaffey N, Barnett J, Barlow P (1999) A cytoskeletal basis for wood formation in angisosperm trees: the involvement of cortical microtubules. Planta 208:19–30

    CAS  Google Scholar 

  • Chaffey N, Barlow P, Barnett J (2000a) Structure-function relationships during secondary phloem development in an angiosperm tree, Aesculus hippocastanum: microtubules and cell walls. Tree Physiol 20:777–786

    PubMed  Google Scholar 

  • Chaffey N, Barlow P, Barnett J (2000b) A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments. Planta 210:890–896

    PubMed  CAS  Google Scholar 

  • Chaffey N, Barlow P, Sundberg B (2002) Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula x P. tremuloides) as the model species. Tree Physiol 22:239–249

    PubMed  CAS  Google Scholar 

  • Chan J, Jensen C, Jensen LCW, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filametous cross-bridges between microtubules. Proc Natl Acad Sci USA 96:14931–14936

    PubMed  CAS  Google Scholar 

  • Cronshaw J (1965) Cytoplasmic fine structure and cell wall development in differentiating xylem elements. In: Côté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, pp 99–124

    Google Scholar 

  • Dixit R, Cry R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–3284

    PubMed  CAS  Google Scholar 

  • Donaldson LA (1996) Effect of physiological age and site on microfibril angle in Pinus radiata. IAWA J 17:421–429

    Google Scholar 

  • Donaldson LA, Burdon RD (1995) Clonal variation and repeatability of microfibril angle in Pinus radiata. New Zeal J For Sci 25:164–174

    Google Scholar 

  • Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees 19:644–653

    Google Scholar 

  • Dunning CE (1968) Cell-wall morphology of longleaf pine latewood. Wood Sci 1:65–76

    Google Scholar 

  • Dunning CE (1969) The structure of longleaf pine latewood 1. Cell wall morphology and the effect of alkaline extraction. Tappi 52:1326–1335

    CAS  Google Scholar 

  • Evert RF, Deshpande BP (1970) An ultrastructural study of cell division in the cambium. Am J Bot 57:942–961

    Google Scholar 

  • Falconer MM, Seagull RW (1985) Immunofluorescent and calcofluor white staining of developing tracheary elements in Zinnia elegans L. suspension cultures. Protoplasma 125:190–198

    Google Scholar 

  • Farrar JJ, Evert RF (1997) Ultrastructure of cell division in fusiform cells of the vascular cambium of Robinia pseudoacacia. Trees 11:203–215

    Google Scholar 

  • Fengel D (1972) Structure and function of the membrane in softwood bordered pits. Holzforschung 26:1–9

    Article  Google Scholar 

  • Fujii T, Harada H, Saiki H (1977) Ultrastructure of expanding ray parenchyma cell wall in poplar (Populus koreana Rehd.). Bull Kyoto Univ For 49:127–131

    Google Scholar 

  • Fujita M, Saiki H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers. Mokuzai Gakkaishi 20:147–156

    Google Scholar 

  • Fujita M, Saiki H, Harada H (1978) The secondary wall formation of compression wood tracheids 3: Cell organelles in relation to cell wall thickening and lignification. Mokuzai Gakkaishi 24:353–361

    Google Scholar 

  • Fukuda H (1994) Redifferentiation of single mesophyll cells into tracheary elements. Int J Plant Sci 155:262–271

    CAS  Google Scholar 

  • Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325

    PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Mol Cell Biol 5:379–391

    CAS  Google Scholar 

  • Fukuda H, Komamine A (1980) Establishment of an experimental system for the tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Differ 31:9–16

    Google Scholar 

  • Funada R (2000) Control of wood structure. In: Nick P (ed) Plant microtubules. Springer Verlag, Berlin, pp 51–81

    Google Scholar 

  • Funada R (2002) Immunolocalisation and visualisation of the cytoskeleton in gymnosperms using confocal laser scanning microscopy (CLSM). In: Chaffey N (ed) Wood formation in trees: cell and molecular biology techniques. Taylor and Francis Publisher, London, pp 143–157

    Google Scholar 

  • Funada R, Catesson AM (1991) Partial cell wall lysis and the resumption of meristematic activity in Fraxinus excelsior cambium. IAWA Bull ns 12:439–444

    Google Scholar 

  • Funada R, Abe H, Furusawa O, Imaizumi H, Fukazawa K, Ohtani J (1997) The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol 38:210–212

    CAS  Google Scholar 

  • Funada R, Furusawa O, Shibagaki M, Miura H, Miura T, Abe H, Ohtani J (2000) The role of cytoskeleton in secondary xylem differentiation in conifers. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publisher, Oxford, pp 255–264

    Google Scholar 

  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001a) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    CAS  Google Scholar 

  • Funada R, Miura H, Shibagaki M, Furusawa O, Miura T, Fukatsu E, Kitin P (2001b) Involvement of localized cortical microtubules in the formation of modified structure of wood. J Plant Res 114:491–497

    Google Scholar 

  • Funada R, Kubo T, Sugiyama T, Fushitani M (2002) Changes in levels of endogenous plant hormones in cambial regions of stems of Larix kaempferi at the onset of cambial activity in springtime. J Wood Sci 48:75–80

    CAS  Google Scholar 

  • Furusawa O, Funada R, Murakami Y, Ohtani J (1998) The arrangement of cortical microtubules in compression wood tracheids of Taxus cuspidata visualized by confocal laser microscopy. J Wood Sci 44:230–233

    Google Scholar 

  • Gardiner JC, Taylor NG, Turner SR (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–1748

    PubMed  CAS  Google Scholar 

  • Gidding TH Jr, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173:22–30

    Google Scholar 

  • Giddings TH Jr, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 85–99

    Google Scholar 

  • Goosen-de Roo L, Burggraaf PD, Libbenga KR (1983) Microfilament bundles associated with tubular endoplasmic reticulum in fusiform cells in the active cambial zone of Fraxinus excelsior L. Protoplasma 116:204–208

    Google Scholar 

  • Green PB (1980) Organogenesis – a biophysical view. Annu Rev Plant Physiol 31:51–82

    Google Scholar 

  • Green PB, Kings A (1966) A mechanism for the origin of specifically oriented textures with special reference to Nitella wall texture. Aust J Biol Sci 19:421–437

    Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951

    PubMed  Google Scholar 

  • Guglielmino N, Liberman M, Catesson AM, Mareck A, Prat R, Mutaftschiev S, Goldberg R (1997) Pectin methylesterases from poplar cambium and inner bark: localization, properties and seasonal changes. Planta 202:70–75

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham RH (1982) Microtubules. Annu Rev Plant Physiol 33:651–698

    CAS  Google Scholar 

  • Hardham AR, Gunning BES (1978) Interpolation of microtubules into cortical arrays during cell elongation and differentiation in roots of Azolla pinnata. J Cell Sci 37:411–442

    Google Scholar 

  • Harada H (1965) Ultrastructure and organization of gymnosperm cell walls. In: Côté WA Jr (ed) Cellular ultrastructure of woody plants. Syracuse University Press, New York, pp 215–233

    Google Scholar 

  • Harada H, Côté WA Jr (1985) Structure of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp 1–42

    Google Scholar 

  • Harris JM, Meylan BA (1965) The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19:144–153

    Article  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    PubMed  CAS  Google Scholar 

  • Heath IB, Seagull RW (1982) Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 163–182

    Google Scholar 

  • Hellgren J, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    PubMed  CAS  Google Scholar 

  • Hepler PK, Newcomb EH (1964) Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. J Cell Biol 20:529–533

    PubMed  CAS  Google Scholar 

  • Hepler KH, Palevitz BA (1974) Microtubules and microfilaments. Annu Rev Plant Physiol 25:309–362

    CAS  Google Scholar 

  • Herth W (1985) Plasma membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L. Planta 164:12–21

    Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri T, Lunderberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    PubMed  CAS  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer-Verlag, Berlin, pp 1–362

    Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453

    PubMed  CAS  Google Scholar 

  • Hirakawa Y (1984) A SEM observation of microtubules in xylem cells forming secondary walls of trees. Res Bull College Exp For Hokkaido Univ 41:535–550

    Google Scholar 

  • Hirakawa Y, Ishida S (1981) A scanning and transmission electron microscopic study of layered structure of wall in pit border region between earlywood tracheids in conifer. Res Bull College Exp For Hokkaido Univ 38:249–264

    Google Scholar 

  • Hirakawa Y, Fujisawa Y (1995) The relationship between microfibril angles of the S2 layer and latewood tracheid lengths in elite sugi tree (Cryptomeria japonica) clones. Mokuzai Gakkaishi 41:123–131

    Google Scholar 

  • Hirakawa Y, Yamashita K, Nakada R, Fujisawa Y (1997) The effects of S2 microfibril angles of latewood tracheids and densities on modulus of elasticity variations of sugi tree (Cryptomeria japonica) logs. Mokuzai Gakkaishi 43:717–724

    CAS  Google Scholar 

  • Hogetsu T (1989) The arrangement of microtubules in leaves of monocotyledonous and dicotyledonous plants. Can J Bot 67:3506–3512

    Google Scholar 

  • Hogetsu T (1991) Mechanism for formation of secondary wall thickening in tracheary elements: Microtubules and microfibrils of tracheary elements of Pisum sativum L. and Commelina communis L. and the effects of amiprophosmethyl. Planta 185:190–200

    CAS  Google Scholar 

  • Hogetsu T, Shibaoka H (1978) Effects of colchicine on cell shape and on microfibril arrangement in the cell wall of Closterium acerosum. Planta 140:15–18

    CAS  Google Scholar 

  • Hogetsu T, Oshima Y (1986) Immunofluorescence microscopy of microtubule arrangement in root cells of Pisum sativum L. var. Alaska. Plant Cell Physiol 27:939–945

    Google Scholar 

  • IAWA Committee (1964) Multilingual glossary of terms used in wood anatomy. Konkordia, Winterthur, pp 1–186

    Google Scholar 

  • Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215:1006–1012

    PubMed  CAS  Google Scholar 

  • Imamura Y, Harada H, Saiki H (1972) Electron microscopic study on the formation and organization of the cell wall in coniferous tracheids. Bull Kyoto Univ For 44:183–193

    Google Scholar 

  • Imamura Y, Harada H (1973) Electron microscopic study on the development of the bordered pit in coniferous tracheids. Wood Sci Tech 7:189–205

    Google Scholar 

  • Inomata F, Takabe K, Saiki H (1992) Cell wall formation of conifer tracheid as revealed by rapid-freeze and substitution method. J Electron Microsc 41:369–374

    Google Scholar 

  • Itoh T (1971) On the ultrastructure of dormant and active cambium of conifers. Wood Res 51:33–45

    Google Scholar 

  • Kataoka Y, Saiki H, Fujita M (1992) Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Mokuzai Gakkaishi 38:327–335

    CAS  Google Scholar 

  • Kerr T, Bailey IW (1934) The cambium and its derivative tissues 5. Structure, optical properties and chemical composition of the so-called middle lamella. J Arnold Arbor 15:327–349

    Google Scholar 

  • Kidwai P, Robards AW (1969) The appearance of differentiating vascular cells after fixation in different solutions. J Exp Bot 20:664–670

    Google Scholar 

  • Kimura S, Mizuta S (1994) Role of the microtubule cytoskeleton in alternating changes in cellulose-microfibril orientation in the coenocytic green alga, Chaetomorpha moniligera. Planta 193:21–31

    CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085

    PubMed  CAS  Google Scholar 

  • Kitin P, Funada R, Sano Y, Beeckman H, Ohtani J (1999) Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Ann Bot 84:621–632

    Google Scholar 

  • Kitin P, Sano Y, Funada R (2000) Analysis of confocal microscopy of the structure of cambium in the hardwood Kalopanax pictus. Ann Bot 86:1109–1117

    Google Scholar 

  • Kitin P, Sano Y, Funada R (2001) Analysis of cambium and differentiating vessel elements in Kalopanax pictus using resin cast replicas. IAWA J 22:15–28

    Google Scholar 

  • Kitin P, Sano Y, Funada R (2002) Fusiform cells in the cambium of Kalopanax pictus are exclusively mononucleate. J Exp Bot 53:483–488

    PubMed  CAS  Google Scholar 

  • Kitin P, Sano Y, Funada R (2003) Three-dimensional imaging and analysis of differentiating secondary xylem by confocal microscopy. IAWA J 24:211–222

    Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1987) Reorganization of actin filaments associated with the differentiation of tracheary elements in Zinnia mesophyll cells. Protoplasma 138:69–71

    Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1988) Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in cultured Zinnia cells. Protoplasma 143:29–37

    Google Scholar 

  • Kuriyama H, Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5:568–573

    PubMed  CAS  Google Scholar 

  • Kutschera U (1991) Regulation of cell expansion. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 149–158

    Google Scholar 

  • Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. CR Acad Sci Paris 322:633–724

    CAS  Google Scholar 

  • Lang JM, Eisinger WR, Green PB (1982) Effects of ethylene on the orientation of microtubules and cellulose microfibrils of pea epicotyls with poly-lamellated walls. Protoplasma 110:5–14

    CAS  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer-Verlag, Heidelberg, pp 1–725

    Google Scholar 

  • Ledbetter MC, Porter KR (1963) A microtubule in plant cell fine structure. J Cell Biol 19:239–250

    PubMed  CAS  Google Scholar 

  • Liese W (1963) Tertiary wall and warty layer in wood cells. J Poly Sci C2:213–229

    Google Scholar 

  • Liese W (1965) The fine structure of bordered pits in softwoods. In: Côté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, New York, pp 271–290

    Google Scholar 

  • Lloyd CW, Slabas AR, Powell AJ, Macdonald G, Badley RA (1979) Cytoplasmic microtubules of higher plant cells visualised with anti-tubulin antibodies. Nature 279:239–241

    Google Scholar 

  • Lloyd CW (1987) The plant cytoskeleton: the impact of fluorescence microscopy. Annu Rev Plant Physiol 38:119–139

    CAS  Google Scholar 

  • Mao G, Buschmann H, Doonan JH, Lloyd C (2006) The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119:753–758

    PubMed  CAS  Google Scholar 

  • Marc J, Granger CL, Brincat J, Fisher DD, Kao TH, McCubbin AG, Cry RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    PubMed  CAS  Google Scholar 

  • Meylan BA, Butterfield BG (1978) Helical orientation of the microfibrils in tracheids, fibres and vessels. Wood Sci Tech 12:219–222

    Google Scholar 

  • Miyazaki Y, Hiura T, Kato E, Funada R (2002) Allocation of resources to reproduction in Styrax obassia in a masting year. Ann Bot 89:767–772

    PubMed  Google Scholar 

  • Murakami Y, Funada R, Sano Y, Ohtani J (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann Bot 84:429–435

    Google Scholar 

  • Nakaba S, Sano Y, Kubo T, Funada R (2006) The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Rep 25:1143–1148

    PubMed  CAS  Google Scholar 

  • Neville AC, Levy S (1984) Helicoidal orientation of cellulose microfibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta 162:370–384

    Google Scholar 

  • Nick P (2000) Control of plant height. In: Nick P (ed) Plant microtubules. Springer Verlag, Berlin, pp 1–23

    Google Scholar 

  • Nobuchi T, Fujita M (1972) Cytological structure of differentiating tension wood fibers of Populus euroamericana. Mokuzai Gakkaishi 18:137–144

    Google Scholar 

  • Oda Y, Hasezawa S (2006) Cytoskeletal organization during xylem cell differentiation. J Plant Res 119:167–177

    PubMed  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    PubMed  CAS  Google Scholar 

  • Ohtani J (2000) Wood micromorphology: an atlas of scanning electron micrographs. Hokkaido University Press, Sapporo, pp 1–196

    Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. MacGraw-Hill, New York, pp 1–722

    Google Scholar 

  • Oribe Y, Kubo T (1997) Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol 17:81–87

    PubMed  Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in the partially heated stem in an evergreen conifer Abies sachalinensis. Planta 212:684–691

    PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17:185–192

    Google Scholar 

  • Parameswaran N, Liese W (1982) Ultrastructural localization of wall components in wood cells. Holz Roh- Werkst 40:145–155

    CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1974) Plant microtubules. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. MacGraw-Hill, London, pp 219–255

    Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    PubMed  CAS  Google Scholar 

  • Prodhan AKMA, Funada R, Ohtani J, Abe H, Fukazawa K (1995a) Orientation of microfibrils and microtubules in developing tension-wood fibers of Japanese ash (Fraxinus mandshurica var. japonica). Planta 196:577–585

    CAS  Google Scholar 

  • Prodhan AKMA, Ohtani J, Funada R, Abe H, Fukazawa K (1995b) Ultrastructural investigation of tension wood fibre in Fraxinus mandshurica Rupr. var. japonica Maxim. Ann Bot 75:311–317

    Google Scholar 

  • Rensing KH, Samuels AL (2004) Cellular changes associated with rest and quiescence in winter-dormant vascular cambium of Pinus contorta. Trees 18:373–380

    Google Scholar 

  • Rensing KH, Samuels AL, Savidge RA (2002) Ultrastructure of vascular cambial cell cytokinesis in pine seedling preserved by cryofixation and substitution. Protoplasma 220:39–49

    PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    PubMed  CAS  Google Scholar 

  • Ridge I (1973) The control of cell shape and rate of cell expansion by ethylene: effects on microfibril orientation and cell extensibility in etiolated peas. Acta Bot Neerl 22:144–158

    CAS  Google Scholar 

  • Robards AW, Humpherson PG (1967) Microtubules and angiosperm bordered pit formation. Planta 77:233–238

    Google Scholar 

  • Robards AW, Kidwai PA (1972) Microtubules and microfibrils in xylem fibres during secondary wall formation. Cytobiologie 6:1–21

    Google Scholar 

  • Roberts IN, Lloyd CW, Roberts K (1985) Ethylene-induced microtubule reorientations mediation by helical arrays. Planta 164:439–447

    Google Scholar 

  • Robinson DG, Grimm I, Sachs H (1976) Colchicine and microfibril orientation. Protoplasma 89:375–380

    Google Scholar 

  • Robinson DG, Quader H (1982) The microtubule-microfibril syndrome. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 109–126

    Google Scholar 

  • Roland JC, Vian B (1979) The wall of the growing plant cell: its three dimensional organization. Int Rev Cytol 61:129–166

    Google Scholar 

  • Roland JC, Mosiniak M (1983) On the twisting pattern, texture and layering of the secondary cell walls of lime wood. Proposal of an unifying model. IAWA Bull ns 4:15–26

    Google Scholar 

  • Roland JC, Reis D, Vian B, Satiat-Jeunemaitre B, Mosiniak M (1987) Morphogenesis of plant cell walls at the supermolecular level: internal geometry and versatility of helicoidal expression. Protoplasma 140:75–91

    Google Scholar 

  • Roelofsen PA, Houwink AL (1953) Architecture and growth of primary cell wall in some plant hairs and in the Phycomyces sporangiophore. Acta Bot Neerl 2:218–225

    Google Scholar 

  • Saiki H (1970) Proportion of component layers in tracheid wall of earlywood and latewood of some conifers. Mokuzai Gakkaishi 16:244–249

    Google Scholar 

  • Saiki H, Xu Y, Fujita M (1989) The fibrillar orientation and microscopic measurement of the fibril angles in young tracheids walls of sugi (Cryptomeria japonica). Mokuzai Gakkaishi 35:786–792

    Google Scholar 

  • Samuels AL, Rensing KH, Douglas CJ, Mansfield SD, Dharmawardhana DP, Ellis BE (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    PubMed  CAS  Google Scholar 

  • Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 84:631–639

    CAS  Google Scholar 

  • Sauter JJ (2000) Photosynthate allocation to the vascular cambium: facts and problems. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publisher, Oxford, pp 78–83

    Google Scholar 

  • Schneider B, Herth W (1986) Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants. Protoplasma 131:142–152

    CAS  Google Scholar 

  • Seagull RW (1991) Role of the cytoskeletal elements in organized wall microfibril deposition. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 143–163

    Google Scholar 

  • Seagull RW (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101:561–577

    Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:527–544

    CAS  Google Scholar 

  • Singh A, Daniel G, Nilsson T (2002) High variability in the thickness of the S3 layer in Pinus radiata tracheids. Holzforschung 56:111–116

    CAS  Google Scholar 

  • Spokevicius AV, Southerton SG, MacMilllan CP, Qiu D, Gan S, Tibbits JFG, Moran GF, Bossinger G (2007) β-tubulin tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J 51:717–726

    PubMed  CAS  Google Scholar 

  • Srivastava LM (1966) On the fine structure of the cambium of Fraxinus americana L. J Cell Biol 31:79–93

    PubMed  CAS  Google Scholar 

  • Srivastava LM, O'Brien TP (1966) On the ultrastructure of the cambium and its vascular derivatives 1. Cambium of Pinus strobus L. Protoplasma 61:257–276

    Google Scholar 

  • Srivastava LM, Sawhney VK, Bonnettemaker M (1977) Cell growth, wall deposition, and correlated fine structure of colchicine-treated lettuce hypocotyl cells. Can J Bot 55:902–917

    CAS  Google Scholar 

  • Sundberg B, Little CHA, Cui K, Sandberg G (1991) Level of endogenous indole-3-acetic acid in the stem of Pinus sylvestris in relation to the seasonal variation of cambial activity. Plant Cell Environ 14:241–246

    CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publisher, Oxford, pp 169–188

    Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    CAS  Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1981a) The deposition of cell wall components in differentiating tracheids of sugi. Mokuzai Gakkaishi 27:249–255

    CAS  Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1981b) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 27:813–820

    Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vicker K, Turner S (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    PubMed  CAS  Google Scholar 

  • Thitamadee S, Tachihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    PubMed  CAS  Google Scholar 

  • Thomas RJ (1991) Wood: formation and morphology. In: Lewin M, Goldstein IS (eds) Wood structure and composition. Marcel Dekker, New York, pp 7–47

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms 1. Springer-Verlag, Berlin, pp 1–706

    Google Scholar 

  • Tsoumis G (1991) Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York, pp 1–494

    Google Scholar 

  • Tsuda M (1975) The ultrastructure of the vascular cambium and its derivatives in coniferous species 1. Cambial cells. Bull Tokyo Univ For 67:158–226

    Google Scholar 

  • Uehara K, Hogetsu T (1993) Arrangement of cortical microtubules during formation of bordered pit in the tracheids of Taxus. Protoplasma 172:145–153

    Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    PubMed  CAS  Google Scholar 

  • Utsumi Y, Sano Y, Funada R, Ohtani J, Fujikawa S (2003) Seasonal and perennial changes in the distribution of water in the sapwood of conifers in a subfrigid zone. Plant Physiol 131:1826–1833

    PubMed  CAS  Google Scholar 

  • Vesk PA, Rayns DG, Vesk M (1994) Imaging of plant microtubules with high resolution scanning electron microscopy. Protoplasma 182:71–74

    Google Scholar 

  • Vesk PA, Vesk M, Gunning BES (1996) Field emission scanning electron microscopy of microtubule arrays in higher plant cells. Protoplasma 195:168–182

    Google Scholar 

  • Wardrop AB (1951) Cell wall organisation and the properties of the xylem 1. Cell wall organisation and the variation of breaking load in tension of the xylem in conifer stems. Aust J Sci Res B-4:391–414

    Google Scholar 

  • Wardrop AB (1958) The organization of the primary wall in differentiating conifer tracheids. Aust J Bot 6:299–305

    Google Scholar 

  • Wardrop AB (1964) The structure and formation of the cell wall in xylem. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 87–134

    Google Scholar 

  • Wardrop AB, Harada H (1965) The formation and structure of cell wall in fibres and tracheids. J Exp Bot 16:356–371

    Google Scholar 

  • Watanabe H, Tsutsumi J, Kojima K (1963) Studies of juvenile wood 1. Experiments on stems of sugi trees (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 9:225–230

    Google Scholar 

  • Wick SM (1991) The preprophase band. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 231–244

    Google Scholar 

  • Wick SM, Seagull RW, Osborn M, Weber K, Gunning BES (1981) Immunofluorescence microscopy of organised microtubule arrays in structurally-stabilised meristematic plant cells. J Cell Biol 89:685–690

    PubMed  CAS  Google Scholar 

  • Yoneda A, Kutsuna N, Higaki T, Oda Y, Sano T, Hasezawa S (2007) Recent progress in living cell imaging of plant cytoskeleton and vacuole using fluorescent-protein transgenic lines and three-dimensional imaging. Protoplasma 230:129–139

    PubMed  CAS  Google Scholar 

  • Yoshida M, Hosoo Y, Okuyama T (2000) Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period. Holzforschung 54:469–473

    CAS  Google Scholar 

  • Yoshizawa N (1987) Cambial responses to the stimulus of inclination and structural variation of compression wood tracheids in gymnosperms. Bull Utsunomiya Univ For 23:23–141

    Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91:6050–6053

    PubMed  CAS  Google Scholar 

  • Yuan M, Warn RM, Shaw PJ, Lloyd CW (1995) Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. Plant J 7:17–23

    PubMed  CAS  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer-Verlag, Berlin, pp 1–363

    Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer-Verlag, Berlin, pp 1–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Funada .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Funada, R. (2008). Microtubules and the Control of Wood Formation. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_163

Download citation

Publish with us

Policies and ethics